3D Urban Digital Twinning on the Web with Low-Cost Technology: 3D Geospatial Data and IoT Integration for Wellness Monitoring
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. The Data Module
3.2. The Web Visualization Module
4. Discussions and Results
5. Conclusions and Open Scenarios
Funding
Data Availability Statement
Conflicts of Interest
References
- Sagiroglu, S.; Sinanc, D. Big data: A review. In Proceedings of the International Conference on Collaboration Technologies and Systems (CTS), San Diego, CA, USA, 20–24 May 2013; pp. 42–47. [Google Scholar] [CrossRef]
- Masiero, A.; Costantino, D. TLS for detecting small damages on a building façade. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, XLII-2/W11, 831–836. [Google Scholar] [CrossRef]
- Ebolese, D.; Lo Brutto, M.; Dardanelli, G. The integrated 3D survey for underground archaeological environment. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, XLII-2/W9, 311–317. [Google Scholar] [CrossRef]
- Alsadik, B.; Karam, S. The Simultaneous Localization and Mapping (SLAM)-An Overview. J. Appl. Sci. Technol. Trends 2021, 2, 147–158. [Google Scholar] [CrossRef]
- Toschi, I.; Rodriguezgonzalvez, P.; Remondino, F.; Minto, S.; Orlandini, S.; Fuller, A. Accuracy Evaluation of a Mobile Mapping System with Advanced Statistical Methods. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 5, 245–253. [Google Scholar] [CrossRef]
- Betti, M.; Bonora, V.; Galano, L.; Pellis, E.; Tucci, G.; Vignoli, A. An Integrated Geometric and Material Survey for the Conservation of Heritage Masonry Structures. Heritage 2021, 4, 585–611. [Google Scholar] [CrossRef]
- Pepe, M.; Fregonese, L.; Scaioni, M. Planning airborne photogrammetry and remote-sensing missions with modern platforms and sensors. Eur. J. Remote Sens. 2018, 51, 412–436. [Google Scholar] [CrossRef]
- Zollini, S.; Alicandro, M.; Dominici, D.; Quaresima, R.; Giallonardo, M. UAV Photogrammetry for Concrete Bridge Inspection Using Object-Based Image Analysis (OBIA). Remote Sens. 2020, 12, 3180. [Google Scholar] [CrossRef]
- Pirotti, F.; Piragnolo, M.; Vettore, A.; Guarnieri, A. Comparing Accuracy of Ultra-Dense Laser Scanner and Photogrammetry Point Clouds. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2022, XLIII-B1-2022, 353–359. [Google Scholar] [CrossRef]
- Aricò, M.; La Guardia, M.; Lo Brutto, M. 3D Data Integration for Web Fruition of Underground Archaeological Sites: A Web Navigation System for the Hypogeum of Crispia salvia (Marsala, Italy). Heritage 2023, 6, 5899–5918. [Google Scholar] [CrossRef]
- La Guardia, M.; Koeva, M.; Díaz-Vilariño, L.; Nourian, P. Open-Source Solutions for Real-Time 3D Geospatial Web Integration. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2024, XLVIII-4-2024, 289–295. [Google Scholar] [CrossRef]
- Zhan, W.; Chen, Y.; Chen, J. 3D Tiles-Based High-Efficiency Visualization Method for Complex BIM Models on the Web. ISPRS Int. J. Geo-Inf. 2021, 10, 476. [Google Scholar] [CrossRef]
- Liu, Z.; Gu, X.; Dong, Q.; Tu, S.; Li, S. 3D Visualization of Airport Pavement Quality Based on BIM and WebGL Integration. J. Transp. Eng. Part B Pavements 2021, 147, 04021024. [Google Scholar] [CrossRef]
- Resch, B.; Wohlfahrt, R.; Wosniok, C. Web-based 4D visualization of marine geo-data using WebGL. Cartogr. Geogr. Inf. Sci. 2014, 41, 235–247. [Google Scholar] [CrossRef]
- Gaspari, F.; Ioli, F.; Barbieri, F.; Rivieri, C.; Dondi, M.; Pinto, L. Rediscovering Cultural Heritage Sites by Interactive 3D Exploration: A Practical Review of Open-Source WebGl Tools. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2023, XLVIII-M-2-2023, 661–668. [Google Scholar] [CrossRef]
- Brovelli, M.A.; Negretti, M. MapServer e servizi web: Introduzione e prime verifiche. Boll. Della Soc. Ital. Fotogramm. Topogr. 2006, 4, 9–23. [Google Scholar]
- Van Oosterom, P.; Stoter, J.; Quak, W.; Zlatanova, S. The Balance Between Geometry and Topology. In Advances in Spatial Data Handling; Richardson, D.E., Oosterom, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar] [CrossRef]
- Santoso, M.; Gulemar, R.G.; Irawan, B. Development of the WebGIS application for transport infrastructure management in the city of Serang. IOP Conf. Ser. Mater. Sci. Eng. 2019, 673, 012072. [Google Scholar] [CrossRef]
- Yakubailik, O.E.; Kadochnikov, A.A.; Tokarev, A.V. WEB Geographic Information System and the Hardware and Software Ensuring Rapid Assessment of Air Pollution. Optoelectron. Instrument. Proc. 2018, 54, 243–249. [Google Scholar] [CrossRef]
- Piragnolo, M.; Pirotti, F.; Zanrosso, C.; Lingua, E.; Grigolato, S. Responding to Large-Scale Forest Damage in an Alpine Environment with Remote Sensing, Machine Learning, and Web-GIS. Remote Sens. 2021, 13, 1541. [Google Scholar] [CrossRef]
- Amado, M.; Poggi, F.; Ribeiro Amado, A.; Breu, S. E-City Web Platform: A Tool for Energy Efficiency at Urban Level. Energies 2018, 11, 1857. [Google Scholar] [CrossRef]
- Vacca, G.; Fiorino, D.R.; Pili, D. A Spatial Information System (SIS) for the Architectural and Cultural Heritage of Sardinia (Italy). ISPRS Int. J. Geo-Inf. 2018, 7, 49. [Google Scholar] [CrossRef]
- Congiu, E.; Desogus, G.; Frau, C.; Gatto, G.; Pili, S. Web-Based Management of Public Buildings: A Workflow Based on Integration of BIM and IoT Sensors with a Web–GIS Portal. Buildings 2023, 13, 1327. [Google Scholar] [CrossRef]
- Tomko, M.; Winter, S. Beyond digital twins—A commentary. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 395–399. [Google Scholar] [CrossRef]
- Singh, M.; Fuenmayor, E.; Hinchy, E.P.; Qiao, Y.; Murray, N.; Devine, D. Digital Twin: Origin to Future. Appl. Syst. Innov. 2021, 4, 36. [Google Scholar] [CrossRef]
- Felemban, E.; Majid, A.R.M.A.; Rehman, F.U.; Lbath, A. Low-Cost Digital Twin Framework for 3D Modeling of Homogenous Urban Zones. In Intelligent Computing; Lecture Notes in Networks and Systems; Arai, K., Ed.; Springer: Cham, Switzerland, 2021; Volume 284. [Google Scholar] [CrossRef]
- Arsad, F.S.; Hod, R.; Ahmad, N.; Baharom, M.; Ja’afar, M.H. Assessment of indoor thermal comfort temperature and related behavioural adaptations: A systematic review. Environ. Sci. Pollut. Res. 2023, 30, 73137–73149. [Google Scholar] [CrossRef]
- Panchal, S.; Raval, P.; Shetty, S.; Ambadekar, S. College 3D Model Rendering Using Three JS. In Proceedings of the 5th International Conference on Advances in Science and Technology (ICAST), Mumbai, India, 2–3 December 2022; pp. 142–147. [Google Scholar] [CrossRef]
- Azfar, T.; Weidner, J.; Raheem, A.; Ke, R.; Cheu, R.L. Efficient Procedure of Building University Campus Models for Digital Twin Simulation. IEEE J. Radio Freq. Identif. 2022, 6, 769–773. [Google Scholar] [CrossRef]
- Azhari, F.F.; Priyana, Y.; Fikriyah, V.N. 3D modeling for flood inundation height mapping based on QGIS and WebGIS in Surakarta. IOP Conf. Ser. Earth Environ. Sci. 2025, 1462, 012060. [Google Scholar] [CrossRef]
- Pavelka, K.; Landa, M. Using Virtual and Augmented Reality with GIS Data. ISPRS Int. J. Geo-Inf. 2024, 13, 241. [Google Scholar] [CrossRef]
- Balla, D.; Zichar, M.; Kiss, E.; Szabó, G.; Mester, T. Possibilities for Assessment and Geovisualization of Spatial and Temporal Water Quality Data Using a WebGIS Application. ISPRS Int. J. Geo-Inf. 2022, 11, 108. [Google Scholar] [CrossRef]
- Mazzei, M.; Quaroni, D. Development of a 3D WebGIS Application for the Visualization of Seismic Risk on Infrastructural Work. ISPRS Int. J. Geo-Inf. 2022, 11, 22. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Y.; Zhang, Y.; Fang, C.; Huang, K.; Han, X. Design and Implementation of Real-time Power Grid WebGIS Visualization Framework Based on New Generation Dispatching and Control System. J. Phys. Conf. Ser. 2021, 2087, 012073. [Google Scholar] [CrossRef]
- Koutroulis, E.; Petrakis, G.; Agou, V.; Malisovas, A.; Hristopulos, D.; Partsinevelos, P.; Tripolitsiotis, A.; Halouani, N.; Ailliot, P.; Boutigny, M.; et al. Site selection and system sizing of desalination plants powered with renewable energy sources based on a web-GIS platform. Int. J. Energy Sect. Manag. 2022, 16, 469–492. [Google Scholar] [CrossRef]
- Spreafico, A.; Chiabrando, F.; Della Coletta, C. 3D WebGIS Applications for Digital Humanities Studies: The Turin 1911 Project. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2023, XLVIII-M-2-2023, 1501–1508. [Google Scholar] [CrossRef]
- Daud, M.; Ugliotti, F.M.; Osello, A. Comprehensive Analysis of the Use of Web-GIS for Natural Hazard Management: A Systematic Review. Sustainability 2024, 16, 4238. [Google Scholar] [CrossRef]
- Capolupo, A.; Monterisi, C.; Saponieri, A.; Addona, F.; Damiani, L.; Archetti, R.; Tarantino, E. An Interactive WebGIS Framework for Coastal Erosion Risk Management. J. Mar. Sci. Eng. 2021, 9, 567. [Google Scholar] [CrossRef]
- Weil, C.; Bibri, S.E.; Longchamp, R.; Golay, R.; Alahi, A. Urban Digital Twin Challenges: A Systematic Review and Perspectives for Sustainable Smart Cities. Sustain. Cities Soc. 2023, 99, 104862. [Google Scholar] [CrossRef]
- Xue, F.; Wu, L.; Lu, W. Semantic enrichment of building and city information models: A ten-year review. Adv. Eng. Inform. 2021, 47, 101245. [Google Scholar] [CrossRef]
- Deng, T.; Zhang, K.; Shen, Z. A systematic review of a digital twin city: A new pattern of urban governance toward smart cities. J. Manag. Sci. Eng. 2021, 6, 125–134. [Google Scholar] [CrossRef]
- Martella, A.; Ramadan, A.I.H.A.; Martella, C.; Patano, M.; Longo, A. State of the Art of Urban Digital Twin Platforms. In Extended Reality. XR Salento 2023; Lecture Notes in Computer Science; De Paolis, L.T., Arpaia, P., Sacco, M., Eds.; Springer: Cham, Switzerland, 2023; Volume 14218. [Google Scholar] [CrossRef]
- Bigorra, J.F.; Casals, M.; Gangolells, M. The adoption of urban digital twins. Cities 2022, 131, 103905. [Google Scholar] [CrossRef]
- Cárdenas, I.; Koeva, M.; Davey, C.; Nourian, P. Solid Waste in the Virtual World: A Digital Twinning Approach for Waste Collection Planning. In Recent Advances in 3D Geoinformation Science. 3DGeoInfo 2023; Lecture Notes in Geoinformation and Cartography; Kolbe, T.H., Donaubauer, A., Beil, C., Eds.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Radil, S.M.; Jiao, J. Public Participatory GIS and the Geography of Inclusion. Prof. Geogr. 2016, 68, 202–210. [Google Scholar] [CrossRef]
- Hasanzadeh, K.; Kajosaari, A.; Häggman, D.; Kyttä, M. A context sensitive approach to anonymizing public participation GIS data: From development to the assessment of anonymization effects on data quality. Comput. Environ. Urban Syst. 2020, 83, 101513. [Google Scholar] [CrossRef]
- Lee, A.; Lee, K.-W.; Kim, K.-H.; Shin, S.-W. A Geospatial Platform to Manage Large-Scale Individual Mobility for an Urban Digital Twin Platform. Remote Sens. 2022, 14, 723. [Google Scholar] [CrossRef]
- GDPR. General Data Protection Regulation (GDPR). 2018. Available online: https://gdpr.eu/ (accessed on 19 March 2025).
- Aricò, M.; Dardanelli, G.; La Guardia, M.; Lo Brutto, M. Three-Dimensional Documentation and Virtual Web Navigation System for the Indoor and Outdoor Exploration of a Complex Cultural Heritage Site. Electronics 2024, 13, 2833. [Google Scholar] [CrossRef]
- Fascia, R.; Barbieri, F.; Gaspari, F.; Ioli, F.; Pinto, L. PONTI: An Open WebGL-Based Tool in Support to Defect Analysis and 3D Visualisation of Bridges. In Bridge Maintenance, Safety, Management, Digitalization and Sustainability; Sandager Jensen, J., Frangopol, D.M., Wittrup Schmidt, J., Eds.; CRC Press: Boca Raton, FL, USA, 2024; pp. 2353–2361. [Google Scholar]
- Wray, S. Bentley Systems and Microsoft team up on city digital twins, Cities Today. 2020. Available online: https://cities-today.com/bentley-systems-and-microsoft-team-up-on-digital-twins/ (accessed on 17 May 2024).
- Shariatpour, F.; Behzadfar, M. Digital Twin: A Step Towards Smart Cities in Urban Planning, Design and Management. Soffeh 2022, 32, 93–106. [Google Scholar] [CrossRef]
- Scianna, A.; Gaglio, G.F.; La Guardia, M. Structure Monitoring with BIM and IoT: The Case Study of a Bridge Beam Model. ISPRS Int. J. Geo-Inf. 2022, 11, 173. [Google Scholar] [CrossRef]
- Mangiameli, M.; Cappello, A.; Mussumeci, G. A new bridge management system based on spatial database and open source GIS. Environ. Syst. Decis. 2023, 44, 500–513. [Google Scholar] [CrossRef]
- Coetzee, S.; Ivánová, I.; Mitasova, H.; Brovelli, M.A. Open Geospatial Software and Data: A Review of the Current State and A Perspective into the Future. ISPRS Int. J. Geo-Inf. 2020, 9, 90. [Google Scholar] [CrossRef]
- Autiosalo, J.; Siegel, J.; Tammi, K. Twinbase: Open-Source Server Software for the Digital Twin Web. IEEE Access 2021, 9, 140779–140798. [Google Scholar] [CrossRef]
- Naserentin, V.; Somanath, S.; Eleftheriou, O.; Logg, A. Combining Open Source and Commercial Tools in Digital Twin for Cities Generation. IFAC-PapersOnLine 2022, 55, 185–189. [Google Scholar] [CrossRef]
- Yeon, H.; Eom, T.; Jang, K.; Yeo, j. DTUMOS, digital twin for large-scale urban mobility operating system. Sci. Rep. 2023, 13, 5154. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.; Kim, Y.; Kang, J. Participatory Framework for Urban Pluvial Flood Modeling in the Digital Twin Era. Sustain. Cities Soc. 2024, 108, 105496. [Google Scholar] [CrossRef]
- Zhong, T.; Meng, X. Effect of Air Temperature in Indoor Transition Spaces on the Thermal Response of Occupant during Summer. Sci. Rep. 2025, 15, 919. [Google Scholar] [CrossRef] [PubMed]
- Del Campo, G.; Saavedra, E.; Piovano, L.; Luque, F.; Santamaria, A. Virtual Reality and Internet of Things Based Digital Twin for Smart City Cross-Domain Interoperability. Appl. Sci. 2024, 14, 2747. [Google Scholar] [CrossRef]
- Rantanen, T.; Julin, A.; Virtanen, J.-P.; Hyyppä, H.; Vaaja, M.T. Open Geospatial Data Integration in Game Engine for Urban Digital Twin Applications. ISPRS Int. J. Geo-Inf. 2023, 12, 310. [Google Scholar] [CrossRef]
- Yang, S.; Kim, H. Urban digital twin applications as a virtual platform of smart city. Int. J. Sustain. Build. Technol. Urban Dev. 2021, 12, 363–379. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Guardia, M. 3D Urban Digital Twinning on the Web with Low-Cost Technology: 3D Geospatial Data and IoT Integration for Wellness Monitoring. Big Data Cogn. Comput. 2025, 9, 107. https://doi.org/10.3390/bdcc9040107
La Guardia M. 3D Urban Digital Twinning on the Web with Low-Cost Technology: 3D Geospatial Data and IoT Integration for Wellness Monitoring. Big Data and Cognitive Computing. 2025; 9(4):107. https://doi.org/10.3390/bdcc9040107
Chicago/Turabian StyleLa Guardia, Marcello. 2025. "3D Urban Digital Twinning on the Web with Low-Cost Technology: 3D Geospatial Data and IoT Integration for Wellness Monitoring" Big Data and Cognitive Computing 9, no. 4: 107. https://doi.org/10.3390/bdcc9040107
APA StyleLa Guardia, M. (2025). 3D Urban Digital Twinning on the Web with Low-Cost Technology: 3D Geospatial Data and IoT Integration for Wellness Monitoring. Big Data and Cognitive Computing, 9(4), 107. https://doi.org/10.3390/bdcc9040107