Arabic Opinion Classification of Customer Service Conversations Using Data Augmentation and Artificial Intelligence
Abstract
:1. Introduction
- (1)
- This study presents the first reported results for predicting customer satisfaction using Arabic conversational data, unlike the current focus of Arabic literature on opinion mining, which normally uses reviews, news, and posts found on the X platform (previously known as Twitter). The data collected from the call center database of Jeddah Municipality and rated by its customers offers a unique perspective on customer satisfaction in Arabic. These findings are significant as they illuminate a previously unexplored area of research, underscoring the importance of understanding customer satisfaction in diverse linguistic contexts.
- (2)
- The study employs five different approaches at two-, three- and five-level ratings using customer service conversations from Jeddah Municipality. These approaches were chosen for their performance, including logistic regression [10], random forest [11], ensemble-based deep learning [12], ArabicT5 [13], and SaudiBERT [14]. The methodology’s thoroughness, which includes exploring various approaches, instills confidence in the research’s validity, providing a solid foundation for the findings.
- (3)
- The study is the first in the literature to apply data augmentation to conversational data using GPT-4 [15]. This innovative approach, which involves retraining using the five approaches with augmented data and testing using the original test data, adds a new dimension to the study of customer satisfaction prediction.
2. Related Work
2.1. Data Augmentation
2.1.1. Word Level Data Augmentation
- Random Swap: Two randomly selected words from the sentence are defined, and their positions are exchanged. This process can be repeated multiple times.
- Random Delete: Words are randomly removed from the sentence with a particular probability p.
- Synonym Replacement: The list of stop words must be identified to exclude stop words from the sentence during the random selection of words that will be replaced with synonyms.
- Random Insert: After identifying the stop words list, a randomly selected word that is not a stop word gets replaced with its synonym but does not stay at the same position in the sentence. Instead, it gets inserted into a random position. This operation can be repeated multiple times [40]. During synonym replacement and random insert operations, the words can be replaced with their similar words with different techniques such as embedding-based approaches such as GloVe and Word2Vec, language dictionaries such as WordNet, and deep learning-based embeddings such as Transformers [41].
2.1.2. Sentence Level Data Augmentation
2.2. Studies Within Open-Domain
2.3. Studies Within Closed-Domain
2.4. Summary
3. Methodology
3.1. Dataset
3.2. Relevant Methods
3.3. Proposed Approach
4. Results and Discussion
5. Conclusions and Future Work
- Collect and deploy text-based, balanced, non-acted Arabic conversational data from one or multiple resources with at least five levels of ratings gathered from a customer support service for public use, after removing personal and private data while keeping emojis and emoticons.
- Develop an EDL-MLP model using conversational datasets in a non-Arabic language. The changes needed for this development are as follows: Replace the AraSenti lexicon with a word lexicon appropriate for the target language; substitute the FastText pre-trained embeddings with embeddings specific to the target language. If a list of booster and negation words for the target language does not exist, create one. When applying the pre-processing phase, ignore the part related to Arabic text. Additionally, note that the conversational features available in JMCS may be absent in other datasets. This variation depends on the contents of the online chat software used for customer support, as not all services may support these features.
- Re-rate all the Arabic conversational data of the selected dataset through experts, then compare testing the data rated by users on two models: a model trained with data rated by experts versus a model trained with data rated by users.
- Predict customer satisfaction using Arabic conversational data with additional models, data, and features.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, S.; Alharbi, F.; Alshahrani, R.; Arya, P.K.; Vyas, S.; Elkamchouchi, D.H.; Soufiene, B.O. Secure and Lightweight Authentication Protocol for Privacy Preserving Communications in Smart City Applications. Sustainability 2023, 15, 5346. [Google Scholar] [CrossRef]
- Żywiołek, J.; Schiavone, F. Perception of the Quality of Smart City Solutions as a Sense of Residents’ Safety. Energies 2021, 14, 5511. [Google Scholar] [CrossRef]
- Burity, J. The Importance of Logistics Efficiency on Customer Satisfaction. J. Mark. Dev. Compet. 2021, 15, 26–35. [Google Scholar]
- Ghoumrassi, A.; Țigu, G. The impact of the logistics management in customer satisfaction. Proc. Int. Conf. Bus. Excell. 2017, 11, 292–301. [Google Scholar] [CrossRef]
- Czinkota, M.R.; Kotabe, M.; Vrontis, D.; Shams, S.M.R. Direct Marketing, Sales Promotion, and Public Relations. In Marketing Management; Springer Nature: Cham, Switzerland, 2021; pp. 607–647. [Google Scholar] [CrossRef]
- Battineni, G.; Chintalapudi, N.; Amenta, F. AI Chatbot Design during an Epidemic like the Novel Coronavirus. Healthcare 2020, 8, 154. [Google Scholar] [CrossRef]
- Le, C.P.; Dai, L.; Johnston, M.; Liu, Y.; Walker, M.; Ghanadan, R. Improving Open-Domain Dialogue Evaluation with a Causal Inference Model. arXiv 2023, arXiv:2301.13372. [Google Scholar] [CrossRef]
- Ye, F.; Hu, Z.; Yilmaz, E. Modeling User Satisfaction Dynamics in Dialogue via Hawkes Process. arXiv 2023, arXiv:2305.12594. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, C.; Zhan, H.; Zhuang, Y. Federated Natural Language Generation for Personalized Dialogue System. arXiv 2021, arXiv:2110.06419. [Google Scholar] [CrossRef]
- Elnagar, A.; Khalifa, Y.S.; Einea, A. Hotel Arabic-reviews dataset construction for sentiment analysis applications. In Intelligent Natural Language Processing: Trends and Applications; Springer: Cham, Switzerland, 2018; pp. 35–52. [Google Scholar]
- Nassif, A.B.; Darya, A.M.; Elnagar, A. Empirical evaluation of shallow and deep learning clas-sifiers for Arabic sentiment analysis. Trans. Asian Low-Resour. Lang. Inf. Process. 2021, 21, 1–25. [Google Scholar]
- Al-Mutawa, R.F.; Al-Aama, A.Y. User Opinion Prediction for Arabic Hotel Reviews Using Lexicons and Artificial Intelligence Techniques. Appl. Sci. 2023, 13, 5985. [Google Scholar] [CrossRef]
- Arabic Text Classification Using Deep Learning (ArabicT5). 2024. Available online: https://huggingface.co/Hezam/ArabicT5_Classification (accessed on 25 February 2024).
- SaudiBERT. 2024. Available online: https://huggingface.co/faisalq/SaudiBERT (accessed on 19 May 2024).
- GPT-4 Is OpenAI’s Most Advanced System, Producing Safer and More Useful Responses. 2023. Available online: https://openai.com/index/gpt-4/ (accessed on 27 April 2024).
- Behera, R.K.; Bala, P.K.; Ray, A. Cognitive chatbot for personalised contextual customer service: Behind the scene and beyond the hype. Inf. Syst. Front. 2024, 26, 899–919. [Google Scholar] [CrossRef]
- Mendez, J.A.; Geramifard, A.; Ghavamzadeh, M.; Liu, B. Assistant Reinforcement Learning of Multi-Domain Dialog Policies via Action Embeddings. arXiv 2022, arXiv:2207.00468. [Google Scholar] [CrossRef]
- Cai, W.; Chen, L. Predicting User Intents and Satisfaction with Dialogue-based Conversational Recommendations. In UMAP 2020, Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization, Genoa, Italy, 12–18 July 2020; Association for Computing Machinery, Inc.: New York, NY, USA, 2020; pp. 33–42. [Google Scholar] [CrossRef]
- Spiliotopoulos, D.; Kotis, K.; Vassilakis, C.; Margaris, D. Semantics-Driven Conversational Interfaces for Museum Chatbots. In Culture and Computing. HCII 2020; Rauterberg, M., Ed.; Springer: Cham, Switzerland, 2020; Volume 12215, pp. 255–266. [Google Scholar] [CrossRef]
- Feine, J.; Morana, S.; Gnewuch, U. Measuring Service Encounter Satisfaction with Customer Service Chatbots using Sentiment Analysis. In Proceedings of the Internationale Tagung Wirtschaftsinformatik (WI2019), Siegen, Germany, 24–27 February 2019; p. 1115. [Google Scholar]
- Sun, W.; Zhang, S.; Balog, K.; Ren, Z.; Ren, P.; Chen, Z.; de Rijke, M. Simulating User Satisfaction for the Evaluation of Task-oriented Dialogue Systems. In SIGIR 2021, Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event Canada, 11–15 July 2021; Association for Computing Machinery, Inc.: New York, NY, USA, 2021; pp. 2499–2506. [Google Scholar] [CrossRef]
- Feng, Y.; Jiao, Y.; Prasad, A.; Aletras, N.; Yilmaz, E.; Kazai, G. Schema-Guided User Satisfaction Modeling for Task-Oriented Dialogues. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, Toronto, ON, Canada, 9–14 July 2023; Volume 1, pp. 2079–2091. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, W.; Lam, W.; Cheng, H.; Meng, H. User Satisfaction Estimation with Sequential Dialogue Act Modeling in Goal-Oriented Conversational Systems. In WWW’22, Proceedings of the ACM Web Conference 2022, Lyon France, 25–29 April 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 2998–3008. [Google Scholar] [CrossRef]
- Bodigutla, P.K.; Tiwari, A.; Matsoukas, S.; Valls-Vargas, J.; Polymenakos, L. Joint Turn and Dialogue level User Satisfaction Estimation on Multi-Domain Conversations. In Findings of the Association for Computational Linguistics: EMNLP 2020; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 3897–3909. [Google Scholar] [CrossRef]
- Song, K.; Bing, L.; Gao, W.; Lin, J.; Zhao, L.; Wang, J.; Sun, C.; Liu, X.; Zhang, Q. Using customer service dialogues for satisfaction analysis with context-assisted multiple instance learning. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP 2019), Hong Kong, China, 3–7 November 2019; p. 198. [Google Scholar] [CrossRef]
- Ando, A.; Masumura, R.; Kamiyama, H.; Kobashikawa, S.; Aono, Y.; Toda, T. Customer Satisfaction Estimation in Contact Center Calls Based on a Hierarchical Multi-Task Model. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 715–728. [Google Scholar] [CrossRef]
- Parra-Gallego, L.F.; Orozco-Arroyave, J.R. Classification of emotions and evaluation of customer satisfaction from speech in real world acoustic environments. Digit. Signal Process. 2022, 120, 103286. [Google Scholar] [CrossRef]
- Yin, Y.; Zou, C.; Yuan, Z.; Bao, X. MLDSP-MA: Multidimensional Attention for Multi-Round Long Dialogue Sentiment Prediction. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), Torino, Italy, 20–25 May 2024; pp. 11405–11414. [Google Scholar]
- Cervone, A.; Gambi, E.; Tortoreto, G.; Stepanov, E.A.; Riccardi, G. Automatically Predicting User Ratings for Conversational Systems. CEUR Workshop Proc. 2018, 2253, 99–104. [Google Scholar] [CrossRef]
- Auguste, J.; Charlet, D.; Damnati, G.; Béchet, F.; Favre, B. Can We Predict Self-reported Customer Satisfaction from Interactions? In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 7385–7389. [Google Scholar] [CrossRef]
- Walker, M.A.; Harmon, C.; Graupera, J.; Harrison, D.; Whittaker, S. Modeling Performance in Open-Domain Dialogue with PARADISE. arXiv 2021, arXiv:2110.11164. [Google Scholar] [CrossRef]
- Kim, Y.; Levy, J.; Liu, Y. Speech Sentiment and Customer Satisfaction Estimation in Socialbot Conversations. Proc. Interspeech 2020, 1833–1837. [Google Scholar] [CrossRef]
- Pellicer, L.F.A.O.; Ferreira, T.M.; Costa, A.H.R. Data augmentation techniques in natural language processing. Appl. Soft Comput. 2023, 132, 109803. [Google Scholar] [CrossRef]
- Ashraf, M.T.; Dey, K.; Mishra, S. Identification of high-risk roadway segments for wrong-way driving crash using rare event modeling and data augmentation techniques. Accid. Anal. Prev. 2023, 181, 106933. [Google Scholar] [CrossRef]
- Peng, S.; Qu, D.; Zhang, W.L.; Zhang, H.; Li, S.; Xu, M. Easy and Effective! Data Augmentation for Knowledge-Aware Dialogue Generation Via Multi-Perspective Sentences Interaction. Neurocomputing 2025, 614, 128724. [Google Scholar] [CrossRef]
- Sujana, Y.; Kao, H.Y. LiDA: Language-Independent Data Augmentation for Text Classification. IEEE Access 2023, 11, 10894–10901. [Google Scholar] [CrossRef]
- Muaad, A.Y.; Raza, S.; Heyat, M.B.B.; Alabrah, A. An Intelligent COVID-19-Related Arabic Text Detection Framework Based on Transfer Learning Using Context Representation. Int. J. Intell. Syst. 2024, 2024, 8014111. [Google Scholar] [CrossRef]
- Lin, S.; Zhao, B.; Zhan, Y.; Yu, J.; Bian, X.; Li, D. Non-intrusive residential load identification based on load feature matrix and CBAM-BiLSTM algorithm. Front. Energy Res. 2024, 12, 1443700. [Google Scholar] [CrossRef]
- Islam, R.; Imran, A.; Rabbi, M.F. Prostate Cancer Detection from MRI Using Efficient Feature Extraction with Transfer Learning. Prostate Cancer 2024, 2024, 1588891. [Google Scholar] [CrossRef]
- Zhang, Z.; Poguda, A. Research on the Development of Data Augmentation Techniques in the Field of Machine Translation. Int. J. Open Inf. Technol. 2023, 11, 33–40. [Google Scholar]
- Azam, U.; Rizwan, H.; Syed, A.K.; Ali, B. Exploring Data Augmentation Strategies for Hate Speech Detection in Roman Urdu. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, Marseille, France, 20–25 June 2022; pp. 4523–4531. Available online: https://aclanthology.org/2022.lrec-1.481 (accessed on 3 June 2023).
- Li, G.; Wang, H.; Ding, Y.; Zhou, K.; Yan, X. Data augmentation for aspect-based sentiment analysis. Int. J. Mach. Learn. Cybern. 2023, 14, 125–133. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Hu, H.; Ding, K.; Wang, Z.; Na, C. Daerbt: An Easy-to-Use and Effective Data Augmentation Method for Chinese Financial Textual Resources. SSRN Electron. J. 2023. [Google Scholar] [CrossRef]
- Ganganwar, V.; Rajalakshmi, R. MTDOT: A Multilingual Translation-Based Data Augmentation Technique for Offensive Content Identification in Tamil Text Data. Electronics 2022, 11, 3574. [Google Scholar] [CrossRef]
- Razaq, A.; Halim, Z.; Rahman, A.U.; Sikandar, K. Identification of paraphrased text in research articles through improved embeddings and fine-tuned BERT model. Multimed. Tools Appl. 2024, 83, 74205–74232. [Google Scholar] [CrossRef]
- Le, K.M.; Pham, T.; Quan, T.; Luu, A.T. LAMPAT: Low-Rank Adaption for Multilingual Paraphrasing Using Adversarial Training. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024; Volume 38, pp. 18435–18443. [Google Scholar]
- Sweidan, A.H.; El-Bendary, N.; Elhariri, E. Autoregressive Feature Extraction with Topic Modeling for Aspect-based Sentiment Analysis of Arabic as a Low-resource Language. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 2024, 23, 1–18. [Google Scholar] [CrossRef]
- Kim, J.; Lim, C. Customer complaints monitoring with customer review data analytics: An integrated method of sentiment and statistical process control analyses. Adv. Eng. Inform. 2021, 49, 101304. [Google Scholar] [CrossRef]
- Chakraborty, K.; Bhatia, S.; Bhattacharyya, S.; Platos, J.; Bag, R.; Hassanien, A.E. Sentiment Analysis of COVID-19 tweets by Deep Learning Classifiers—A study to show how popularity is affecting accuracy in social media. Appl. Soft Comput. 2020, 97, 106754. [Google Scholar] [CrossRef] [PubMed]
- Licea-Haquet, G.L.; Reyes-Aguilar, A.; Alcauter, S.; Giordano, M. The Neural Substrate of Speech Act Recognition. Neuroscience 2021, 471, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Babu, N.V.; Kanaga, E.G.M. Sentiment Analysis in Social Media Data for Depression Detection Using Artificial Intelligence: A Review. SN Comput. Sci. 2021, 3, 74. [Google Scholar] [CrossRef]
- El Idrysy, F.Z.; Hourri, S.; El Miqdadi, I.; Hayati, A.; Namir, Y.; Ncir, B.; Kharroubi, J. Unlocking the language barrier: A Journey through Arabic machine translation. Multimed. Tools Appl. 2024. [Google Scholar] [CrossRef]
- Tursunova, M. The Importance of Teaching English as a Second Language. Mod. Sci. Res. 2024, 3, 196–199. [Google Scholar]
- Al-Twairesh, N.; Al-Khalifa, H.; AlSalman, A. Arasenti: Large-scale twitter-specific Arabic sentiment lexicons. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016; Volume 1, pp. 697–705. [Google Scholar]
- Farady, I.; Lin, C.Y.; Chang, M.C. PreAugNet: Improve data augmentation for industrial defect classification with small-scale training data. J. Intell. Manuf. 2024, 35, 1233–1246. [Google Scholar] [CrossRef]
- Harnadi, B.; Widiantoro, A.D. Evaluating the Performance and Accuracy of Supervised Learning Models on Sentiment Analysis of E-Wallet. In Proceedings of the 2023 7th International Conference on Information Technology (InCIT), Chiang Rai, Thailand, 16–17 November 2023; pp. 175–180. [Google Scholar]
- Suryavanshi, A.; Mehta, S.; Jain, A.; Thapliyal, S.; Hariharan, S. Deep Learning Dermoscopy: Unveiling CNN-SVM Synergy in Skin Lesion Detection. In Proceedings of the 2023 4th International Conference on Intelligent Technologies (CONIT), Bangalore, India, 21–23 June 2024; pp. 1–5. [Google Scholar]
- Banerjee, D.; Sharma, N.; Upadhyay, D.; Singh, V. Hybrid CNN-RF Model for Accurate Casting Defect Forecasting. In Proceedings of the 2024 Asia Pacific Conference on Innovation in Technology (APCIT), Mysore, India, 26–27 July 2024; pp. 1–6. [Google Scholar]
- Al-Juboori, S.A.; Albtoosh, M. Improving the mechanical properties of conventional materials by nano-coating, Part-1. Mater. Sci. Non-Equilib. Phase Transform. 2019, 5, 112–119. [Google Scholar]
- Asif, M.; Al-Razgan, M.; Ali, Y.A.; Yunrong, L. Graph convolution networks for social media trolls detection use deep feature extraction. J. Cloud Comput. 2024, 13, 33. [Google Scholar] [CrossRef]
- Yang, E.; Li, M.D.; Raghavan, S.; Deng, F.; Lang, M.; Succi, M.D.; Huang, A.J.; Kalpathy-Cramer, J. Transformer versus traditional natural language processing: How much data is enough for automated radiology report classification? Br. J. Radiol. 2023, 96, 20220769. [Google Scholar] [CrossRef]
- Caluag, R.J.L.; Gervacio, A.G.M.B.; Juco, A.P.M.T.; Santos, I.M.M.; Oabel, N.A.A.; Aniano, S.M.; Amores, W., III. Antihyperglycemic Effect of Combined Pomelo (Citrus maxima) and Banana (Musa × paradisiaca L.) Peel Extract Against Induced Diabetic Sprague Dawley Rats. Res. Arch. Rising Sch. 2023. [Google Scholar] [CrossRef]
- Jahan, M.S.; Oussalah, M.; Beddia, D.R.; Arhab, N. A Comprehensive Study on NLP Data Augmentation for Hate Speech Detection: Legacy Methods, BERT, and LLMs. arXiv 2024, arXiv:2404.00303. [Google Scholar]
Research | Method | Dataset | Best Results | ||||
---|---|---|---|---|---|---|---|
Size | Language | Type | Classes | Accuracy | F1-Score | ||
[29] | SVR model | 4967 | English | Voice-based | 5 | - | - |
[32] | BiLSTM-based temporal regression model | 6308 | English | Voice-based | 5 | - | - |
[31] | DistilBert | 32,235 | English | Voice-based | 5 | - | - |
[20] | IBM sentiment method | 79 | English | Text-based | 7 | - | - |
[28] | MLDSP-MA | 4500 | Chinese | Text-based | 3 | 46.77% | - |
[7] | CF-LSTM | 128,000 | English | Text-based | 5 | 48.2% | - |
[30] | CNN model | 79,476 | French | Text-based | 3 | 57.5% | 46.2% |
[22] | SG-USM-L&U | 1000 | English | Text-based | 3 | 64.7% | 60.2% |
[23] | USDA (CLU) | 3300 | Chinese | Text-based | 3 | 65.1% | 64.0% |
[8] | ASAP | 1000 | English | Text-based | 3 | 66% | 61.6% |
[26] | HMT (BLSTM + ULSTM) model | 391 | Japanese | Voice-based | 3 | 74% | 57.1% |
[27] | SVM model | 2364 | Spanish | Voice-based | 2 | 74.3% | - |
[25] | CAMIL model | 3540 | Chinese | Text-based | 3 | 78.5% | 78.6% |
[21] | HiGRU | 500 | English | Text-based | 2 | - | 27.4% |
[18] | MLP model | 336 | English | Text-based | 2 | - | 68.84% |
[24] | BiLSTM-based model with an attention mechanism | 2133 | English | Voice-based | 2 | - | 71.07% |
Pre-Processing Phase | Pre-Processing Step | Elnagar et al. LR [10] | Nassif et al. RF [11] | Al-Mutawa and Al-Aama EDL [12] |
---|---|---|---|---|
Data Cleaning | Punctuation removal | ✓ | ✓ | ✓ |
URL removal | ✓ | |||
Email removal | ✓ | |||
Kashida removal | ✓ | ✓ | ||
Diacritics removal | ✓ | ✓ | ||
Numerals removal | ✓ | ✓ | ||
Special characters removal | ✓ | ✓ | ||
Extra whitespace removal | ✓ | ✓ | ||
Repetitive letter removal | ✓ | |||
Nulls/missing values removal | ✓ | ✓ | ||
Outliers removal | ✓ | ✓ | ||
Data Normalization | Replacement of the letter Ya’a (ي) with the letter alif-maqsurah (ى) | ✓ | ||
Replacement of the letter alif-maqsurah (ى) and hamza on Ya’ (ئ) with the letter Ya’ (ي) | ✓ | |||
Replacement of the letter alif associated with hamza (إ،أ،آ) with the form (ا) | ✓ | ✓ | ||
Hamza removal | ✓ | |||
Replacement of hamza on Waw (ؤ) with the letter Waw (و) | ✓ | |||
Replacement of the letter Ta’ marbota (ة) with the letter Ha’ (ه) | ✓ | |||
Stop word removal | ✓ | |||
Emoji and emoticon replacement | ✓ |
Purpose of Data Division | Rating Class | Rating Interpretation | Train Data Before Augmentation | Train Data After Augmentation | Test Data |
---|---|---|---|---|---|
To predict five ratings | 1 | Poor | 1203 | 1476 | 301 |
2 | Fair | 115 | 1476 | 29 | |
3 | Average | 152 | 1476 | 38 | |
4 | Good | 258 | 1476 | 64 | |
5 | Excellent | 1476 | 1476 | 369 | |
Total | 3204 | 7380 | 801 | ||
To predict three ratings | 1 | Unsatisfactory | 1318 | 1734 | 330 |
2 | Neutral | 152 | 1734 | 38 | |
3 | Satisfactory | 1734 | 1734 | 433 | |
Total | 3204 | 5202 | 801 | ||
To predict two ratings | 1 | Unsatisfactory | 1318 | 1734 | 330 |
2 | Satisfactory | 1734 | 1734 | 433 | |
Total | 3052 | 3468 | 763 |
Emo | Type | Emoji Unicode | Classification | Short English Naming | Short Arabic Naming | Emotion Score According to Rating | Total Count | ||
---|---|---|---|---|---|---|---|---|---|
5 | 3 | 2 | |||||||
) : | Emoticon | Western | sad face | وجه حزين | −0.3 | −0.375 | −0.4286 | 5 | |
:) | Emoticon | Western | smiling face | وجه مبتسم | 0.2857 | 0.4 | 0.5 | 2 | |
☹️ | Emoji | \u2639 | - | frowning face | وجه عابس | 0.1667 | 0.25 | 0.3333 | 1 |
: ) | Emoticon | Western | smiling face | وجه مبتسم | −0.1667 | −0.25 | −0.3333 | 1 | |
:( | Emoticon | Western | sad face | وجه حزين | −0.1667 | −0.25 | −0.3333 | 1 |
Model | Class | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 3 | 2 | |||||||||||||||||||
A | P | R | F1 | A | P | R | F1 | A | P | R | F1 | ||||||||||
MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | ||||
LR | 60.42 | 24.18 | 50.55 | 28.71 | 60.42 | 26.22 | 54.99 | 66.67 | 44.16 | 63.39 | 46.11 | 66.67 | 45.08 | 64.94 | 64.88 | 64.18 | 64.47 | 62.93 | 64.88 | 62.93 | 64.07 |
RF | 59.46 | 24.22 | 50.36 | 27.96 | 59.46 | 25.63 | 53.86 | 66.83 | 44.85 | 63.92 | 45.48 | 66.83 | 44.56 | 64.51 | 70.20 | 70.22 | 70.22 | 68.27 | 70.20 | 68.45 | 69.45 |
EDL | 66.92 | 46.90 | 59.69 | 32.49 | 66.92 | 30.44 | 61.12 | 74.16 | 50.19 | 71.28 | 50.77 | 74.16 | 49.92 | 71.92 | 77.06 | 76.70 | 76.98 | 76.37 | 77.06 | 76.50 | 76.99 |
AraT5 | 58.30 | 30.88 | 56.24 | 30.60 | 58.30 | 30.52 | 57.09 | 68.91 | 49.56 | 68.04 | 49.38 | 68.91 | 49.41 | 68.45 | 73.39 | 72.92 | 73.28 | 72.59 | 73.39 | 72.72 | 73.30 |
SaBert | 20.60 | 8.38 | 17.66 | 10.07 | 20.60 | 08.94 | 18.60 | 24.47 | 16.55 | 23.84 | 17.88 | 24.47 | 16.59 | 23.29 | 76.15 | 75.71 | 76.23 | 75.85 | 76.15 | 75.77 | 76.18 |
Class | Elnagar et al. LR [10] | Nassif et al. RF [11] | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | P | R | F1 | A | P | R | F1 | |||||||
MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | |||
5 | 49.69 | 19.68 | 41.30 | 23.22 | 49.69 | 21.10 | 44.69 | 55.47 | 23.22 | 48.16 | 25.85 | 55.47 | 23.42 | 49.43 |
3 | 55.56 | 36.14 | 52.22 | 37.62 | 55.56 | 36.61 | 53.49 | 63.63 | 43.70 | 62.01 | 42.58 | 63.63 | 41.22 | 60.18 |
2 | 62.12 | 61.17 | 61.74 | 60.79 | 62.12 | 60.84 | 61.80 | 66.72 | 68.06 | 67.80 | 63.94 | 66.72 | 63.30 | 64.71 |
Model | Class | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 3 | 2 | |||||||||||||||||||
A | P | R | F1 | A | P | R | F1 | A | P | R | F1 | ||||||||||
MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | ||||
LR | 31.96 | 24.26 | 44.89 | 22.98 | 31.96 | 21.29 | 35.36 | 54.06 | 41.89 | 58.22 | 42.00 | 54.06 | 41.20 | 55.56 | 67.37 | 66.78 | 67.37 | 66.81 | 67.40 | 66.80 | 67.38 |
RF | 36.16 | 27.52 | 51.45 | 25.31 | 36.16 | 23.33 | 40.68 | 52.55 | 48.42 | 67.11 | 44.26 | 52.55 | 42.24 | 57.74 | 69.14 | 68.96 | 69.04 | 67.24 | 69.04 | 67.39 | 68.41 |
EDL | 63.92 | 28.85 | 55.52 | 30.69 | 63.92 | 28.57 | 58.91 | 73.66 | 50.19 | 71.36 | 50.44 | 73.66 | 49.81 | 71.80 | 78.37 | 78.84 | 78.62 | 76.91 | 78.37 | 77.35 | 78.00 |
AraT5 | 55.81 | 30.89 | 57.03 | 30.62 | 55.81 | 30.65 | 56.37 | 68.91 | 54.60 | 67.40 | 49.94 | 68.91 | 50.69 | 67.79 | 72.21 | 71.81 | 72.47 | 72.06 | 72.21 | 71.88 | 72.30 |
SaBert | 12.86 | 21.57 | 39.06 | 18.13 | 12.86 | 08.02 | 12.15 | 16.48 | 22.51 | 29.44 | 29.56 | 16.48 | 13.46 | 16.16 | 74.71 | 74.33 | 74.58 | 73.79 | 74.71 | 73.97 | 74.56 |
Feature | Class | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 3 | 2 | |||||||||||||||||||
A | P | R | F1 | A | P | R | F1 | A | P | R | F1 | ||||||||||
MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | ||||
* | 66.79 | 26.86 | 55.99 | 31.80 | 66.79 | 29.08 | 60.84 | 74.16 | 50.19 | 71.28 | 50.77 | 74.16 | 49.92 | 71.92 | 77.06 | 76.70 | 76.98 | 76.37 | 77.06 | 76.50 | 76.99 |
NPW | 66.79 | 26.86 | 55.99 | 31.80 | 66.79 | 29.08 | 60.84 | 74.03 | 50.07 | 71.13 | 50.70 | 74.03 | 49.84 | 71.80 | 77.06 | 76.70 | 76.98 | 76.37 | 77.06 | 76.50 | 76.99 |
NQM | 66.79 | 26.86 | 55.99 | 31.80 | 66.79 | 29.08 | 60.84 | 74.03 | 50.17 | 71.25 | 50.70 | 74.03 | 49.88 | 71.85 | 77.06 | 76.70 | 76.98 | 76.37 | 77.06 | 76.50 | 76.99 |
Duration | 66.79 | 26.87 | 56.01 | 31.80 | 66.79 | 29.09 | 60.84 | 71.79 | 47.73 | 68.31 | 49.65 | 71.79 | 48.60 | 69.91 | 59.37 | 70.86 | 69.18 | 53.21 | 59.37 | 43.65 | 47.67 |
NCR | 66.79 | 26.86 | 55.99 | 31.80 | 66.79 | 29.08 | 60.84 | 74.16 | 50.14 | 71.23 | 50.80 | 74.16 | 49.94 | 71.93 | 77.06 | 76.70 | 76.98 | 76.37 | 77.06 | 76.50 | 76.99 |
NSPR | 66.79 | 26.86 | 55.99 | 31.80 | 66.79 | 29.08 | 60.84 | 74.03 | 50.07 | 71.13 | 50.70 | 74.03 | 49.84 | 49.84 | 77.06 | 76.70 | 76.98 | 76.37 | 77.06 | 76.50 | 76.99 |
NTR | 66.79 | 26.86 | 55.99 | 31.80 | 66.79 | 29.08 | 60.84 | 73.53 | 49.54 | 70.46 | 50.44 | 73.53 | 49.56 | 71.37 | 77.06 | 76.70 | 76.98 | 76.37 | 77.06 | 76.50 | 76.99 |
AF | 61.80 | 29.81 | 52.77 | 29.97 | 61.80 | 28.04 | 56.49 | 64.29 | 43.93 | 63.95 | 45.94 | 64.29 | 43.96 | 62.78 | 73.26 | 72.76 | 73.23 | 72.70 | 73.26 | 72.73 | 73.24 |
Feature | Class | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 3 | 2 | |||||||||||||||||||
A | P | R | F1 | A | P | R | F1 | A | P | R | F1 | ||||||||||
MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | MA | WA | ||||
* | 63.92 | 28.85 | 55.52 | 30.69 | 63.92 | 28.57 | 58.91 | 73.66 | 50.19 | 71.36 | 50.44 | 73.66 | 49.81 | 71.80 | 78.37 | 78.84 | 78.62 | 76.91 | 78.37 | 77.35 | 78.00 |
** | 64.04 | 28.87 | 55.55 | 30.76 | 64.04 | 28.61 | 58.99 | 73.66 | 50.19 | 71.36 | 50.44 | 73.66 | 49.81 | 71.80 | 78.37 | 78.84 | 78.62 | 76.91 | 78.37 | 77.35 | 78.00 |
NPW | 63.92 | 28.85 | 55.52 | 30.69 | 63.92 | 28.57 | 58.91 | 73.41 | 49.96 | 71.06 | 50.29 | 73.41 | 49.65 | 71.56 | 78.37 | 78.84 | 78.62 | 76.91 | 78.37 | 77.35 | 78.00 |
NNW | 60.92 | 28.84 | 55.85 | 31.20 | 60.92 | 29.95 | 58.26 | 73.66 | 50.19 | 71.36 | 50.44 | 73.66 | 49.81 | 71.80 | 78.37 | 78.84 | 78.62 | 76.91 | 78.37 | 77.35 | 78.00 |
NQM | 63.92 | 29.29 | 55.63 | 30.69 | 63.92 | 28.56 | 58.88 | 73.53 | 50.07 | 71.21 | 50.36 | 73.53 | 49.73 | 71.68 | 78.37 | 78.84 | 78.62 | 76.91 | 78.37 | 77.35 | 78.00 |
NP | 63.67 | 28.19 | 55.19 | 30.58 | 63.67 | 28.49 | 58.76 | 73.66 | 50.19 | 71.36 | 50.44 | 73.66 | 49.81 | 71.80 | 78.37 | 78.84 | 78.62 | 76.91 | 78.37 | 77.35 | 78.00 |
NC | 63.80 | 28.48 | 55.34 | 30.64 | 63.80 | 28.53 | 58.84 | 73.66 | 50.09 | 71.24 | 50.44 | 73.66 | 49.77 | 71.75 | 78.37 | 78.84 | 78.62 | 76.91 | 78.37 | 77.35 | 78.00 |
Duration | 53.93 | 28.40 | 56.49 | 30.00 | 53.93 | 28.31 | 54.43 | 71.66 | 47.50 | 68.22 | 49.79 | 71.66 | 48.61 | 69.89 | 66.32 | 68.86 | 70.35 | 68.20 | 66.32 | 66.24 | 66.03 |
NSPR | 64.42 | 28.92 | 55.67 | 30.96 | 64.42 | 28.73 | 59.22 | 73.66 | 50.19 | 71.36 | 50.44 | 73.66 | 49.81 | 71.80 | 78.37 | 78.84 | 78.62 | 76.91 | 78.37 | 77.35 | 78.00 |
NCDTE | 64.17 | 28.89 | 55.59 | 30.82 | 64.17 | 28.65 | 59.07 | 73.66 | 50.19 | 71.36 | 50.44 | 73.66 | 49.81 | 71.80 | 78.37 | 78.84 | 78.62 | 76.91 | 78.37 | 77.35 | 78.00 |
NTR | 64.42 | 28.61 | 55.59 | 30.96 | 64.42 | 28.74 | 59.26 | 73.66 | 50.19 | 71.36 | 50.44 | 73.66 | 49.81 | 71.80 | 78.37 | 78.84 | 78.62 | 76.91 | 78.37 | 77.35 | 78.00 |
AF | 40.32 | 33.05 | 58.98 | 28.57 | 40.32 | 25.87 | 46.56 | 19.85 | 55.83 | 76.32 | 37.84 | 19.85 | 20.27 | 25.98 | 57.40 | 65.55 | 67.60 | 61.25 | 57.40 | 55.60 | 54.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mutawa, R.F.; Al-Aama, A.Y. Arabic Opinion Classification of Customer Service Conversations Using Data Augmentation and Artificial Intelligence. Big Data Cogn. Comput. 2024, 8, 196. https://doi.org/10.3390/bdcc8120196
Al-Mutawa RF, Al-Aama AY. Arabic Opinion Classification of Customer Service Conversations Using Data Augmentation and Artificial Intelligence. Big Data and Cognitive Computing. 2024; 8(12):196. https://doi.org/10.3390/bdcc8120196
Chicago/Turabian StyleAl-Mutawa, Rihab Fahd, and Arwa Yousuf Al-Aama. 2024. "Arabic Opinion Classification of Customer Service Conversations Using Data Augmentation and Artificial Intelligence" Big Data and Cognitive Computing 8, no. 12: 196. https://doi.org/10.3390/bdcc8120196
APA StyleAl-Mutawa, R. F., & Al-Aama, A. Y. (2024). Arabic Opinion Classification of Customer Service Conversations Using Data Augmentation and Artificial Intelligence. Big Data and Cognitive Computing, 8(12), 196. https://doi.org/10.3390/bdcc8120196