Demystifying Mental Health by Decoding Facial Action Unit Sequences
Abstract
:1. Introduction
2. Related Work
2.1. Conventional Techniques
2.2. Deep-Learning Techniques
2.3. Hybrid Techniques
2.4. Region of Interest-Based Techniques
3. Materials and Methods
3.1. Datasets
3.2. Proposed Framework
3.2.1. Data Pre-Processing
3.2.2. Action Unit Detection
3.2.3. Emotion Classification
3.2.4. Action Units Combinations
3.3. Model Architecture
Performance Metrics
3.4. Micro-Expression Sub-Division
4. Result and Discussion
4.1. Results
4.1.1. Emotion Classification
4.1.2. Micro-Expression Sub-Division Based on Action Units
4.1.3. Ablation Study
4.2. Discussion
4.2.1. Comparison with State-of-the-Art Techniques
4.2.2. Micro-Expression Sub-Division
4.2.3. Mental Health Assessment
- Case Study
4.2.4. Application Scenarios
4.2.5. Experimental Scenarios
4.2.6. Clinical Scenarios
- (a)
- Depression detection:
- (b)
- Anxiety and stress detection:
- (c)
- Autism spectrum disorder (ASD):
- (d)
- Mood disorder:
- (e)
- Post-traumatic stress disorder (PTSD):
4.2.7. Assistive Scenarios
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Galderisi, S.; Heinz, A.; Kastrup, M.; Beezhold, J.; Sartorius, N. Toward a new definition of mental health. World Psychiatry 2015, 14, 231–233. [Google Scholar] [CrossRef] [PubMed]
- Rayan, A.; Alanazi, S. A novel approach to forecasting the mental well-being using machine learning. Alex. Eng. J. 2023, 84, 175–183. [Google Scholar] [CrossRef]
- Pise, A.A.; Alqahtani, M.A.; Verma, P. K, P.; Karras, D.A.; Halifa, A. Methods for Facial Expression Recognition with Applications in Challenging Situations. Comput. Intell. Neurosci. 2022, 2022, 9261438. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhou, Y.; Zeng, S.; Pan, B. Facial expression recognition based on convolutional neural network. In Proceedings of the 2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 18–20 October 2019; pp. 410–413. [Google Scholar] [CrossRef]
- Shen, X.B.; Wu, Q.; Fu, X.L. Effects of the duration of expressions on the recognition of microexpressions. J. Zhejiang Univ. Sci. B 2012, 13, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Farnsworth, B. Facial Action Coding System (FACS)—A Visual Guidebook—iMotions. Web 2019, 1–26. Available online: https://imotions.com/blog/learning/research-fundamentals/facial-action-coding-system/ (accessed on 2 July 2024).
- Gavrilescu, M.; Vizireanu, N. Predicting depression, anxiety, and stress levels from videos using the facial action coding system. Sensors 2019, 19, 3693. [Google Scholar] [CrossRef]
- Giannakakis, G.; Koujan, M.R.; Roussos, A. Automatic stress detection evaluating models of facial action units. In Proceedings of the 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), Buenos Aires, Argentina, 16–20 November 2020; pp. 728–733. [Google Scholar]
- Martinez, B.; Valstar, M.F.; Jiang, B.; Pantic, M. Automatic analysis of facial actions: A survey. IEEE Trans. Affect. Comput. 2019, 10, 325–347. [Google Scholar] [CrossRef]
- Friesen, W.V. Nonverbal Leakage and Clues to Deception. Psychiatry 1969, 32, 88–106. [Google Scholar] [CrossRef]
- O’Sullivan, M.; Frank, M.G.; Hurley, C.M.; Tiwana, J. Police Lie Detection Accuracy: The Effect of Lie Scenario. Law Hum. Behav. 2009, 33, 530–538. [Google Scholar] [CrossRef]
- Hussein, S.A.; Bayoumi, A.E.R.S.; Soliman, A.M. Automated detection of human mental disorder. J. Electr. Syst. Inf. Technol. 2023, 10, 9. [Google Scholar] [CrossRef]
- La Monica, L.; Cenerini, C.; Vollero, L.; Pennazza, G.; Santonico, M.; Keller, F. Development of a Universal Validation Protocol and an Open-Source Database for Multi-Contextual Facial Expression Recognition. Sensors 2023, 23, 8376. [Google Scholar] [CrossRef]
- Mahayossanunt, Y.; Nupairoj, N.; Hemrungrojn, S.; Vateekul, P. Explainable Depression Detection Based on Facial Expression Using LSTM on Attentional Intermediate Feature Fusion with Label Smoothing. Sensors 2023, 23, 9402. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Pietik, M. Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 915–928. [Google Scholar] [CrossRef] [PubMed]
- Davison, A.K.; Merghani, W.; Yap, M.H. Objective classes for micro-facial expression recognition. J. Imaging 2018, 4, 119. [Google Scholar] [CrossRef]
- Liu, Y.J.; Zhang, J.K.; Yan, W.J.; Wang, S.J.; Zhao, G.; Fu, X. A Main Directional Mean Optical Flow Feature for Spontaneous Micro-Expression Recognition. IEEE Trans. Affect. Comput. 2016, 7, 299–310. [Google Scholar] [CrossRef]
- Liong, S.T.; See, J.; Wong, K.S.; Phan, R.C.W. Less is more: Micro-expression recognition from video using apex frame. Signal Process. Image Commun. 2018, 62, 82–92. [Google Scholar] [CrossRef]
- Duque, C.A.; Alata, O.; Emonet, R.; Konik, H.; Legrand, A.C. Mean oriented Riesz features for micro expression classification. Pattern Recognit. Lett. 2020, 135, 382–389. [Google Scholar] [CrossRef]
- Polikovsky, S.; Kameda, Y.; Ohta, Y. Facial micro-expressions recognition using high speed camera and 3D-Gradient descriptor. In Proceedings of the IET Seminar Digest, London, UK, 3 December 2009; Volume 2009. [Google Scholar]
- Patel, D.; Hong, X.; Zhao, G. Selective deep features for micro-expression recognition. In Proceedings of the International Conference on Pattern Recognition, Cancun, Mexico, 4–8 December 2016; pp. 2258–2263. [Google Scholar]
- Lucey, P.; Cohn, J.F.; Kanade, T.; Saragih, J.; Ambadar, Z.; Matthews, I. The extended Cohn-Kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition—Workshops, CVPRW 2010, San Francisco, CA, USA, 13–18 June 2010; pp. 94–101. [Google Scholar]
- Verma, M.; Vipparthi, S.K.; Singh, G.; Murala, S. LEARNet: Dynamic Imaging Network for Micro Expression Recognition. IEEE Trans. Image Process. 2020, 29, 1618–1627. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Baddar, W.J.; Ro, Y.M. Micro-expression recognition with expression-state constrained spatio-temporal feature representations. In Proceedings of the MM 2016—Proceedings of the 2016 ACM Multimedia Conference, Amsterdam, The Netherlands, 15–19 October 2016; Association for Computing Machinery, Inc.: New York, NY, USA, 2016; pp. 382–386. [Google Scholar]
- Khor, H.Q.; See, J.; Phan, R.C.W.; Lin, W. Enriched long-term recurrent convolutional network for facial micro-expression recognition. In Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018; pp. 667–674. [Google Scholar] [CrossRef]
- Lewinski, P.; Den Uyl, T.M.; Butler, C. Automated facial coding: Validation of basic emotions and FACS AUs in facereader. J. Neurosci. Psychol. Econ. 2014, 7, 227–236. [Google Scholar] [CrossRef]
- Ekman, P.; Friesen, W.V. Facial Action Coding System. In Facial Action Coding System (FACS); APA PsycTests: Washington, DC, USA, 1978. [Google Scholar]
- Zhao, Y.; Xu, J. Necessary morphological patches extraction for automatic micro-expression recognition. Appl. Sci. 2018, 8, 1811. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, J. An improved micro-expression recognition method based on necessary morphological patches. Symmetry 2019, 11, 497. [Google Scholar] [CrossRef]
- Davison, A.K.; Lansley, C.; Costen, N.; Tan, K.; Yap, M.H. SAMM: A Spontaneous Micro-Facial Movement Dataset. IEEE Trans. Affect. Comput. 2018, 9, 116–129. [Google Scholar] [CrossRef]
- Yan, W.J.; Li, X.; Wang, S.J.; Zhao, G.; Liu, Y.J.; Chen, Y.H.; Fu, X. CASME II: An improved spontaneous micro-expression database and the baseline evaluation. PLoS ONE 2014, 9, e86041. [Google Scholar] [CrossRef]
- Ruan, B.K.; Lo, L.; Shuai, H.H.; Cheng, W.H. Mimicking the Annotation Process for Recognizing the Micro Expressions. In Proceedings of the MM 22: The 30th ACM International Conference on Multimedia, Lisbon, Portugal, 10–14 October 2022; Association for Computing Machinery: New York, NY, USA, 2022; Volume 1, ISBN 9781450392037. [Google Scholar]
- Allaert, B.; Bilasco, I.M.; Djeraba, C. Micro and Macro Facial Expression Recognition Using Advanced Local Motion Patterns. IEEE Trans. Affect. Comput. 2022, 13, 147–158. [Google Scholar] [CrossRef]
- Choi, D.Y.; Song, B.C. Facial Micro-Expression Recognition Using Two-Dimensional Landmark Feature Maps. IEEE Access 2020, 8, 121549–121563. [Google Scholar] [CrossRef]
- Li, C.; Qi, Z.; Jia, N.; Wu, J. Human face detection algorithm via Haar cascade classifier combined with three additional classifiers. In Proceedings of the ICEMI 2017—Proceedings of IEEE 13th International Conference on Electronic Measurement and Instruments, Yangzhou, China, 20–22 October 2017; pp. 483–487. [Google Scholar]
- Benitez-Garcia, G.; Olivares-Mercado, J.; Aguilar-Torres, G.; Sanchez-Perez, G.; Perez-Meana, H. Face identification based on Contrast Limited Adaptive Histogram Equalization (CLAHE). In Proceedings of the 2011 International Conference on Image Processing, Computer Vision, and Pattern Recognition, IPCV 2011, Washington, DC, USA, 20–25 June 2011; Volume 1, pp. 363–369. [Google Scholar]
- Irawan, B.; Utama, N.P.; Munir, R.; Purwarianti, A. Spontaneous Micro-Expression Recognition Using 3DCNN on Long Videos for Emotion Analysis. In Proceedings of the 2023 10th International Conference on Advanced Informatics: Concept, Theory and Application (ICAICTA), Lombok, Indonesia, 7–9 October 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Chowanda, A. Separable convolutional neural networks for facial expressions recognition. J. Big Data 2021, 8, 132. [Google Scholar] [CrossRef]
- Hashmi, M.F.; Kiran Kumar Ashish, B.; Sharma, V.; Keskar, A.G.; Bokde, N.D.; Yoon, J.H.; Geem, Z.W. Larnet: Real-time detection of facial micro expression using lossless attention residual network. Sensors 2021, 21, 1098. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Yuan, S.; Xing, H.; Jiang, Y.; Geng, P.; Cao, Y.; Ben, X. Micro-expression action unit recognition based on dynamic image and spatial pyramid. J. Supercomput. 2023, 79, 19879–19902. [Google Scholar] [CrossRef]
- Wang, L.; Cai, W. Micro-expression recognition by fusing action unit detection and spatio-temporal features. In Proceedings of the ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 5595–5599. [Google Scholar] [CrossRef]
- Lei, L.; Chen, T.; Li, S.; Li, J. Micro-expression recognition based on facial graph representation learning and facial action unit fusion. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, TN, USA, 19–25 June 2021; pp. 1571–1580. [Google Scholar] [CrossRef]
- Chowdary, M.K.; Nguyen, T.N.; Hemanth, D.J. Deep learning-based facial emotion recognition for human–computer interaction applications. Neural Comput. Appl. 2023, 35, 23311–23328. [Google Scholar] [CrossRef]
- Banskota, N.; Alsadoon, A.; Prasad, P.W.C.; Dawoud, A.; Rashid, T.A.; Alsadoon, O.H. A novel enhanced convolution neural network with extreme learning machine: Facial emotional recognition in psychology practices. Multimed. Tools Appl. 2022, 82, 6479–6503. [Google Scholar] [CrossRef]
- Wang, H.H.; Gu, J.W. The applications of facial expression recognition in human-computer interaction. In Proceedings of the 2018 IEEE International Conference on Advanced Manufacturing (ICAM), Yunlin, Taiwan, 16–18 November 2018; pp. 288–291. [Google Scholar] [CrossRef]
- Healy, M.; Walsh, P. Detecting demeanor for healthcare with machine learning. In Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas City, MO, USA, 13–16 November 2017; pp. 2015–2019. [Google Scholar] [CrossRef]
- Bargshady, G.; Zhou, X.; Deo, R.C.; Soar, J.; Whittaker, F.; Wang, H. Enhanced deep learning algorithm development to detect pain intensity from facial expression images. Expert Syst. Appl. 2020, 149, 113305. [Google Scholar] [CrossRef]
- Onyema, E.M.; Shukla, P.K.; Dalal, S.; Mathur, M.N.; Zakariah, M.; Tiwari, B. Enhancement of Patient Facial Recognition through Deep Learning Algorithm: ConvNet. J. Healthc. Eng. 2021, 2021. [Google Scholar] [CrossRef] [PubMed]
- Bisogni, C.; Castiglione, A.; Hossain, S.; Narducci, F.; Umer, S. Impact of Deep Learning Approaches on Facial Expression Recognition in Healthcare Industries. IEEE Trans. Ind. Inform. 2022, 18, 5619–5627. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, Z. A survey of facial expression recognition based on deep learning. In Proceedings of the 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, 9–13 November 2020; pp. 90–94. [Google Scholar] [CrossRef]
- Saffaryazdi, N.; Wasim, S.T.; Dileep, K.; Nia, A.F.; Nanayakkara, S.; Broadbent, E.; Billinghurst, M. Using Facial Micro-Expressions in Combination With EEG and Physiological Signals for Emotion Recognition. Front. Psychol. 2022, 13, 1–23. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, J.; Liu, S.; Pan, J. Combining facial expressions and electroencephalography to enhance emotion recognition. Futur. Internet 2019, 11, 105. [Google Scholar] [CrossRef]
- Lu, S.; Li, J.; Wang, Y.; Dong, Z.; Wang, S.J.; Fu, X. A More Objective Quantification of Micro-Expression Intensity through Facial Electromyography. In Proceedings of the 2nd Workshop on Facial Micro-Expression: Advanced Techniques for Multi-Modal Facial Expression Analysis, Lisbon, Portugal, 14 October 2022; pp. 11–17. [Google Scholar] [CrossRef]
- Park, B.K.; Tsai, J.L.; Chim, L.; Blevins, E.; Knutson, B. Neural evidence for cultural differences in the valuation of positive facial expressions. Soc. Cogn. Affect. Neurosci. 2015, 11, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Lim, N. Cultural differences in emotion: Differences in emotional arousal level between the East and the West. Integr. Med. Res. 2016, 5, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y. Micro-expressions: A Study of Basic Reading and The Influencing Factors on Production and Recognition. J. Educ. Humanit. Soc. Sci. 2024, 26, 1048–1053. [Google Scholar] [CrossRef]
- Carneiro de Melo, W.; Granger, E.; Hadid, A. A Deep Multiscale Spatiotemporal Network for Assessing Depression from Facial Dynamics. IEEE Trans. Affect. Comput. 2020, 13, 1581–1592. [Google Scholar] [CrossRef]
- Fei, Z.; Yang, E.; Li, D.D.U.; Butler, S.; Ijomah, W.; Li, X.; Zhou, H. Deep convolution network based emotion analysis towards mental health care. Neurocomputing 2020, 388, 212–227. [Google Scholar] [CrossRef]
- De Sario, G.D.; Haider, C.R.; Maita, K.C.; Torres-Guzman, R.A.; Emam, O.S.; Avila, F.R.; Garcia, J.P.; Borna, S.; McLeod, C.J.; Bruce, C.J.; et al. Using AI to Detect Pain through Facial Expressions: A Review. Bioengineering 2023, 10, 548. [Google Scholar] [CrossRef]
- Gorbova, J.; Colovic, M.; Marjanovic, M.; Njegus, A.; Anbarjafari, G. Going deeper in hidden sadness recognition using spontaneous micro expressions database. Multimed. Tools Appl. 2019, 78, 23161–23178. [Google Scholar] [CrossRef]
- Chahar, R.; Dubey, A.K.; Narang, S.K. A review and meta-analysis of machine intelligence approaches for mental health issues and depression detection. Int. J. Adv. Technol. Eng. Explor. 2021, 8, 1279–1314. [Google Scholar] [CrossRef]
- Huang, W. Elderly depression recognition based on facial micro-expression extraction. Trait. Signal 2021, 38, 1123–1130. [Google Scholar] [CrossRef]
- He, L.; Jiang, D.; Sahli, H. Automatic Depression Analysis Using Dynamic Facial Appearance Descriptor and Dirichlet Process Fisher Encoding. IEEE Trans. Multimed. 2019, 21, 1476–1486. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, H.; Zhang, J.; Yang, G.; Qin, J.; He, L. Real-time mental stress detection using multimodality expressions with a deep learning framework. Front. Neurosci. 2022, 16, 947168. [Google Scholar] [CrossRef] [PubMed]
- Munsif, M.; Ullah, M.; Ahmad, B.; Sajjad, M.; Cheikh, F.A. Monitoring Neurological Disorder Patients via Deep Learning Based Facial Expressions Analysis; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; Volume 652, ISBN 9783031083402. [Google Scholar]
- Beibin, L.; Mehta, S.; Aneja, D.; Foster, C.; Ventola, P.; Shic, F. A facial affect analysis system for autism spectrum disorder. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 4549–4553. [Google Scholar]
- Gilanie, G.; Ul Hassan, M.; Asghar, M.; Qamar, A.M.; Ullah, H.; Khan, R.U.; Aslam, N.; Khan, I.U. An Automated and Real-time Approach of Depression Detection from Facial Micro-expressions. Comput. Mater. Contin. 2022, 73, 2513–2528. [Google Scholar] [CrossRef]
- Wu, Y.; Mao, K.; Dennett, L.; Zhang, Y.; Chen, J. Systematic review of machine learning in PTSD studies for automated diagnosis evaluation. npj Ment. Health Res. 2023, 2, 16. [Google Scholar] [CrossRef]
- Elsahar, Y.; Hu, S.; Bouazza-Marouf, K.; Kerr, D.; Mansor, A. Augmentative and Alternative Communication (AAC) Advances: A Review of Configurations for Individuals with a Speech Disability. Sensors 2019, 19, 1911. [Google Scholar] [CrossRef]
- Tonguç, G.; Ozaydın Ozkara, B. Automatic recognition of student emotions from facial expressions during a lecture. Comput. Educ. 2020, 148, 103797. [Google Scholar] [CrossRef]
- Papoutsi, C.; Drigas, A.; Skianis, C. Virtual and Augmented Reality for Developing Emotional Intelligence Skills. Int. J. Recent Contrib. Eng. Sci. IT 2021, 9, 35. [Google Scholar] [CrossRef]
- Sharma, B.; Mantri, A. Augmented reality underpinned instructional design (ARUIDS) for cogno-orchestrative load. J. Comput. Theor. Nanosci. 2019, 16, 4379–4388. [Google Scholar] [CrossRef]
- Dawn, S. Virtual reality and augmented reality based affective computing applications in healthcare, challenges, and its future direction. In Affective Computing in Healthcare: Applications Based on Biosignals and Artificial Intelligence; IOP Publishing Ltd.: Bristol, UK, 2023. [Google Scholar] [CrossRef]
Action Units | Facial Muscle Description | Action Units | Facial Muscle Description |
---|---|---|---|
AU1 | Inner brow raiser | AU14 | Dimpler |
AU2 | Outer brow raiser | AU15 | Lip Corner depressor |
AU4 | Brow lowerer | AU16 | Lower lip depressor |
AU5 | Upper lid raiser | AU17 | Chin raiser |
AU6 | Cheek raiser | AU20 | Lip stretcher |
AU7 | Lid tightener | AU24 | Lip pressor |
AU9 | Nose wrinkler | AU23 | Lip tightener |
AU10 | Upper lip raiser | AU25 | Lip part |
AU11 | Nasolabial deepener | AU26 | Jaw drop |
AU12 | Lip corner puller | AU43 | Eyes closed |
AU13 | Cheek puffer |
Ref. | Purpose | Dataset | Accuracy (%) | Methodology Used | Outcomes | Exploration Areas |
---|---|---|---|---|---|---|
[31] | Micro-expression recognition | CASME II | 63.41 | LBP-TOP, SVM, LOSO–cross validation technique | ME dataset has been created with 5 class emotions labeled, including action units for 3000 facial muscle movements. | ME variations can be explored in different environments |
[32] | Micro-expression recognition | CASME II SAMM | 5-class, 3-class 83.3, 93.2 79.4, 86.5 | AU-class activation map (CAM), area weighted module (AWM) | ME recognition with 5 classes (disgust, happiness, repression, surprise, others) and 3 class categories (negative, positive, surprise). | Graph structure can be used to extract features using facial landmarks, instead of the whole face area. |
[30] | Micro-facial movements for objective class AUs | SAMM | Recall 0.91 | LBP-TOP, 3D HOG, deformable part models, LOSO | The proposed dataset can be used to train a model for deception detection, emotion recognition, lie detection. | Optical flow and unsupervised clustering techniques can be incorporated to capture micro-movements. |
[33] | Micro facial expression recognition | CASME II | 70.20 | Local motion patterns (LMP) | LMP features were extracted to measure the facial skin elasticity and deformations. | Head movements, non-frontal poses and occlusion can enhance the model accuracy. |
[34] | Micro-expressions and emotion recognition | CASME II | 73.98 | CNN, LSTM, landmark feature map (LFM) | LFM predicted MEs in positive, negative and surprised categories. LFM calculates the proportional distances between landmarks. | Including facial expression intensity, texture features could be employed to achieve high accuracy. |
Layer Type | Output Shape | # of Parameters |
---|---|---|
Conv2D (7 × 7, 16 filters) | (64, 64, 16) | 2368 |
BatchNormalization | (64, 64, 16) | 64 |
MaxPooling2D | (31, 31, 16) | 0 |
Conv2D (3 × 3, 16 filters) | (31, 31, 16) | 2320 |
BatchNormalization | (31, 31, 16) | 64 |
Conv2D (3 × 3, 16 filters) | (31, 31, 16) | 2320 |
BatchNormalization | (31, 31, 16) | 64 |
Add | (31, 31, 16) | 0 |
Conv2D (3 × 3, 32 filters) | (31, 31, 16) | 4640 |
BatchNormalization | (31, 31, 32) | 128 |
Conv2D (3 × 3, 32 filters) | (31, 31, 32) | 9248 |
BatchNormalization | (31, 31, 32) | 128 |
Con2d (1 × 1, 32 filters) | (31, 31, 32) | 544 |
BatchNormalization | (31, 31, 32) | 128 |
Add | (31, 31, 32) | 0 |
GlobalAveragePooling2D | (32,) | 0 |
Dense (output layer) | (7,) | 231 |
Total | - | 22,247 |
Metrix | CNN | ANN | SVM | Decision Tree | Proposed Model |
---|---|---|---|---|---|
Accuracy-CASME II | 87.14 | 81.32 | 75.96 | 18.54 | 95.62 |
Accuracy-SAMM | 85.29 | 79.12 | 69.89 | 14.67 | 93.21 |
Number of Layers | Optimizer | Accuracy |
---|---|---|
1 | sgd | 0.7056 |
1 | adam | 0.7104 |
3 | sgd | 0.7230 |
3 | adam | 0.8268 |
5 | sgd | 0.8815 |
5 | adam | 0.9562 |
Epochs | Batch Size | Accuracy |
---|---|---|
32 | 16 | 0.7230 |
32 | 32 | 0.8041 |
45 | 16 | 0.8376 |
45 | 32 | 0.9562 |
Batch Normalization | Accuracy |
---|---|
No | 0.738 |
Yes | 0.956 |
Activation Function | Accuracy |
---|---|
ReLu | 0.956 |
sigmoid | 0.912 |
tanh | 0.947 |
elu | 0.913 |
Year/Ref | Dataset | Method | Accuracy |
---|---|---|---|
2023 [40] | CASME, CAS(ME)2 | Regional feature module (Reg), 3DCNN | F1-score (0.786) |
2024 [41] | SMIC1 CASME-II SAMM | 3DCNN AU graph convolutional networks (GCN) | 81.85% F1-score (0.7760) |
2021 [42] | CASME-II SAMM | Depth-wise conv AU GCN | 80.80% |
2021 [43] | CK+2 | Transfer learning ResNet50, VGG16 Inception V3, Mobile Net | 96% |
2020 [34] | SMIC1 CASME-II | CNN, LSTM (LFM, CLFM) | 71.34% 73.98% |
2020 [23] | CASME-I CASME-II CAS(ME)2 SMIC1 | CNN | 76.57% |
Proposed Method | CASME-II SAMM | CNN K-means | 95.62% 93.56% |
Emotion | Action Units | MEs Sub-Division |
---|---|---|
Happiness | {AU7, AU12} | Happiness_ME1 |
{AU12} | Happiness_ME2 | |
{AU12A} | Happiness_ME3 | |
{AU6, AU12, AU15} | Happiness_ME4 | |
{AU6, AU12} | Happiness_ME5 | |
{AU12A, AU24} | Happiness_ME6 | |
{AU12B} | Happiness_ME7 | |
{AUL12A, AU25} | Happiness_ME8 | |
Surprise | {AU5A} | Surprise_ME1 |
{AU5B, AU24} | Surprise_ME2 | |
{AU25, AU26} | Surprise_ME3 | |
{AU1, AU2} | Surprise_ME4 | |
{AU5} | Surprise_ME5 | |
{AU1A, AU2B, AU14C} | Surprise_ME6 | |
Anger | {AU4} | Anger_ME1 |
{AU4, AU7} | Anger_ME2 | |
{AU4, AU7, AU43} | Anger_ME3 | |
{AU7B, AU43E} | Anger_ME4 | |
{AU4, AU6, AU7, AU43} | Anger_ME5 | |
{AU7B} | Anger_ME6 | |
{AU7C} | Anger_ME7 | |
{AU7} | Anger_ME8 | |
{AU7A} | Anger_ME9 | |
Sadness | {AU15, AU17} | Sadness_ME1 |
{AU1} | Sadness_ME2 | |
{AU17} | Sadness_ME3 | |
{AU12, AU15} | Sadness_ME4 | |
Disgust | {AU10} | Disgust_ME1 |
{AU4, AU9} | Disgust_ME2 | |
{AU9} | Disgust_ME3 | |
{AU9, AU12} | Disgust_ME4 | |
{AU9, AU10} | Disgust_ME5 | |
{AU10, AU25, AU26} | Disgust_ME6 | |
Fear | {AU20} | Fear_ME1 |
{AU7, AU20, AU26} | Fear_ME2 | |
{AUL20, AU21} | Fear_ME3 | |
{AU20C, AU25, AU26} | Fear_ME4 | |
Contempt | {AUL14} | Contempt_ME1 |
{AUR14} | Contempt_ME2 | |
{AUR14, AUR17} | Contempt_ME3 | |
{AUL12, AUL14} | Contempt_ME4 | |
{AU14, AU25, AU26} | Contempt_ME5 | |
{AUR12, AUR14} | Contempt_ME6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, D.; Singh, J.; Sehra, S.S.; Sehra, S.K. Demystifying Mental Health by Decoding Facial Action Unit Sequences. Big Data Cogn. Comput. 2024, 8, 78. https://doi.org/10.3390/bdcc8070078
Sharma D, Singh J, Sehra SS, Sehra SK. Demystifying Mental Health by Decoding Facial Action Unit Sequences. Big Data and Cognitive Computing. 2024; 8(7):78. https://doi.org/10.3390/bdcc8070078
Chicago/Turabian StyleSharma, Deepika, Jaiteg Singh, Sukhjit Singh Sehra, and Sumeet Kaur Sehra. 2024. "Demystifying Mental Health by Decoding Facial Action Unit Sequences" Big Data and Cognitive Computing 8, no. 7: 78. https://doi.org/10.3390/bdcc8070078
APA StyleSharma, D., Singh, J., Sehra, S. S., & Sehra, S. K. (2024). Demystifying Mental Health by Decoding Facial Action Unit Sequences. Big Data and Cognitive Computing, 8(7), 78. https://doi.org/10.3390/bdcc8070078