Evaluating Deep Learning Architectures for Breast Tumor Classification and Ultrasound Image Detection Using Transfer Learning
Abstract
:1. Introduction
2. Related Work
3. Methodology
4. Data Sources and Image Preprocessing
5. Selected Models for Evaluation
5.1. VGG-16
5.2. InceptionV3
5.3. NASNet
6. Training Process
6.1. Experimental Setup
6.2. Data Normalization
6.3. Fine Tuning
7. Evaluation
8. Results
9. Discussion
10. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BraNet | A mobile application for breast image classification |
BUSI | Breast Ultrasound Images Dataset |
CLAHE | Contrast Limited Adaptive Histogram Equalization |
CNN | Convolutional Neural Network |
FN | False Negative |
FP | False Positive |
GPU | Graphics Processing Unit |
LCN | Local Classifier per Node |
NAS | Neural Architecture Search |
ResNet | Residual Neural Network |
ResNet-101 | Convolutional Neural Network model with a 101-layer depth |
TL | Transfer Learning |
TN | True Negative |
TP | True Positive |
VGG | Visual Geometry Group |
VGG-16 | Visual Geometry Group model with a 16-layer depth |
References
- Tenajas, R.; Miraut, D.; Illana, C.I.; Alonso-Gonzalez, R.; Arias-Valcayo, F.; Herraiz, J.L. Recent advances in artificial intelligence-assisted ultrasound scanning. Appl. Sci. 2023, 13, 3693. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Roslidar, R.; Rahman, A.; Muharar, R.; Syahputra, M.R.; Arnia, F.; Syukri, M.; Pradhan, B.; Munadi, K. A review on recent progress in thermal imaging and deep learning approaches for breast cancer detection. IEEE Access 2020, 8, 116176–116194. [Google Scholar] [CrossRef]
- Micucci, M.; Iula, A. Recent advances in machine learning applied to ultrasound imaging. Electronics 2022, 11, 1800. [Google Scholar] [CrossRef]
- Le, E.; Wang, Y.; Huang, Y.; Hickman, S.; Gilbert, F. Artificial intelligence in breast imaging. Clin. Radiol. 2019, 74, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Sushanki, S.; Bhandari, A.K.; Singh, A.K. A review on computational methods for breast cancer detection in ultrasound images using multi-image modalities. Arch. Comput. Methods Eng. 2024, 31, 1277–1296. [Google Scholar] [CrossRef]
- Ragab, M.; Albukhari, A.; Alyami, J.; Mansour, R.F. Ensemble deep-learning-enabled clinical decision support system for breast cancer diagnosis and classification on ultrasound images. Biology 2022, 11, 439. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.C.; Singh, D.; Tiwari, V.; Dutta, M.K. An efficient deep neural network based abnormality detection and multi-class breast tumor classification. Multimed. Tools Appl. 2022, 81, 13691–13711. [Google Scholar] [CrossRef]
- Raza, A.; Ullah, N.; Khan, J.A.; Assam, M.; Guzzo, A.; Aljuaid, H. DeepBreastCancerNet: A novel deep learning model for breast cancer detection using ultrasound images. Appl. Sci. 2023, 13, 2082. [Google Scholar] [CrossRef]
- Gheflati, B.; Rivaz, H. Vision transformers for classification of breast ultrasound images. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 480–483. [Google Scholar] [CrossRef]
- Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 2020, 53, 5455–5516. [Google Scholar] [CrossRef]
- Trojacanec, K.; Madjarov, G.; Loskovska, S.; Gjorgjevikj, D. Hierarchical classification architectures applied to Magnetic Resonance Images. In Proceedings of the ITI 2011, 33rd International Conference on Information Technology Interfaces, Cavtat, Croatia, 27–30 June 2011; pp. 501–506. [Google Scholar]
- Kowsari, K.; Sali, R.; Ehsan, L.; Adorno, W.; Ali, A.; Moore, S.; Amadi, B.; Kelly, P.; Syed, S.; Brown, D. Hmic: Hierarchical medical image classification, a deep learning approach. Information 2020, 11, 318. [Google Scholar] [CrossRef]
- Qamar, T.; Bawany, N.Z. Understanding the black-box: Towards interpretable and reliable deep learning models. PeerJ Comput. Sci. 2023, 9, e1629. [Google Scholar] [CrossRef] [PubMed]
- Mukhlif, A.A.; Al-Khateeb, B.; Mohammed, M.A. Incorporating a novel dual transfer learning approach for medical images. Sensors 2023, 23, 570. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Fadhel, M.A.; Al-Shamma, O.; Zhang, J.; Santamaría, J.; Duan, Y.R.; Oleiwi, S. Towards a better understanding of transfer learning for medical imaging: A case study. Appl. Sci. 2020, 10, 4523. [Google Scholar] [CrossRef]
- Chowdhury, D.; Das, A.; Dey, A.; Sarkar, S.; Dwivedi, A.D.; Rao Mukkamala, R.; Murmu, L. ABCanDroid: A cloud integrated android app for noninvasive early breast cancer detection using transfer learning. Sensors 2022, 22, 832. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Gaona, Y.; Álvarez, M.J.R.; Castillo-Malla, D.; García-Jaen, S.; Carrión-Figueroa, D.; Corral-Domínguez, P.; Lakshminarayanan, V. BraNet: A mobil application for breast image classification based on deep learning algorithms. Med Biol. Eng. Comput. 2024, 62, 2737–2756. [Google Scholar] [CrossRef]
- An, G.; Akiba, M.; Omodaka, K.; Nakazawa, T.; Yokota, H. Hierarchical deep learning models using transfer learning for disease detection and classification based on small number of medical images. Sci. Rep. 2021, 11, 4250. [Google Scholar] [CrossRef]
- Silla, C.N.; Freitas, A.A. A survey of hierarchical classification across different application domains. Data Min. Knowl. Discov. 2011, 22, 31–72. [Google Scholar] [CrossRef]
- Pereira, R.M.; Costa, Y.M.; Silla, C.N., Jr. Handling imbalance in hierarchical classification problems using local classifiers approaches. Data Min. Knowl. Discov. 2021, 35, 1564–1621. [Google Scholar] [CrossRef]
- Xiao, Z.; Dellandrea, E.; Dou, W.; Chen, L. Automatic hierarchical classification of emotional speech. In Proceedings of the Ninth IEEE International Symposium on Multimedia Workshops (ISMW 2007), Taichung, Taiwan, 10–12 December 2007; pp. 291–296. [Google Scholar] [CrossRef]
- Al-Dhabyani, W.; Gomaa, M.; Khaled, H.; Fahmy, A. Dataset of breast ultrasound images. Data Brief 2020, 28, 104863. [Google Scholar] [CrossRef]
- Al-Dhabyani, W.; Gomaa, M.; Khaled, H.; Aly, F. Deep learning approaches for data augmentation and classification of breast masses using ultrasound images. Int. J. Adv. Comput. Sci. Appl 2019, 10, 1–11. [Google Scholar] [CrossRef]
- Shareef, B.M.; Xian, M.; Sun, S.; Vakanski, A.; Ding, J.; Ning, C.; Cheng, H.D. A Benchmark for Breast Ultrasound Image Classification. SSRN Electron. J. 2023; preprint. [Google Scholar] [CrossRef]
- Byra, M.; Galperin, M.; Ojeda-Fournier, H.; Olson, L.; O’Boyle, M.; Comstock, C.; Andre, M. Breast mass classification in sonography with transfer learning using a deep convolutional neural network and color conversion. Med. Phys. 2019, 46, 746–755. [Google Scholar] [CrossRef]
- Ayana, G.; Dese, K.; Choe, S.W. Transfer learning in breast cancer diagnoses via ultrasound imaging. Cancers 2021, 13, 738. [Google Scholar] [CrossRef] [PubMed]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172, 1122–1131. [Google Scholar] [CrossRef]
- Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 2015, 63, 1455–1462. [Google Scholar] [CrossRef]
- Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 2018, 106, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Mogos, G. Impact of visual distortion on medical images. IAENG Int. J. Comput. Sci. 2022, 49, 36–45. [Google Scholar]
- Simonyan, K. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar] [CrossRef]
- Hijab, A.; Rushdi, M.A.; Gomaa, M.M.; Eldeib, A. Breast cancer classification in ultrasound images using transfer learning. In Proceedings of the 2019 Fifth International Conference on Advances in Biomedical Engineering (ICABME), Tripoli, Lebanon, 17–19 October 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Hossain, A.A.; Nisha, J.K.; Johora, F. Breast cancer classification from ultrasound images using VGG16 model based transfer learning. Int. J. Image Graph. Signal Process. 2023, 13, 12. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Alam, F.; Ofli, F.; Imran, M. Automatic image filtering on social networks using deep learning and perceptual hashing during crises. arXiv 2017, arXiv:1704.02602. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef]
- Pascanu, R. On the difficulty of training recurrent neural networks. arXiv 2013, arXiv:1211.5063. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar] [CrossRef]
- Rao, K.S.; Terlapu, P.V.; Jayaram, D.; Raju, K.K.; Kumar, G.K.; Pemula, R.; Gopalachari, V.; Rakesh, S. Intelligent ultrasound imaging for enhanced breast cancer diagnosis: Ensemble transfer learning strategies. IEEE Access 2024, 12, 22243–22263. [Google Scholar] [CrossRef]
- Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8697–8710. [Google Scholar] [CrossRef]
- Reguieg, F.Z.; Benblidia, N. Ultrasound breast tumoral classification by a new adaptive pre-trained convolutive neural networks for computer-aided diagnosis. Multimed. Tools Appl. 2024, 83, 46249–46282. [Google Scholar] [CrossRef]
- Domingos, P. A few useful things to know about machine learning. Commun. ACM 2012, 55, 78–87. [Google Scholar] [CrossRef]
- Pang, B.; Nijkamp, E.; Wu, Y.N. Deep learning with tensorflow: A review. J. Educ. Behav. Stat. 2020, 45, 227–248. [Google Scholar] [CrossRef]
- Li, H.; Rajbahadur, G.K.; Lin, D.; Bezemer, C.P.; Jiang, Z.M. Keeping Deep Learning Models in Check: A History-Based Approach to Mitigate Overfitting. IEEE Access 2024, 12, 70676–70689. [Google Scholar] [CrossRef]
- Kim, T.K. T test as a parametric statistic. Korean J. Anesthesiol. 2015, 68, 540–546. [Google Scholar] [CrossRef]
- Biau, D.J.; Jolles, B.M.; Porcher, R. P value and the theory of hypothesis testing: An explanation for new researchers. Clin. Orthop. Relat. Res. 2010, 468, 885–892. [Google Scholar] [CrossRef]
- Kormpos, C. Design and Implementation of a Web Application for Breast Tumors Classification through Convolutional Neural Network. Master’s Thesis, University of West Attica, Aigaleo, Greece, 2024. [Google Scholar] [CrossRef]
- Sarvamangala, D.; Kulkarni, R.V. Convolutional neural networks in medical image understanding: A survey. Evol. Intell. 2022, 15, 1–22. [Google Scholar] [CrossRef]
Architecture | Model | Accuracy | Sensitivity | Precision | F1 Score | Training Time | Inference Time |
---|---|---|---|---|---|---|---|
Two level | VGG-16 & NASNet | 89.1 | 89.1 | 91.1 | 90.1 | 11 min | 120 ms |
binary | InceptionV3 & NASNet | 86.8 | 83.2 | 94.7 | 88.6 | 11 min | 130 ms |
classification | NASNet & NASNet | 92.7 | 91.9 | 92.4 | 92.1 | 15 min | 200 ms |
Flat three | VGG-16 | 88.7 | 97.1 | 80.7 | 88.1 | 5 min | 30 ms |
class | InceptionV3 | 87.3 | 83.8 | 93.5 | 88.4 | 5 min | 40 ms |
classification | NASNet | 93.1 | 88.4 | 95.1 | 91.6 | 7 min | 80 ms |
Model | Accuracy | Sensitivity | Precision | F1 Score | Training Time | Inference Time |
---|---|---|---|---|---|---|
VGG-16 | 99.8 | 99.9 | 99.9 | 99.9 | 4.3 mins | 30 ms |
InceptionV3 | 99.5 | 99.4 | 99.6 | 99.5 | 4.0 mins | 40 ms |
NASNet | 99.9 | 100 | 99.8 | 99.9 | 6.0 mins | 80 ms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kormpos, C.; Zantalis, F.; Katsoulis, S.; Koulouras, G. Evaluating Deep Learning Architectures for Breast Tumor Classification and Ultrasound Image Detection Using Transfer Learning. Big Data Cogn. Comput. 2025, 9, 111. https://doi.org/10.3390/bdcc9050111
Kormpos C, Zantalis F, Katsoulis S, Koulouras G. Evaluating Deep Learning Architectures for Breast Tumor Classification and Ultrasound Image Detection Using Transfer Learning. Big Data and Cognitive Computing. 2025; 9(5):111. https://doi.org/10.3390/bdcc9050111
Chicago/Turabian StyleKormpos, Christopher, Fotios Zantalis, Stylianos Katsoulis, and Grigorios Koulouras. 2025. "Evaluating Deep Learning Architectures for Breast Tumor Classification and Ultrasound Image Detection Using Transfer Learning" Big Data and Cognitive Computing 9, no. 5: 111. https://doi.org/10.3390/bdcc9050111
APA StyleKormpos, C., Zantalis, F., Katsoulis, S., & Koulouras, G. (2025). Evaluating Deep Learning Architectures for Breast Tumor Classification and Ultrasound Image Detection Using Transfer Learning. Big Data and Cognitive Computing, 9(5), 111. https://doi.org/10.3390/bdcc9050111