Technology Innovation and Social and Behavioral Commitment: A Case Study of Digital Transformation in the Moroccan Insurance Industry
Abstract
:1. Introduction
2. Literature Review
2.1. Introduction
2.2. Digital Transformation: Definition and Importance
2.3. The Acceptance of Digital Transformation
2.4. Key Determinants and Hypothesis Development
3. Research Methodology and Design
4. Results
4.1. Demographic Characteristics of Respondents
4.2. Descriptive Statistics of the Main Variables
4.3. Responses of Respondents on “Intention to Accept Digital Transformation”
4.4. Model Adjustment
4.5. Assessment of Regression Model Quality (ANOVA)
4.6. Non-Standardized Coefficients
4.7. Parametric Regression Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Synthesis of Key Variables Derived from the TAM, UTAUT, and DOI Models
Variable | UTAUT | TAM | DIO | Authors |
---|---|---|---|---|
Resistance to change | Linked to facilitating conditions and effort expectancy, which address perceived barriers to adoption | Potential negative influence on attitude toward use and intention | Mentioned in the categorization of adopters, particularly for late adopters | [31,34,38,94,95] |
Attitude toward new technologies | Approached via intent to use, influenced by factors such as performance expectancy | Central variable: attitude toward use determines intention to use | Linked to the notions of compatibility and relative advantage | [31,34,38,59,96,97] |
Intrinsic motivation | Associated with effort expectancy and the role of moderators | Included in attitude toward use, influenced by ease of use | Not directly mentioned in the model | [31,32,34,98] |
Perceived usefulness of technologies | Corresponds to performance expectancy, one of the main determinants of acceptance | One of the two main variables under the name of perceived usefulness | Equivalent to relative advantage, a key adoption factor | [31,34,38,59,98] |
Autonomy at work | Addressed in the facilitating conditions that facilitate the autonomous use of technologies | Not mentioned, but may influence attitude | Not directly mentioned | [34,99] |
Ease of use | Corresponds to effort expectancy, a key determinant of adoption | Central variable under the name of perceived ease of use, directly influencing attitude | Similar to the concept of complexity, one of the five main factors | [31,34,38] |
Compatibility with existing devices | Indirectly covered by facilitating conditions, which include integration with existing systems | Can directly influence perceived usefulness | Mentioned as one of the main variables under the name of compatibility | [34,38] |
Organizational added value | Addressed in performance expectancy, which includes organizational benefits | Can be included in perceived usefulness, if the benefits are organizational | Related to relative advantage, which considers organizational benefits | [31,34,38] |
Professional attitude | Influenced via moderators such as professional experience | Influence on attitude toward use and intention | Not directly mentioned | [31,34] |
Social attitude | Corresponds directly to social influence, a major determinant | Can explicitly influence attitude toward use | Related to observability, which depends on social context | [28,38] |
Appendix B. The Multiple Linear Regression Model Used in the Research Project
References
- Park, I.; Kim, D.; Moon, J.; Kim, S.; Kang, Y.; Bae, S. Searching for New Technology Acceptance Model under Social Context: Analyzing the Determinants of Acceptance of Intelligent Information Technology in Digital Transformation and Implications for the Requisites of Digital Sustainability. Sustainability 2022, 14, 579. [Google Scholar] [CrossRef]
- Hess, T.; Matt, C.; Benlian, A.; Wiesböck, F. Options for formulating a digital transformation strategy. In Strategic Information Management; Routledge: Abingdon-on-Thames, UK, 2020; pp. 151–173. [Google Scholar]
- Bughin, J.; Deakin, J.; O’beirne, B. Digital transformation: Improving the odds of success. McKinsey Q. 2019, 22, 1–5. [Google Scholar]
- Ramesh, N. Digital Transformation: How to Beat the High Failure Rate? Master’s Thesis, Oklahoma State University, Stillwater, OK, USA, 2019. [Google Scholar]
- Butt, J. A conceptual framework to support digital transformation in manufacturing using an integrated business process management approach. Designs 2020, 4, 17. [Google Scholar] [CrossRef]
- Vial, G. Understanding digital transformation: A review and a research agenda. J. Strateg. Inf. Syst. 2019, 28, 118–144. [Google Scholar] [CrossRef]
- Wessel, L.; Baiyere, A.; Ologeanu-Taddei, R.; Cha, J.; Blegind-Jensen, T. Unpacking the difference between digital transformation and IT-enabled organizational transformation. J. Assoc. Inf. Syst. 2021, 22, 102–129. [Google Scholar] [CrossRef]
- Warner, K.S.; Wäger, M. Building dynamic capabilities for digital transformation: An ongoing process of strategic renewal. Long Range Plann. 2019, 52, 326–349. [Google Scholar] [CrossRef]
- Jäckle, S.; Pufall, A. Digitale Transformation für mehr Kundennutzen und Effizienz; Springer Books: Berlin, Germany, 2024. [Google Scholar]
- Eckert, C.; Osterrieder, K. How digitalization affects insurance companies: Overview and use cases of digital technologies. Z. Gesamte Versicherungswiss 2020, 109, 333–360. [Google Scholar] [CrossRef]
- Ciarli, T.; Kenney, M.; Massini, S.; Piscitello, L. Digital technologies, innovation, and skills: Emerging trajectories and challenges. Res. Policy 2021, 50, 104289. [Google Scholar] [CrossRef]
- Grima, S.; Kizilkaya, M.; Sood, K.; ErdemDelice, M. The perceived effectiveness of blockchain for digital operational risk resilience in the European Union insurance market sector. J. Risk Financ. Manag. 2021, 14, 363. [Google Scholar] [CrossRef]
- Sebastian, I.M.; Ross, J.W.; Beath, C.; Mocker, M.; Moloney, K.G.; Fonstad, N.O. How big old companies navigate digital transformation. In Strategic Information Management; Routledge: Abingdon-on-Thames, UK, 2020; pp. 133–150. [Google Scholar]
- Fitzgerald, M.; Kruschwitz, N.; Bonnet, D.; Welch, M. Embracing digital technology: A new strategic imperative. MIT Sloan Manag. Rev. 2014, 55, 1. [Google Scholar]
- Wang, J.; Bai, T. How digitalization affects the effectiveness of turnaround actions for firms in decline. Long Range Plann. 2024, 57, 102140. [Google Scholar] [CrossRef]
- Fang, X.; Liu, M. How does the digital transformation drive digital technology innovation of enterprises? Evidence from enterprise’s digital patents. Technol. Forecast. Soc. Change 2024, 204, 123428. [Google Scholar] [CrossRef]
- Almeida, F.; Santos, J.D.; Monteiro, J.A. The challenges and opportunities in the digitalization of companies in a post-COVID-19 world. IEEE Eng. Manag. Rev. 2020, 48, 97–103. [Google Scholar] [CrossRef]
- Metin, B.; Özhan, F.G.; Wynn, M. Digitalisation and Cybersecurity: Towards an Operational Framework. Electronics 2024, 13, 4226. [Google Scholar] [CrossRef]
- Ziyadin, S.; Suieubayeva, S.; Utegenova, A. Digital Transformation in Business. In Digital Age: Chances, Challenges and Future; Ashmarina, S.I., Vochozka, M., Mantulenko, V.V., Eds.; Lecture Notes in Networks and Systems; Springer International Publishing: Cham, Switzerland, 2020; Volume 84, pp. 408–415. [Google Scholar] [CrossRef]
- Kleinert, J. Digital transformation. Empirica 2021, 48, 1–3. [Google Scholar] [CrossRef]
- Adama, H.E.; Okeke, C.D. Digital transformation as a catalyst for business model innovation: A critical review of impact and implementation strategies. Magna Sci. Adv. Res. Rev. 2024, 10, 256–264. [Google Scholar] [CrossRef]
- Li, L. Digital transformation and sustainable performance: The moderating role of market turbulence. Ind. Mark. Manag. 2022, 104, 28–37. [Google Scholar] [CrossRef]
- Fernandez-Vidal, J.; Perotti, F.A.; Gonzalez, R.; Gasco, J. Managing digital transformation: The view from the top. J. Bus. Res. 2022, 152, 29–41. [Google Scholar] [CrossRef]
- Nambisan, S.; Wright, M.; Feldman, M. The digital transformation of innovation and entrepreneurship: Progress, challenges and key themes. Res. Policy 2019, 48, 103773. [Google Scholar] [CrossRef]
- Kohli, R.; Melville, N.P. Digital Innovation: A Review and Synthesis. 2019. Available online: https://deepblue.lib.umich.edu/handle/2027.42/146990 (accessed on 29 December 2024).
- Abdallah-Ou-Moussa, S.; Wynn, M.; Kharbouch, O.; Rouaine, Z. Digitalization and Corporate Social Responsibility: A Case Study of the Moroccan Auto Insurance Sector. Adm. Sci. 2024, 14, 282. [Google Scholar] [CrossRef]
- Sousa-Zomer, T.T.; Neely, A.; Martinez, V. Digital transforming capability and performance: A microfoundational perspective. Int. J. Oper. Prod. Manag. 2020, 40, 1095–1128. [Google Scholar] [CrossRef]
- Xu, C.; Sun, G.; Kong, T. The impact of digital transformation on enterprise green innovation. Int. Rev. Econ. Finance 2024, 90, 1–12. [Google Scholar] [CrossRef]
- Baird, A.; Maruping, L.M. The next generation of research on IS use: A theoretical framework of delegation to and from agentic IS artifacts. MIS Q. 2021, 45, 1. [Google Scholar] [CrossRef]
- Faraj, S.; Pachidi, S. Beyond Uberization: The co-constitution of technology and organizing. Organ. Theory 2021, 2, 2631787721995205. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Venkatesh, V.; Bala, H. Technology Acceptance Model 3 and a Research Agenda on Interventions. Decis. Sci. 2008, 39, 273–315. [Google Scholar] [CrossRef]
- Oh, K.; Kho, H.; Choi, Y.; Lee, S. Determinants for successful digital transformation. Sustainability 2022, 14, 1215. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Trenerry, B.; Chng, S.; Wang, Y.; Suhaila, Z.S.; Lim, S.S.; Lu, H.Y.; Oh, P.H. Preparing workplaces for digital transformation: An integrative review and framework of multi-level factors. Front. Psychol. 2021, 12, 620766. [Google Scholar] [CrossRef] [PubMed]
- Slavković, M.; Pavlović, K.; Mamula Nikolić, T.; Vučenović, T.; Bugarčić, M. Impact of digital capabilities on digital transformation: The mediating role of digital citizenship. Systems 2023, 11, 172. [Google Scholar] [CrossRef]
- Wynn, M.; Lam, C. Digitalisation and IT strategy in the hospitality industry. Systems 2023, 11, 501. [Google Scholar] [CrossRef]
- Rogers, E.M.; Singhal, A.; Quinlan, M.M. Diffusion of innovations. In An Integrated Approach to Communication Theory and Research; Routledge: Abingdon-on-Thames, UK, 2014; pp. 432–448. [Google Scholar]
- Steiber, A.; Alänge, S.; Ghosh, S.; Goncalves, D. Digital transformation of industrial firms: An innovation diffusion perspective. Eur. J. Innov. Manag. 2021, 24, 799–819. [Google Scholar] [CrossRef]
- ElMassah, S.; Mohieldin, M. Digital transformation and localizing the sustainable development goals (SDGs). Ecol. Econ. 2020, 169, 106490. [Google Scholar] [CrossRef]
- Benitez, J.; Arenas, A.; Castillo, A.; Esteves, J. Impact of digital leadership capability on innovation performance: The role of platform digitization capability. Inf. Manag. 2022, 59, 103590. [Google Scholar] [CrossRef]
- Schildt, H. The institutional logic of digitalization. In Digital Transformation and Institutional Theory; Emerald Publishing Limited: Bingley, UK, 2022; pp. 235–251. Available online: https://www.emerald.com/insight/content/doi/10.1108/S0733-558X20220000083010/full/html (accessed on 29 December 2024).
- Komi, A.K. Le management des résistances à un projet d’innovation par l’intelligence artificielle dans une perspective de changement. RIMHE Rev. Interdiscip. Manag. Homme Entrep. 2019, 3, 29–54. [Google Scholar] [CrossRef]
- Ricou, J.; Moissonnier, V. Les causes de résistance au changement. En 2022, 2, 78–79. [Google Scholar]
- Rusu, B.; Sandu, C.B.; Avasilcai, S.; David, I. Acceptance of digital transformation: Evidence from Romania. Sustainability 2023, 15, 15268. [Google Scholar] [CrossRef]
- Endrejat, P.C.; Klonek, F.E.; Müller-Frommeyer, L.C.; Kauffeld, S. Turning change resistance into readiness: How change agents’ communication shapes recipient reactions. Eur. Manag. J. 2021, 39, 595–604. [Google Scholar] [CrossRef]
- Kupiek, M. Digital Leadership, Agile Change, and the Emotional Organization: Emotion as a Success Factor for Digital Transformation Projects; Springer: Berlin/Heidelberg, Germany, 2021; Available online: https://link.springer.com/book/10.1007/978-3-658-33489-5 (accessed on 29 December 2024).
- Guzmán-Ortiz, C.; Navarro-Acosta, N.; Florez-Garcia, W.; Vicente-Ramos, W. Impact of digital transformation on the individual job performance of insurance companies in Peru. Int. J. Data Netw. Sci. 2020, 4, 337–346. [Google Scholar] [CrossRef]
- Allouche, J.; Zerbib, R. La transformation digitale: Enjeux et perspectives. Rev. Sci. Gest. 2020, 301–302, 75–76. [Google Scholar] [CrossRef]
- García-Jurado, A.; Pérez-Barea, J.J.; Fernández-Navarro, F. Towards Digital Sustainability: Profiles of Millennial Reviewers, Reputation Scores and Intrinsic Motivation Matter. Sustainability 2021, 13, 3297. [Google Scholar] [CrossRef]
- Kitsios, F.; Giatsidis, I.; Kamariotou, M. Digital transformation and strategy in the banking sector: Evaluating the acceptance rate of e-services. J. Open Innov. Technol. Mark. Complex. 2021, 7, 204. [Google Scholar] [CrossRef]
- Alturas, B. Models of Acceptance and Use of Technology Research Trends: Literature Review and Exploratory Bibliometric Study. In Recent Advances in Technology Acceptance Models and Theories; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Wong, E.Y.; Hui, R.T.; Kong, H. Perceived usefulness of, engagement with, and effectiveness of virtual reality environments in learning industrial operations: The moderating role of openness to experience. Virtual Real. 2023, 27, 2149–2165. [Google Scholar] [CrossRef]
- Huu, P.T. Impact of employee digital competence on the relationship between digital autonomy and innovative work behavior: A systematic review. Artif. Intell. Rev. 2023, 56, 14193–14222. [Google Scholar] [CrossRef]
- Siruri, M.M.; Cheche, S. Revisiting the Hackman and Oldham job characteristics model and Herzberg’s two-factor theory: Propositions on how to make job enrichment effective in today’s organizations. Eur. J. Bus. Manag. Res. 2021, 6, 162–167. [Google Scholar] [CrossRef]
- Hackman, J.R. Work Redesign; ReadingAddison-Wesley: Boston, MA, USA, 1980. [Google Scholar]
- Venkatesh, V.; Davis, F.D.; Zhu, Y. Competing roles of intention and habit in predicting behavior: A comprehensive literature review, synthesis, and longitudinal field study. Int. J. Inf. Manag. 2023, 71, 102644. [Google Scholar] [CrossRef]
- Maruping, L.M.; Bala, H.; Venkatesh, V.; Brown, S.A. Going beyond intention: Integrating behavioral expectation into the unified theory of acceptance and use of technology. J. Assoc. Inf. Sci. Technol. 2017, 68, 623–637. [Google Scholar] [CrossRef]
- Venkatesh, V.; Bala, H.; Sykes, T.A. Impacts of Information and Communication Technology Implementations on Employees’ Jobs in Service Organizations in India: A Multi-Method Longitudinal Field Study. Prod. Oper. Manag. 2010, 19, 591–613. [Google Scholar] [CrossRef]
- Liu, M.; Yang, Y.; Ren, Y.; Jia, Y.; Ma, H.; Luo, J.; Fang, S.; Qi, M.; Zhang, L. What influences consumer AI chatbot use intention? An application of the extended technology acceptance model. J. Hosp. Tour. Technol. 2024, 15, 667–689. [Google Scholar] [CrossRef]
- Molino, M.; Cortese, C.G.; Ghislieri, C. The promotion of technology acceptance and work engagement in Industry 4.0: From personal resources to information and training. Int. J. Environ. Res. Public. Health 2020, 17, 2438. [Google Scholar] [CrossRef]
- Martínez-Peláez, R.; Ochoa-Brust, A.; Rivera, S.; Félix, V.G.; Ostos, R.; Brito, H.; Félix, R.A.; Mena, L.J. Role of Digital Transformation for Achieving Sustainability: Mediated Role of Stakeholders, Key Capabilities, and Technology. Sustainability 2023, 15, 11221. [Google Scholar] [CrossRef]
- Kemp, R. Technology and the transition to environmental sustainability: The problem of technological regime shifts. Futures 1994, 26, 1023–1046. [Google Scholar] [CrossRef]
- Leroy, S.; Schmidt, A.M.; Madjar, N. Interruptions and Task Transitions: Understanding Their Characteristics, Processes, and Consequences. Acad. Manag. Ann. 2020, 14, 661–694. [Google Scholar] [CrossRef]
- Amini, M.; Jahanbakhsh Javid, N. A Multi-Perspective Framework Established on Diffusion of Innovation (DOI) Theory and Technology, Organization and Environment (TOE) Framework Toward Supply Chain Management System Based on Cloud Computing Technology for Small and Medium Enterprises. Int. J. Inf. Technol. Innov. Adopt. 2023, 11, 1217–1234. [Google Scholar]
- Chaudhuri, R.; Chatterjee, S.; Mariani, M.M.; Wamba, S.F. Assessing the influence of emerging technologies on organizational data-driven culture and innovation capabilities: A sustainability performance perspective. Technol. Forecast. Soc. Change 2024, 200, 123165. [Google Scholar] [CrossRef]
- Rožman, M.; Oreški, D.; Tominc, P. Artificial-Intelligence-Supported Reduction of Employees’ Workload to Increase the Company’s Performance in Today’s VUCA Environment. Sustainability 2023, 15, 65019. [Google Scholar] [CrossRef]
- Stoumpos, A.I.; Kitsios, F.; Talias, M.A. Digital Transformation in Healthcare: Technology Acceptance and Its Applications. Int. J. Environ. Res. Public. Health 2023, 20, 3407. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, M. Predicting and Changing Behavior: The Reasoned Action Approach; Psychology Press: Hove, UK, 2011. [Google Scholar] [CrossRef]
- Kolb, L. Keynote: The Triple E Framework: Using Research-Based Strategies for Technology Integration. In Proceedings of the SITE—Society for Information Technology & Teacher Education International Conference, Association for the Advancement of Computing in Education (AACE), New Orleans, LA, USA, 6–10 April 2020; Available online: https://www.learntechlib.org/primary/p/216133/ (accessed on 29 December 2024).
- Dwivedi, Y.K.; Ismagilova, E.; Hughes, D.L.; Carlson, J.; Filieri, R.; Jacobson, J.; Jain, V.; Karjaluoto, H.; Kefi, H.; Krishen, A.S.; et al. Setting the future of digital and social media marketing research: Perspectives and research propositions. Int. J. Inf. Manag. 2021, 59, 102168. [Google Scholar] [CrossRef]
- Gerlich, M. Perceptions and Acceptance of Artificial Intelligence: A Multi-Dimensional Study. Soc. Sci. 2023, 12, 90502. [Google Scholar] [CrossRef]
- Jierasup, S.; Leelasantitham, A. A Change from Negative to Positive of Later Adoption Using the Innovation Decision Process to Imply Sustainability for HR Chatbots of Private Companies in Thailand. Sustainability 2024, 16, 5641. [Google Scholar] [CrossRef]
- Simon, H.A. On parsimonious explanations of production relations. Scand. J. Econ. 1979, 81, 459–474. [Google Scholar] [CrossRef]
- Uyanık, G.K.; Güler, N. A study on multiple linear regression analysis. Procedia-Soc. Behav. Sci. 2013, 106, 234–240. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R.; Taylor, J. Linear regression. In An Introduction to Statistical Learning: With Applications in Python; Springer: Cham, Switzerland, 2023; pp. 69–134. [Google Scholar]
- Jobson, J.D. Multiple linear regression. In Applied Multivariate Data Analysis: Regression and Experimental Design; Springer: New York, NY, USA, 1991; pp. 219–398. [Google Scholar]
- Ariail Reed, I. Epistemology contextualized: Social scientific knowledge in a post-positivist era. In Sociology as a Human Science: Essays on Interpretation and Causal Pluralism; Springer International Publishing: Cham, Switzerland, 2023; pp. 19–49. [Google Scholar]
- Fox, N.J. Post-positivism. In The SAGE Encyclopedia of Qualitative Research Methods; SAGE Publications: Thousand Oaks, CA, USA, 2008; Volume 2, pp. 659–664. [Google Scholar]
- Fernandez-Vidal, J.; Gonzalez, R.; Gasco, J.; Llopis, J. Digitalization and corporate transformation: The case of European oil & gas firms. Technol. Forecast. Soc. Change 2022, 174, 121293. [Google Scholar]
- Zhang, Y.; Jin, S. How does digital transformation increase corporate sustainability? The moderating role of top management teams. Systems 2023, 11, 355. [Google Scholar] [CrossRef]
- Lefèvre, B.; Champely, S. Méthodes statistiques globales et locales d’analyse d’un tableau de contingence par les tailles d’effet et leurs intervalles de confiance. Bull. Sociol. Methodol. 2009, 103, 50–65. [Google Scholar] [CrossRef]
- Rousson, V. Calcul de taille d’échantillon. In Statistique Appliquée aux Sciences de la Vie; Springer: Paris, France, 2013; pp. 127–138. [Google Scholar]
- Stratton, S.J. Recherche sur la population: Stratégies d’échantillonnage de convenance. Prehosp. Disaster Med. 2021, 36, 373–374. [Google Scholar] [CrossRef]
- Lakens, D. Sample size justification. Collabra Psychol. 2022, 8, 33267. [Google Scholar] [CrossRef]
- Bell, E.; Bryman, A.; Harley, B. Business Research Methods; Oxford University Press: Oxford, UK, 2022; ISBN 9780198869443. [Google Scholar]
- Tsai, T.H.; Lin, W.Y.; Chang, Y.S.; Chang, P.C.; Lee, M.Y. Technology anxiety and resistance to change behavioral study of a wearable cardiac warming system using an extended TAM for older adults. PLoS ONE 2020, 15, e0227270. [Google Scholar] [CrossRef]
- Khayer, A.; Talukder, M.S.; Bao, Y.; Hossain, M.N. Adoption du cloud computing et son impact sur les performances des PME pour les opérations supportées par le cloud: Une approche analytique en deux étapes. Technol. Soc. 2020, 60, 101225. [Google Scholar] [CrossRef]
- Yang, M.; Fu, M.; Zhang, Z. The adoption of digital technologies in supply chains: Drivers, process and impact. Technol. Forecast. Soc. Change 2021, 169, 120795. [Google Scholar]
- Skare, M.; Soriano, D.R. How globalization is changing digital technology adoption: An international perspective. J. Innov. Knowl. 2021, 6, 222–233. [Google Scholar] [CrossRef]
- Wang, R.; Bush-Evans, R.; Arden-Close, E.; Bolat, E.; McAlaney, J.; Hodge, S.; Phalp, K. Transparency in persuasive technology, immersive technology, and online marketing: Facilitating users’ informed decision making and practical implications. Comput. Hum. Behav. 2023, 139, 107545. [Google Scholar] [CrossRef]
- Saihi, A.; Ben-Daya, M.; Hariga, M. The moderating role of technology proficiency and academic discipline in AI-chatbot adoption within higher education: Insights from a PLS-SEM analysis. Educ. Inf. Technol. 2024, 1–39. [Google Scholar] [CrossRef]
- Poulose, S.; Bhattacharjee, B.; Chakravorty, A. Determinants and drivers of change for digital transformation and digitalization in human resource management: A systematic literature review and conceptual framework building. Manag. Rev. Q. 2024; 1–26. [Google Scholar] [CrossRef]
- SolvInnov. A Model of Innovation Resistance. Available online: https://solvinnov.com/literature/a-model-of-innovation-resistance/ (accessed on 30 December 2024).
- Sheth, J.N.; Stellner, W.H. Psychology of Innovation Resistance: The Less Developed Concept in Diffusion Research; College of Commerce and Business Administration, University of Illinois: Champaign, IL, USA, 1979; Available online: https://www.researchgate.net/publication/237065197 (accessed on 30 December 2024).
- Ajzen, I. The Theory of Planned Behavior; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 1991; Available online: https://sk.sagepub.com/hnbk/edvol/hdbk_socialpsychtheories1/chpt/theory-planned-behavior (accessed on 30 December 2024).
- Sherif, M.; Hovland, C.I. Social Judgment: Assimilation and Contrast Effects in Communication and Attitude Change; Yale University Press: New Haven, CT, USA, 1961; Available online: https://psycnet.apa.org/record/1963-06591-000 (accessed on 30 December 2024).
- Moore, G.C.; Benbasat, I. Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Inf. Syst. Res. 1991, 2, 192–222. [Google Scholar] [CrossRef]
- Ellul, J. The Autonomy of Technology. In Technology and Values: Essential Readings; MIT Press: Cambridge, MA, USA, 1964; pp. 67–75. [Google Scholar]
Variable | Category | Frequency (n) | Percentage (%) |
---|---|---|---|
Age | 18–25 years old | 15 | 15% |
26–35 years old | 45 | 45% | |
36–45 years old | 30 | 30% | |
46 years and over | 10 | 10% | |
Sex | Male | 60 | 60% |
Female | 40 | 40% | |
Education level | Baccalaureate | 30 | 30% |
Undergraduate degree | 50 | 50% | |
Master’s or higher | 20 | 20% | |
Professional seniority | 0–5 years | 25 | 25% |
6–10 years old | 40 | 40% | |
11–15 years old | 20 | 20% | |
16 years or older | 15 | 15% |
Dimension | Variables | Coding | ||
---|---|---|---|---|
Behavioral | Resistance to change | RES-CH | 3.20 | 0.85 |
Attitude toward new technologies | ATT-TC | 4.80 | 0.72 | |
Intrinsic motivation | INT-MT | 4.50 | 0.65 | |
Perceived usefulness of technologies | PER-TC | 4.90 | 0.78 | |
Autonomy at work | SE-USE | 3.80 | 0.80 | |
Innovative | Ease of use | EASE-USE | 5.10 | 0.75 |
Compatibility with existing devices | COMP-PR | 4.70 | 0.68 | |
Organizational added value | VAL-ORG | 5.20 | 0.80 | |
Attitudinal | Professional attitude | PRO-ATT | 4.72 | 0.41 |
Social attitude | SOC-ATT | 4.65 | 0.38 |
Dimension | Variables | Frequencies | ||||
---|---|---|---|---|---|---|
* | ** | *** | **** | ***** | ||
Behavioral | Resistance to change | - | - | 4% | 10% | 86% |
Attitude toward new technologies | - | - | 9% | 15% | 76% | |
Intrinsic motivation | - | - | 7% | 21% | 72% | |
Perceived usefulness of technologies | - | - | 1% | 10% | 89% | |
Autonomy at work | - | - | 2% | 21% | 77% | |
Innovative | Ease of use | - | - | 3% | 23% | 74% |
Compatibility with existing devices | - | - | - | 21% | 79% | |
Organizational added value | - | - | 2% | 10% | 88% | |
Attitudinal | Professional attitude | - | - | 6% | 10% | 84% |
Social attitude | - | - | 7% | 13% | 80% |
R | Adjusted | Standard Error of the Estimate | Modify Statistics | |||||
---|---|---|---|---|---|---|---|---|
Variance | Change in F | ddl1 | ddl2 | Sig. Variation in F | ||||
0.92 | 0.94 | 0.91 | 0.081 | 0.02 | 0.137 | 99 | 891 | 0.000 |
Source | Sum of Squares | ddl | F | Sig. |
---|---|---|---|---|
Regression (SSR) | 653.157 | 99 | 56.16 | 0.000 |
Residue (SSE) | 0.00 | 0 | - | - |
Total (SST) | 653.157 | 99 | - | - |
Unstandardized Coefficients | t | Sig. | 95.0% Confidence Interval for β | |||
---|---|---|---|---|---|---|
β | Standard Error | Lower | Upper | |||
Constant | 4.811 | 0.780 | 6.167 | 0.000 | 3.262 | 6.360 |
RES-CH | −3.079 | 0.056 | −1.425 | 0.008 | −0.031 | 0.190 |
ATT-TC | 2.089 | 0.056 | 1.587 | 0.006 | 1.980 | 2.422 |
INT-MT | 3.067 | 0.059 | 1.135 | 0.009 | 2.990 | 3.726 |
PER-TC | 5.022 | 0.066 | 0.333 | 0.000 | 4.874 | 5.735 |
SE-USE | 4.028 | 0.064 | 0.431 | 0.000 | 3.951 | 4.680 |
EASE-USE | 2.177 | 0.018 | 1.115 | 0.000 | 1.917 | 2.837 |
COMP-PR | 1.019 | 0.042 | 1.587 | 0.011 | 0.790 | 1.724 |
VAL-ORG | 2.017 | 0.027 | 1.135 | 0.013 | 1.879 | 2.398 |
PRO-ATT | 1.291 | 0.085 | 0.333 | 0.007 | 0.942 | 1.792 |
SOC-ATT | 1.028 | 0.020 | 0.431 | 0.000 | 0.916 | 1.437 |
Independent Variables (X) | Unstandardized Coefficients (β) | Standard Error | t Value | p-Value (Sig.) | Meaning |
---|---|---|---|---|---|
Constant | 4.811 | 0.780 | 6.167 | 0.000 | Highly significant |
RES-CH | −3.079 | 0.056 | −1.425 | 0.008 | Significant inhibitor |
ATT-TC | 2.089 | 0.056 | 1.587 | 0.006 | Significant contributor |
INT-MT | 3.067 | 0.059 | 1.135 | 0.009 | Significant contributor |
PER-TC | 5.022 | 0.066 | 0.333 | 0.000 | Major contributor |
SE-USE | 4.028 | 0.064 | 0.431 | 0.000 | Significant contributor |
EASE-USE | 2.177 | 0.018 | 1.115 | 0.000 | Significant contributor |
COMP-PR | 1.019 | 0.042 | 1.587 | 0.011 | Significant contributor |
VAL-ORG | 2.017 | 0.027 | 1.135 | 0.013 | Significant contributor |
PRO-ATT | 1.291 | 0.085 | 0.333 | 0.007 | Significant contributor |
SOC-ATT | 1.028 | 0.020 | 0.431 | 0.000 | Significant contributor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdallah-Ou-Moussa, S.; Wynn, M.; Kharbouch, O.; El Aoufi, S.; Rouaine, Z. Technology Innovation and Social and Behavioral Commitment: A Case Study of Digital Transformation in the Moroccan Insurance Industry. Big Data Cogn. Comput. 2025, 9, 31. https://doi.org/10.3390/bdcc9020031
Abdallah-Ou-Moussa S, Wynn M, Kharbouch O, El Aoufi S, Rouaine Z. Technology Innovation and Social and Behavioral Commitment: A Case Study of Digital Transformation in the Moroccan Insurance Industry. Big Data and Cognitive Computing. 2025; 9(2):31. https://doi.org/10.3390/bdcc9020031
Chicago/Turabian StyleAbdallah-Ou-Moussa, Soukaina, Martin Wynn, Omar Kharbouch, Sara El Aoufi, and Zakaria Rouaine. 2025. "Technology Innovation and Social and Behavioral Commitment: A Case Study of Digital Transformation in the Moroccan Insurance Industry" Big Data and Cognitive Computing 9, no. 2: 31. https://doi.org/10.3390/bdcc9020031
APA StyleAbdallah-Ou-Moussa, S., Wynn, M., Kharbouch, O., El Aoufi, S., & Rouaine, Z. (2025). Technology Innovation and Social and Behavioral Commitment: A Case Study of Digital Transformation in the Moroccan Insurance Industry. Big Data and Cognitive Computing, 9(2), 31. https://doi.org/10.3390/bdcc9020031