XplAInable: Explainable AI Smoke Detection at the Edge
Abstract
:1. Introduction
- RQ1: How can smoke detection be shifted to the edge of large-scale communication networks when classifying data samples from the Bosch BME688 sensor?
- RQ2: What benefits does XAI offer in the development and live evaluation of artificial intelligence for edge devices?
- An MLP-based classifier for smoke gas deployed and optimized for execution using an ESP32-platform.
- A holistic system simulation of energy costs for various communication schemes from the sensor node via BLE.
- A design space evaluation in terms of the energy intensity of various communication schemes compared to the value of information received by a central server.
2. Case Study—Project 5G-Waldwächter
2.1. Main Idea of 5G-Waldwächter (Context for This Work)
2.2. Subsystem for Smoke Detection on the Edge (Scope of This Work)
- The quality of prediction or classification using AI at the sensor nodes;
- The quality of the overall smoke detection;
- Energy aspects of both the sensor node and the overall system;
- The feasibility of transmitting data over 5G in rural areas from many devices, possibly at high bandwidths;
- System reliability.
2.3. Constraints and Assumptions
3. Smoke Gas Detection
3.1. Related Work
3.2. System Model
4. XAI
4.1. LIME in Detail
4.2. SHAP in Detail
4.3. CIU in Detail
5. Idea and Methodology
5.1. Execution Steps
5.1.1. Measurement
5.1.2. Evaluation
5.1.3. Transmission
5.2. System Model
- The place of executing the evaluation;
- Transmit data samples or raw data;
- Buffer data samples.
5.2.1. Buffered Send Mode
5.2.2. Classification-Based Mode
5.2.3. Buffered Classification Mode
5.2.4. Standalone Mode
5.3. Power Evaluation
6. Results
6.1. XAI Evaluation
6.2. Joint Evaluation
- Data credibility rating;
- Long-term improvement of datasets.
7. Conclusions and Future Work
7.1. Conclusions
7.2. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence; |
XAI | Explainable Artificial Intelligence; |
FIV | Feature Importance Value; |
MLP | Multi-Level Perceptron; |
SIMD | Single-Instruction, Multiple-Data; |
BLE | Bluetooth Low Energy; |
MOS | Metal Oxide Semi-Conductor. |
References
- Horvat, D.; Kroll, H.; Jäger, A. Researching the effects of automation and digitalization on manufacturing companies’ productivity in the early stage of industry 4.0. Procedia Manuf. 2019, 39, 886–893. [Google Scholar] [CrossRef]
- Palattella, M.R.; Dohler, M.; Grieco, A.; Rizzo, G.; Torsner, J.; Engel, T.; Ladid, L. Internet of things in the 5G era: Enablers, architecture, and business models. IEEE J. Sel. Areas Commun. 2016, 34, 510–527. [Google Scholar] [CrossRef]
- Li, T.; Li, D. Prospects for the application of 5g technology in agriculture and rural areas. In Proceedings of the 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Harbin, China, 25–27 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 2176–2179. [Google Scholar]
- Najjuuko, C.; Ayebare, G.K.; Lukanga, R.; Mugume, E.; Okello, D. A survey of 5G for rural broadband connectivity. In Proceedings of the 2021 IST-Africa Conference (IST-Africa), Virtual, 10–14 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–10. [Google Scholar]
- Li, S.; Da Xu, L.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Gupta, A.; Jha, R.K. A survey of 5G network: Architecture and emerging technologies. IEEE Access 2015, 3, 1206–1232. [Google Scholar] [CrossRef]
- Hakak, S.; Gadekallu, T.R.; Maddikunta, P.K.R.; Ramu, S.P.; Parimala, M.; De Alwis, C.; Liyanage, M. Autonomous Vehicles in 5G and beyond: A Survey. Veh. Commun. 2023, 39, 100551. [Google Scholar] [CrossRef]
- Trick, U. 5G: An Introduction to the 5th Generation Mobile Networks; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2021. [Google Scholar]
- Halofsky, J.E.; Peterson, D.L.; Harvey, B.J. Changing wildfire, changing forests: The effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol. 2020, 16, 4. [Google Scholar] [CrossRef]
- Bousfield, C.G.; Lindenmayer, D.B.; Edwards, D.P. Substantial and increasing global losses of timber-producing forest due to wildfires. Nat. Geosci. 2023, 16, 1145–1150. [Google Scholar] [CrossRef]
- IMF. Number of Large Wildfire Disasters Worldwide from 1980 to 2022. 2023. Available online: https://www.statista.com/statistics/1342206/number-of-large-wildfire-disasters-worldwide/ (accessed on 24 February 2024).
- Pausas, J.G.; Keeley, J.E. Wildfires and global change. Front. Ecol. Environ. 2021, 19, 387–395. [Google Scholar] [CrossRef]
- Frühbrodt, T.; Schebeck, M.; Andersson, M.N.; Holighaus, G.; Kreuzwieser, J.; Burzlaff, T.; Delb, H.; Biedermann, P.H. Verbenone—The universal bark beetle repellent? Its origin, effects, and ecological roles. J. Pest Sci. 2024, 97, 35–71. [Google Scholar] [CrossRef]
- Marvasti-Zadeh, S.M.; Goodsman, D.; Ray, N.; Erbilgin, N. Early detection of bark beetle attack using remote sensing and machine learning: A review. ACM Comput. Surv. 2023, 56, 1–40. [Google Scholar] [CrossRef]
- Görlitz, L. 5G-Waldwächter—Projekt Kann Beginnen. 2022. Available online: https://www.kreis-goerlitz.de/01-Aktuelles/Bekanntmachungen/5G-Waldwaechter-Projekt-kann-beginnen.html? (accessed on 30 January 2024).
- Joint Research Centre, E. European Forest Fire Information System EFFIS. 2023. Available online: https://effis.jrc.ec.europa.eu/ (accessed on 23 February 2024).
- Kar, A.; Patra, A. Recent development of core–shell SnO 2 nanostructures and their potential applications. J. Mater. Chem. C 2014, 2, 6706–6722. [Google Scholar] [CrossRef]
- Kumar, S.; Rani, S.; Singh, R. A review: E-nose and air purifier system based on emerging technology for smart city applications. In Proceedings of the 4th Smart Cities Symposium (SCS 2021), Online Conference, Bahrain, 21–23 November 2021; pp. 14–19. [Google Scholar] [CrossRef]
- Marinov, M.B.; Ganev, B.T.; Nikolov, D.N. Indoor Air Quality Assessment Using Low-cost Commercial Off-the-Shelf Sensors. In Proceedings of the 2021 6th International Symposium on Environment-Friendly Energies and Applications (EFEA), Sofia, Bulgaria, 24–26 March 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Connerton, P.; Nogueira, T.; Kumar, P.; Ribeiro, H. Use of Low-Cost Sensors for Environmental Health Surveillance: Wildfire-Related Particulate Matter Detection in Brasília, Brazil. Atmosphere 2023, 14, 1796. [Google Scholar] [CrossRef]
- Panteli, C.; Stylianou, M.; Anastasiou, A.; Andreou, C. Rapid Detection of Bacterial Infection Using Gas Phase Time Series Analysis. In Proceedings of the 2023 IEEE SENSORS, Vienna, Austria, 29 October–1 November 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Carta, F.; Loru, D.; Putzu, M.; Zidda, C.; Fadda, M.; Girau, R.; Anedda, M.; Giusto, D.D. A Social IoT-Based Solution for Real-Time Forest Fire Detection. In Proceedings of the 2023 IEEE 13th International Conference on Consumer Electronics—Berlin (ICCE-Berlin), Berlin, Germany, 3–5 September 2023; pp. 15–20. [Google Scholar] [CrossRef]
- Pettorru, G.; Fadda, M.; Girau, R.; Anedda, M.; Giusto, D. An IoT-based electronic sniffing for forest fire detection. In Proceedings of the 2023 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 6–8 January 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Pettorru, G.; Fadda, M.; Girau, R.; Sole, M.; Anedda, M.; Giusto, D. Using Artificial Intelligence and IoT Solution for Forest Fire Prevention. In Proceedings of the 2023 International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, 20–22 February 2023; pp. 414–418. [Google Scholar] [CrossRef]
- Moon, W.J.; Yu, J.H.; Choi, G.M. Selective Gas Detection of SnO2-TiO2 Gas Sensors. J. Electroceramics 2004, 13, 707–713. [Google Scholar] [CrossRef]
- Qing, W.; Yong-ping, L.; Wei-long, L. Development of a Multi-component Infrared Gas Sensor Detection System. J. Phys. Conf. Ser. 2019, 1229, 012068. [Google Scholar] [CrossRef]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2013, 24, 012004. [Google Scholar] [CrossRef]
- Tang, W.; Wang, J. Enhanced Gas Sensing Mechanisms of Metal Oxide Heterojunction Gas Sensors. Acta Phys.-Chim. Sin. 2016, 32, 1087–1104. [Google Scholar] [CrossRef]
- Chai, C.; Peng, J.; Yan, B. Preparation and gas-sensing properties of α-Fe2O3 thin films. J. Electron. Mater. 1995, 24, 799–804. [Google Scholar] [CrossRef]
- GmbH, B.S. Gas Sensor BME688. Available online: https://www.bosch-sensortec.com/products/environmental-sensors/gas-sensors/bme688/ (accessed on 13 September 2023).
- Kong, Y.; Li, Y.; Cui, X.; Su, L.; Ma, D.; Lai, T.; Yao, L.; Xiao, X.; Wang, Y. SnO2 nanostructured materials used as gas sensors for the detection of hazardous and flammable gases: A review. Nano Mater. Sci. 2022, 4, 339–350. [Google Scholar] [CrossRef]
- Chen, W.; Li, Q.; Xu, L.; Zeng, W. Gas Sensing Properties of ZnO–SnO2 Nanostructures. J. Nanosci. Nanotechnol. 2015, 15, 1245–1252. [Google Scholar] [CrossRef]
- Yu, Q.; Zhu, J.; Xu, Z.; Huang, X. Facile synthesis of α-Fe2O3@SnO2 core–shell heterostructure nanotubes for high performance gas sensors. Sens. Actuators B Chem. 2015, 213, 27–34. [Google Scholar] [CrossRef]
- Anđelić, N.; Baressi Šegota, S.; Lorencin, I.; Car, Z. The Development of Symbolic Expressions for Fire Detection with Symbolic Classifier Using Sensor Fusion Data. Sensors 2022, 23, 169. [Google Scholar] [CrossRef]
- Mackensen, E.; Lai, M.; Wendt, T.M. Bluetooth Low Energy (BLE) based wireless sensors. In Proceedings of the SENSORS, 2012 IEEE, Taipei, Taiwan, 28–31 October 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Morin, É.; Maman, M.; Guizzetti, R.; Duda, A. Comparison of the Device Lifetime in Wireless Networks for the Internet of Things. IEEE Access 2017, 5, 7097–7114. [Google Scholar] [CrossRef]
- Sebastian, A.; Pragna, R.; Madhan Kumar, S.; Jesher Joshua, M.; Prathap, S.; Brintha Therese, A. Proximity-Based Access Control With BLE Communication Using Path Loss Model and MLP Prediction. In Proceedings of the 2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN), Vellore, India, 5–6 May 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Tosi, J.; Taffoni, F.; Santacatterina, M.; Sannino, R.; Formica, D. Throughput Analysis of BLE Sensor Network for Motion Tracking of Human Movements. IEEE Sens. J. 2019, 19, 370–377. [Google Scholar] [CrossRef]
- Hughes, J.; Yan, J.; Soga, K. Development of Wireless Sensor Network using Bluetooth Low Energy (BLE) for Construction Noise Monitoring. Int. J. Smart Sens. Intell. Syst. 2015, 8, 1379–1405. [Google Scholar] [CrossRef]
- Siham Sayeed, T.M.; Rayhan, M.T.; Chowdhury, S. Bluetooth Low Energy (BLE) based portable medical sensor kit platform with cloud connectivity. In Proceedings of the 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2), Rajshahi, Bangladesh, 8–9 February 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Tosi, J.; Taffoni, F.; Santacatterina, M.; Sannino, R.; Formica, D. Performance Evaluation of Bluetooth Low Energy: A Systematic Review. Sensors 2017, 17, 2898. [Google Scholar] [CrossRef]
- Minh, D.; Wang, H.X.; Li, Y.F.; Nguyen, T.N. Explainable artificial intelligence: A comprehensive review. Artif. Intell. Rev. 2021, 55, 3503–3568. [Google Scholar] [CrossRef]
- Arya, V.; Bellamy, R.K.E.; Chen, P.; Dhurandhar, A.; Hind, M.; Hoffman, S.C.; Houde, S.; Liao, Q.V.; Luss, R.; Mojsilovic, A.; et al. One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI Explainability Techniques. arXiv 2019. [Google Scholar] [CrossRef]
- Liao, Q.V.; Singh, M.; Zhang, Y.; Bellamy, R. Introduction to explainable AI. In Proceedings of the Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–3. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of the Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’16, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar] [CrossRef]
- Gawantka, F.; Schulz, A.; Lässig, J.; Just, F. SkillDB—An Evaluation on the stability of XAI algorithms for a HR decision support system and the legal context. In Proceedings of the 2022 IEEE 21st International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), Toronto, ON, Canada, 8–10 December 2022; pp. 183–190. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777. [Google Scholar]
- Främling, K. Decision theory meets explainable AI. In Proceedings of the Explainable, Transparent Autonomous Agents and Multi-Agent Systems: Second International Workshop, EXTRAAMAS 2020, Auckland, New Zealand, 9–13 May 2020; Revised Selected Papers 2. Springer: Cham, Switzerland, 2020; pp. 57–74. [Google Scholar]
- Molnar, C. Interpretable Machine Learning. 2022. Available online: https://christophm.github.io/interpretable-ml-book/ (accessed on 16 April 2023).
- Främling, K. Contextual Importance and Utility: A Theoretical Foundation. In Proceedings of the AI 2021: Advances in Artificial Intelligence, Sydney, NSW, Australia, 2–4 February 2022; Long, G., Yu, X., Wang, S., Eds.; Springer: Cham, Switzerland, 2022; pp. 117–128. [Google Scholar]
- Främling, K. Explainable AI without Interpretable Model. arXiv 2009. [Google Scholar] [CrossRef]
- Systems, E. ESP32 Series Datasheet. Available online: https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf (accessed on 7 September 2023).
Possible Operating Profiles | ||||
---|---|---|---|---|
Costs | Data Sample Only | Class Only, No Sample | Class and Sample | Class and Multiple Samples |
M | ✓ | ✓ | ✓ | ✓ |
E | × | ✓ | (✓) | (✓) |
S | 1 sample | <1 sample (only class) | >1 sample (class + sample) | >n samples (class + n samples) |
XAI Method | Constraints | Approach (Background) | Sources |
---|---|---|---|
LIME (Section 4.1) | creates a surrogate model (functional approximation) | [45,46] | |
SHAP (Section 4.2) | fulfilled | shapely values are approximated (game theory) | [46,47] |
CIU (Section 4.3) | perturbed instances are used for Multiple Criteria Decision Making (MCDM) | [46,48] |
Theory | Measured | ||
---|---|---|---|
Phase | Power | Power | Time |
Measurement | 8 | ||
Evaluation | 168 | 47 | |
Advertisement | * | 116 | |
Transmission | 116 |
Name | Buffer | Energy (J) | Power (mW) | Capacity (As) |
---|---|---|---|---|
Send Mode (incl. Classification) | 1 | 23.754 | 299.4 | 7.198 |
Send Mode | 1 | 23.752 | 235.6 | 7.197 |
prob. Classification Mode | 1 | 23.337 | 154.6 | 7.197 |
prob. Classification-Only Mode | 1 | 23.334 | 154.6 | 7.181 |
Classification Buffer Mode | 2 | 23.616 | 261.1 | 7.214 |
3 | 23.608 | 248.3 | 7.231 | |
4 | 23.632 | 242.0 | 7.248 | |
prob. Classification Buffer Mode | 1 | 23.337 | 154.6 | 7.197 |
2 | 23.340 | 154.6 | 7.214 | |
3 | 23.343 | 154.6 | 7.231 | |
4 | 23.346 | 154.6 | 7.248 | |
Buffered Send Mode | 1 | 23.752 | 235.6 | 7.197 |
2 | 23.560 | 187.8 | 7.197 | |
3 | 23.496 | 171.8 | 7.197 | |
4 | 23.464 | 163.8 | 7.197 |
Intra Algorithmic | LIME | SHAP | CIU | ||||||
---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 1st | 2nd | 3rd | 1st | 2nd | 3rd | |
Inter Algorithmic | Combined Result | ||||
---|---|---|---|---|---|
Top | Worst | ||||
r8 | r9 | r1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehnert, A.; Gawantka, F.; During, J.; Just, F.; Reichenbach, M. XplAInable: Explainable AI Smoke Detection at the Edge. Big Data Cogn. Comput. 2024, 8, 50. https://doi.org/10.3390/bdcc8050050
Lehnert A, Gawantka F, During J, Just F, Reichenbach M. XplAInable: Explainable AI Smoke Detection at the Edge. Big Data and Cognitive Computing. 2024; 8(5):50. https://doi.org/10.3390/bdcc8050050
Chicago/Turabian StyleLehnert, Alexander, Falko Gawantka, Jonas During, Franz Just, and Marc Reichenbach. 2024. "XplAInable: Explainable AI Smoke Detection at the Edge" Big Data and Cognitive Computing 8, no. 5: 50. https://doi.org/10.3390/bdcc8050050
APA StyleLehnert, A., Gawantka, F., During, J., Just, F., & Reichenbach, M. (2024). XplAInable: Explainable AI Smoke Detection at the Edge. Big Data and Cognitive Computing, 8(5), 50. https://doi.org/10.3390/bdcc8050050