Cognitive Computing for Understanding and Restoring Color in Renaissance Art
Abstract
:1. Introduction
- We develop a model to predict a painting’s original color palette. This model uses color ratios, enhancement measurements, symbolic meanings, historical data, and new color distance calculations. The images are segmented to identify primary colors and these colors are then analyzed to understand their original appearance;
- We propose a CC-based framework to explore how to predict the original colors of Renaissance oil paintings. Our framework was tested on over 105 images from three famous artists—Raphael, Leonardo da Vinci, and Rembrandt—sourced from Olga’s Gallery (http://www.abcgallery.com/ accessed on 9 September 2017).
2. Related Works
3. Accessing Images of Paintings
- Generate a class of images from a received image using the alpha-rooting method, including the high-quality image with the best parameter using EMEQ and EMEC. For example, the best oil painting image quality is the image (c), which was generated using rooting method, where EMEQ (short ) attains the maximum value (see Figure 2a);
- Use 11 features, such as colors, symbols, and others, and pick the best-predicted original color palette of Renaissance oil artworks from the generated class of images. These features included five colors and six image quality-related features;
- Calculate four-color distance values (CCD) between the color of the analyzed image and the color of the material used in that period (CCD1), the artist’s painting preference of colors (CCD2), art movement color preference (CCD3), and color symbolism of painting contents (CCD4);
- Apply PCA to 11 values and list the sum of the top 1–8 values for each alpha;
- Utilize a ranked voting system (in Section 6) using PCA on 11 measurements (M1, M2, M3, M, EMEC, EMEC2, CCD1, CCD2, CCD3, CCD4, and CRD) and select the alpha-rooting image corresponding to historical color palettes.
4. Colors and Symbols
- Gold—used as a background color or in a halo; symbolizes purity, royalty, and glory of life after death. Gold is associated with wealth, royalty, and heavenly rewards and riches;
- Blue—symbolizes purity; The Virgin Mary; Virgin and Child; and The Immaculate Conception;
- Purple—symbolizes Christ in Majesty in Byzantine-Style paintings. Important Holy figures wear purple robes outlined in red;
- Red—a symbol of greediness and lust. Denotes sin; sins of mankind, original sin; temptation, Judas, Harrowing of Hell, The Fiery Furnace, Slaughter of the Innocents, and Apocalypse. Red also denotes power, wealth, and authority. Many Renaissance artists were praised for the virtuoso use of red pigments in their paintings. For example, Titian was recognized for his brilliant reds, particularly vermillion. Additionally, Jan Van Eyck, draped figures and interiors in his paintings in rich crimson to signify their high social status or sanctity. In the past, red pigments were rare and expensive during various periods of color history, which helped to pave their way into the wardrobes and palettes of rich and powerful people. Only the rich and powerful could afford to wear clothes of red color;
- Green—symbolizes the Resurrection, the Ascension, and Baptism. Green also symbolizes peace, spring, spiritual renewal, rebirth, and new life;
- White—is a sign of innocence; Birth, Youth, Betrothal, and Marriage; The Virgin Mary; Virgin and Child; The Immaculate Conception, The Holy Family, and angels;
- Grey/Black/Dark Brown—symbolic of the Entombment, Crosses, Crucifixes, darkness, misdeeds, death, and witchery;
- Yellow—symbolizes a remembrance of the spiritual world, miracles, harmony, and soul sustenance. Yellow also symbolizes spring, spiritual renewal, rebirth, and new life;
- Pink—symbolizes eternal innocence; The Virgin Mary; Virgin and Child; and The Immaculate Conception;
- Orange—a symbol of materialism and desire for worldly goods in favor of spiritual health. Orange also denotes indulgence, carnal desires, and original sin.
- Color costs: for example, deep blue color ingredients were so expensive that they were saved for only special parts of a picture (for the clothing of the biblical Mary or a woman wearing clothes), because they were made from minerals, such as the gemstone lapis lazuli, in a fine powder and mixed with other ingredients;
- Aesthetic or Technical Purposes:
- To create a three-dimensional space, which means making a scene look as if you could almost walk into it.
- The color was often chosen, and also served as a symbol in selected cases.
- Context determines the meaning of color.
- Local Culture and Geographic Area.
5. Color Palettes and Color Distance
6. Results of Image Processing
7. Results of Image Color Prediction
8. Conclusions
- Color Distance Caculation: The proposed method effectively reconstructs color palettes by analyzing color distances between the modified state of the painting and its expected historical palettes using the K-means machine-learning model, which outperformed fuzzy C-means and K-medoids in most cases;
- Symbolism and Historical Accuracy: This study confirms the strong correlation between color usage in the time and region in which the painting was created and symbolic meanings in Renaissance art, demonstrating that enhanced images aligned with historical and cultural knowledge.
- Color Ratios: Analysis of the relative proportions of colors in the painting to infer likely original hues;
- Enhancement Measurements: Enhancement techniques reveal underlying features and colors that may have faded or degraded over time. The technique is efficient in generating images with highly probable original color palettes;
- Feature Analysis: Through principal component analysis (PCA), 11 key features—including color ratios, enhancement metrics, and color distance measures—were identified as crucial for optimal color restoration.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CMCR | Color modeling via color ratio |
CCD1 | Color of the material |
CCD2 | The artist’s painting preference for colors |
CCD3 | Art movement color preference |
CCD4 | Color symbolism of painting contents |
CCD | Combined color distance value |
CSR | Color similarity rate |
CC | Cognitive computing |
CIEDE | Color-difference formula |
GT | Ground-truth color palette |
QDFT | Quaternion discrete Fourier transform |
EMEC | Enhancement measure of the color image |
EMEQ | Enhancement measure of the quaternion image |
MCD | Modified color distance value |
M, M1, M2 | Measurements |
PCA | Principal component analysis |
PR | Predicted color palette |
RGB | R(ed), G(reen), and B(lue) color model |
References
- Martin, K. Chapter 6, Painting and the Representation of Action. In Leonardo da Vinci: The Marvellous Works of Nature and Man; Oxford University Press: Oxford, UK, 2006; pp. 205–240. [Google Scholar]
- Gage, J. Chapter 4, Colour, Culture, and Imagery. In Color and Meaning: Art, Science, and Symbolism; University of California Press: Oakland, CA, USA, 1999; pp. 87–111. [Google Scholar]
- Rewald, J. Chapter VII, Van Gogh in Saint-Remy. In Post-Impressionism: From Van Gogh to Gauguin; Museum of Modern Art: New York, NY, USA, 1956; p. 344. [Google Scholar]
- Rewald, J. Chapter IX, Gauguin and Symbolists. In Post-Impressionism: From Van Gogh to Gauguin; Museum of Modern Art: New York, NY, USA, 1956; pp. 435–490. [Google Scholar]
- Turner, M. The Artful Mind: Cognitive Science and the Riddle of Human Creativity, 1st ed.; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Bellaiche, L.; Shahi, R.; Turpin, M.H.; Ragnhildstveit, A.; Sprockett, S.; Barr, N.; Christensen, A.; Seli, P. Humans versus AI: Whether and why we prefer human-created compared to AI-created artwork. Cogn. Res. 2023, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Aviv, V. What does the brain tell us about abstract art? Front. Hum. Neurosci. 2014, 8, 85. [Google Scholar] [CrossRef] [PubMed]
- Condra, J. (Ed.) The Greenwood Encyclopedia of Clothing Through World History; Greenwood Publishing Group: Westport, CT, USA, 2008; Volume 2, pp. 17–18. [Google Scholar]
- Greenfield, A. A Perfect Red: Empire, Espionage, and the Quest for the Color of Desire; HarperCollins Publishers: New York, NY, USA, 2005; p. 25. [Google Scholar]
- Jardine, L.; Goods, W. A New History of the Renaissance; Doubleday: New York, NY, USA, 1996; p. 31. [Google Scholar]
- Harvey, J. Men in Black; The University of Chicago Press: Chicago, IL, USA, 1995; p. 51. [Google Scholar]
- Gage, J. Color and Culture: Practice and Meaning from Antiquity to Abstraction; Bulfinch Press Book: Boston, MA, USA, 1993; p. 63. [Google Scholar]
- Duby, G.; Aries, P. (Eds.) A History of Private Life: Revelations of the Medieval World; Harvard UP: Cambridge, MA, USA, 1988. [Google Scholar]
- Grendler, P. Encyclopedia of the Renaissance. In Clothing; Covington, S., Ed.; Charles Scribner’s Sons: New York, NY, USA; Renaissance Society of America: New York, NY, USA, 1999; Volume 2, p. 29. [Google Scholar]
- Liu, S.; Yang, J.; Agaian, S.; Yuan, C. Novel features for art movement classification of portrait paintings. Image Vis. Comput. 2021, 108, 104121. [Google Scholar] [CrossRef]
- Colour & Technique in Renaissance Painting. World History Encyclopedia. Available online: https://www.worldhistory.org/article/1628/colour--technique-in-renaissance-painting/ (accessed on 3 March 2025).
- Berrie, B. Mining for color: New blues, yellows, and translucent paint. Early Sci. Med. 2015, 20, 308–334. [Google Scholar] [CrossRef]
- Cennini, C.; Thompson, D.V., Jr. Il Libro Dell’arte; Milford, H., Ed.; Yale University Press: New Haven, CT, USA; Oxford University Press: Oxford, UK, 1933. [Google Scholar]
- Mills, J.S.; White, R. The Organic Chemistry of Museum Objects, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1994. [Google Scholar]
- Rosado, T.; Silva, M.; Dias, L.; Candeias, A.; Gil, M.; Mirão, J.; Pestana, J.; Caldeira, A.T. Microorganisms and the integrated conservation-intervention process of the renaissance mural paintings from Casas Pintadas in Évora—Know to act, act to preserve. J. King Saud Univ.-Sci. 2017, 29, 478–486. [Google Scholar] [CrossRef]
- Rieppi, N.; Price, B.A.; Sutherland, K.; Lins, A.P.; Newman, R.; Wang, P.; Wang, T.; Tague, T.J. Salvator Mundi: An investigation of the painting’s materials and techniques. Herit. Sci. 2020, 8, 39. [Google Scholar] [CrossRef]
- Gonzalez, V.; Hageraats, V.; Wallez, G.; Eveno, M.; Ravaud, E.; Réfrégiers, M.; Thoury, M.; Menu, M.; Gourier, D. Microchemical analysis of Leonardo da Vinci’s lead white paints reveals knowledge and control over pigment scattering properties. Sci. Rep. 2020, 10, 21715. [Google Scholar] [CrossRef]
- Sizikova, E.; Funkhouser, T. Wall painting reconstruction using a genetic algorithm. J. Comput. Cult. Herit. 2018, 11, 17. [Google Scholar] [CrossRef]
- Elkhuizen, W.; Essers, T.; Song, Y.; Geraedts, J.; Weijkamp, C.; Dik, J.; Pont, S. Gloss, color, and topography scanning for reproducing a painting’s appearance using 3D printing. J. Comput. Cult. Herit. 2020, 12, 22. [Google Scholar] [CrossRef]
- Criminisi, A.; Pérez, P.; Toyama, K. Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process. 2004, 13, 1200–1212. [Google Scholar] [CrossRef]
- Stuart, L. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar]
- Chen, L.; Chen, J.; Zou, Q.; Huang, K.; Li, Q. Multi-View feature combination for ancient paintings chronological classification. J. Comput. Cult. Herit. 2017, 10, 15. [Google Scholar] [CrossRef]
- Zhang, R.; Isola, P.; Efros, A.A. Colorful image colorization. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016; pp. 649–666. [Google Scholar]
- Elgammal, A.; Liu, B.; Kim, D.; Elhoseiny, M. CAN: Creative adversarial networks generating “art” by learning about styles and deviating from style norms. In Proceedings of the Eighth International Conference on Computational Creativity (ICCC), Atlanta, GA, USA, 19–23 June 2017. [Google Scholar]
- Hu, Q.; Peng, X.; Li, T.; Zhang, X.; Wang, J.; Peng, J. ConvSRGAN: Super-resolution inpainting of traditional Chinese paintings. Herit. Sci. 2024, 12, 176. [Google Scholar] [CrossRef]
- O’Brien, C.; Hutson, J.; Olsen, T.; Ratican, J. Limitations and possibilities of digital restoration techniques using generative AI tools: Reconstituting Antoine François Callet’s Achilles Dragging Hector’s Body Past the Walls of Troy. Arts Commun. 2023, 1, 1793. [Google Scholar] [CrossRef]
- Grigoryan, A.; Agaian, S. Quaternion and Octonion Color Image Processing with MATLAB; SPIE: Bellingham, DC, USA, 2018; Volume PM279. [Google Scholar]
- Grigoryan, A.; Agaian, S. Commutative quaternion algebra and DSP fundamental properties: Quaternion convolution and Fourier transform. Signal Process. 2022, 196, 108533. [Google Scholar] [CrossRef]
- Grigoryan, A.; Agaian, S. Retooling of color imaging in the quaternion algebra. Appl. Math. Sci. Int. J. 2014, 1, 23–39. [Google Scholar]
- Grigoryan, A.; Agaian, S. Alpha-rooting method of color image enhancement by discrete quaternion Fourier transform, [9019-3]. In Proceedings of the SPIE Proceedings, 2014 Electronic Imaging: Image Processing: Algorithms and Systems XII, San Francisco, CA, USA, 2–6 February 2014; p. 12. [Google Scholar]
- Grigoryan, A.; Jenkinson, J.; Agaian, S. Quaternion Fourier transform based alpha-rooting method for color image measurement and enhancement, SIGPRO-D-14-01083R1. Signal Process. 2015, 109, 269–289. [Google Scholar] [CrossRef]
- Grigoryan, A.; Agaian, S. Image Processing Contrast Enhancement. In Wiley Encyclopedia of Electrical and Electronics Engineering; Wiley-Interscience: Hoboken, NJ, USA, 2017; p. 22. [Google Scholar]
- Agaian, S.; Panetta, K.; Grigoryan, A. Transform-based image enhancement algorithms. IEEE Trans. Image Process. 2001, 10, 367–382. [Google Scholar] [CrossRef]
- Grigoryan, A.; Agaian, S. 2-D Left-side quaternion discrete Fourier transform fast algorithms. In Proceedings of the IS&T International Symposium, 2016 Electronic Imaging: Algorithms and Systems XIV, San Francisco, CA, USA, 14–18 February 2016; p. 8. [Google Scholar]
- Grigoryan, A.; Agaian, S. Transform-based image enhancement algorithms with performance measure. In Advances in Imaging and Electron Physics; Academic Press: New York, NY, USA, 2004; Volume 130, pp. 165–242. [Google Scholar]
- Grigoryan, A.; Agaian, S. Color visibility images and measures of image enhancement. In Proceedings of the IS&T International Symposium, Electronic Imaging: Algorithms and Systems, Burlingame, CA, USA, 28 January–2 February 2018; p. 7. [Google Scholar]
- Panetta, K.; Gao, C.; Agaian, S. No reference color image contrast and quality measures. IEEE Trans. Consum. Electron. 2013, 59, 643–651. [Google Scholar] [CrossRef]
- Panetta, K.; Wharton, E.; Agaian, S. Human visual system-based image enhancement and measure of image enhancement. In IEEE Transactions on Systems, Man and Cybernetics—Part A: Systems and Humans; IEEE: New York, NY, USA, 2008; Volume 38, pp. 174–188. [Google Scholar]
- Available online: https://artgreet.com/symbols-in-renaissance-art/ (accessed on 1 January 2025).
- Gage, J. Color and Meaning: Art, Science, and Symbolism; University of California Press: Berkeley, CA, USA, 1999; p. 15. [Google Scholar]
- Condra, J. (Ed.) The Greenwood Encyclopedia of Clothing Through World History, Prehistory to 1500 CE; Greenwood Publishing Group: Westport, CT, USA, 2008; Volume 1, p. 202. [Google Scholar]
- Pearson Education, Inc. What colors mean. In Fact Monster; Pearson Education, Inc.: Hoboken, NJ, USA, 2007; Available online: http://www.factmonster.com/ipka/A0769383.html (accessed on 1 January 2025).
- Finlay, V. Color: A Natural History of the Palette; Ballantine Books: New York, NY, USA, 2002; p. 97. [Google Scholar]
- Ketchum, D. The Meaning of Colors During the Renaissance Era|The Classroom|Synonym. Available online: https://classroom.synonym.com/meaning-colors-during-renaissance-era-8734.html (accessed on 1 January 2025).
- Marco, C. Technical Art History and the First Conference on the Scientific Analysis of Works of Art (Rome, 1930). Hist. Humanit. 2017, 2, 221–243. [Google Scholar]
- Erma, H. Technical Art History: The synergy of Art, conservation and science. In Art History and Visual Studies; Brill Academic Publisher: Leiden, The Netherlands, 2012; pp. 151–166. [Google Scholar]
- Spring, M. Raphael’s materials: Some new discoveries and their context within early sixteenth-century painting. In Raphael’s Painting Technique: Working Practices Before Rome, Proceedings of the Eu-ARTECH Workshop, London, UK, 11 November 2004; Roy, A., Spring, M., Eds.; National Gallery: London, UK, 2007; pp. 77–86. Available online: https://cima.ng-london.org.uk/documentation/files/N-6480/02_Provenance/Proceedings_2007_SPRING.pdf (accessed on 1 March 2025).
- Spring, M. New insights into the materials of fifteenth- and sixteenth-century Netherlandish paintings in the National Gallery, London. Herit. Sci. 2017, 5, 40. [Google Scholar] [CrossRef]
- Kühn, H. Lead-Tin Yellow. In Artists’ Pigments: A Handbook of the History and Characteristics; Reprinted 2012; Cambridge University Press: Washington, DC, USA, 1993; Volume 2, pp. 83–112. [Google Scholar]
- Wainwright, I.N.M.; Taylor, J.M.; Harley, R.D. Lead Antimonate Yellow. In Artists’ Pigments: A Handbook of the History and Characteristics; Reprinted 2012; Cambridge University Press: Washington, DC, USA, 1993; Volume 1, pp. 219–255. [Google Scholar]
- Kuhn, H. Verdigris and Copper Resinate. In Artists’ Pigments: A Handbook of the History and Characteristics; Reprinted 2012; Cambridge University Press: Washington, DC, USA, 1993; Volume 2, pp. 131–158. [Google Scholar]
- Gettens, R.; Fitzhugh, E. Malachite and Green Verditer. In Artists’ Pigments: A Handbook of the History and Characteristics; Reprinted 2012; Cambridge University Press: Washington, DC, USA, 1993; Volume 2, pp. 183–202. [Google Scholar]
- Gettens, R.; Feller, R.; Chase, W. Vermilion and Cinnabar. In Artists’ Pigments: A Handbook of the History and Characteristics; Reprinted 2012; Cambridge University Press: Washington, DC, USA, 1993; Volume 2, pp. 159–182. [Google Scholar]
- Fitzhugh, E. Red Lead and minimum. In Artists’ Pigments: A Handbook of the History and Characteristics; Reprinted 2012; Cambridge University Press: Washington, DC, USA, 1993; Volume 2, pp. 109–140. [Google Scholar]
- Gettens, R.; Kuhn, H. Lead White. In Artists’ Pigments: A Handbook of the History and Characteristics; Reprinted 2012; Cambridge University Press: Washington, DC, USA, 1993; Volume 2, pp. 67–81. [Google Scholar]
- Feller, R.; Johnston-Feller, R. Vandyke Brown Cassel Earth, Cologne Earth. In Artists’ Pigments: A Handbook of the History and Characteristics; Reprinted 2012; Cambridge University Press: Washington, DC, USA, 1993; Volume 3, pp. 157–190. [Google Scholar]
- Helwig, K. Iron Oxide Pigments. In Artists’ Pigments, A Handbook of Their History and Characteristics; Berrie, B.H., Ed.; Cambridge University Press: Washington, DC, USA, 2007; Volume 4, pp. 38–109. [Google Scholar]
- Available online: https://colourlex.com/project/ivory-black/ (accessed on 1 January 2025).
- Liu, S.; Agaian, S.; Grigoryan, A. PortraitEmotion3D: A novel dataset and 3D emotion estimation method for artistic portraiture analysis. Appl. Sci. 2024, 14, 11235. [Google Scholar] [CrossRef]
- Available online: https://www.definitions.net/definition/palette (accessed on 1 January 2025).
- Palette Definition. Available online: https://www.vocabulary.com/dictionary/palette (accessed on 1 January 2025).
- Bezdek, J.; Ehrlich, R.; Full, W. FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 1984, 10, 191–203. [Google Scholar] [CrossRef]
- Leonard, K.; Rousseeuw, P. Partitioning Around Medoids (Program PAM); John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Available online: https://artsexperiments.withgoogle.com/artpalette/ (accessed on 1 January 2025).
- Gaurav, S.; Wencheng, W.; Dalal, E. The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Res. Appl. 2005, 30, 21–30. [Google Scholar]
- Luo, M. CIELAB. In Encyclopedia of Color Science and Technology; Luo, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Stakhov, A. The golden section and modern harmony mathematics. In Applications of Fibonacci; Springer: Dordrecht, The Netherlands, 1998; Volume 7. [Google Scholar]
- Grigoryan, A.; Agaian, S. Re-Coloring of grayscale images: Models with Aesthetic and Golden proportions. In Proceedings of the SPIE, Defence + Commercial Sensing, Mobile Multimedia/Image Processing, Security, and Applications, Orlando, FL, USA, 27 April–8 May 2018; Volume 10668, p. 11. [Google Scholar]
- Grigoryan, A.; Agaian, S. Evidence of Golden and Aesthetic Proportions in Colors of Paintings of the Prominent Artists. IEEE MultiMedia 2020, 27, 8–16. Available online: https://ieeexplore.ieee.org/document/8678387?source=authoralert (accessed on 1 January 2024). [CrossRef]
- Amirshahi, S.A.; Hayn-Leichsenring, G.U.; Denzler, J.; Redies, C. Jenaesthetics Subjective Dataset: Analyzing Paintings by Subjective Scores. In Computer Vision-ECCV 2014 Workshops; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 3–19. [Google Scholar] [CrossRef]
Color and Its Properties | Renaissance | Medieval |
---|---|---|
Wavelength interval of 700–635 nm Frequency interval of 430–480 THz RGB (255, 0, 0) |
|
|
Wavelength interval of 560–520 nm Frequency interval of 540–580 THz RGB (0, 255, 0) | ||
Wavelength interval of 490–450 nm Frequency interval of 610–670 THz RGB (0, 255, 0) |
| |
Wavelength interval of 635–590 nm Frequency interval of 480–510 THz RGB (0, 255, 0) |
|
|
Wavelength interval of 590–560 nm Frequency interval of 510–540 THz RGB (255, 255, 0) |
| |
Wavelength interval of 450–400 nm Frequency interval of 670–750 THz RGB (255, 255, 0) |
| |
RGB (152, 72, 7) | ||
|
Color | Pigment Color | Used Period |
---|---|---|
RGB (0, 255, 0) | Azurite, RGB (49, 80, 101) | Mid 1400s–1500s [17] |
Ultramarine, RGB (18, 10, 143) | 1300s–1600s [17] | |
Smalt, RGB (0, 51, 153) | 1400s–Late-1500s [17] | |
RGB (255, 255, 0) | Lead Tin Yellow, RGB (255, 230, 74) | Early 1400s–Mid-1700s [54] |
Naples Yellow, RGB (250, 218, 94) | Mid-1700s–Mid-1800s [55] | |
RGB (0, 255, 0) | Verdigris, RGB (67, 179, 174) | 1400s–1600s [56] |
Malachite, RGB (78, 129, 96) | 1400s–1500s [57] | |
RGB (255, 0, 0) | Vermilion, RGB (227, 66, 52) | 1600s–1700s [58] |
Red Lead, RGB (204, 51, 0) | 1400s–1800s [59] | |
Lead White, RGB (240, 235, 229) | Ancient–1800s [60] | |
RGB (152, 72, 7) | Vandyke Brown, RGB (68, 54, 47) | 1500s–Present [61] |
Umber, RGB (88, 62, 35) | 1400s–1800s [62] | |
RGB (0, 0, 0) | Ivory Black, RGB (35, 31, 32) | Ancient–Present [63] |
Original Image | GT | PR | Methods | CSR | CD | Original Image | GT | PR | Methods | CSR | CD |
---|---|---|---|---|---|---|---|---|---|---|---|
Madonna of The Yarnwinder | K-means | 0.963 | 16.507 | Canigiani Family | K-means | 0.968 | 14.270 | ||||
Fuzzy C-means | 0.928 | 31.734 | Fuzzy C-means | 0.919 | 35.778 | ||||||
K-medoids | 0.932 | 30.638 | K-medoids | 0.920 | 35.513 | ||||||
The Night Watch | K-means | 0.958 | 18.625 | Mona Lisa | K-means | 0.951 | 21.734 | ||||
Fuzzy C-means | 0.944 | 24.532 | Fuzzy C-means | 0.953 | 20.634 | ||||||
K-medoids | 0.955 | 20.032 | K-medoids | 0.947 | 23.261 | ||||||
Femme assise dans un fauteuil | K-means | 0.956 | 19.395 | Tobit and Anna | K-means | 0.959 | 18.339 | ||||
Fuzzy C-means | 0.920 | 35.439 | Fuzzy C-means | 0.973 | 11.865 | ||||||
K-medoids | 0.915 | 37.453 | K-medoids | 0.960 | 17.616 |
α | 0.80 | 0.82 | 0.84 | 0.86 | 0.88 | 0.90 | 0.92 | 0.94 | 0.96 | 0.98 |
---|---|---|---|---|---|---|---|---|---|---|
CR | 1.83 | 1.89 | 1.94 | 1.98 | 2.02 | 2.01 | 1.96 | 1.86 | 1.75 | 1.65 |
M1 | 1.14 | 1.14 | 1.36 | 1.15 | 1.30 | 1.31 | 1.87 | 1.18 | 1.04 | 1.04 |
M2 | 1.07 | 1.10 | 1.30 | 1.14 | 1.24 | 1.27 | 1.64 | 1.16 | 1.06 | 1.05 |
M3 | 1.62 | 2.61 | 2.97 | 5.59 | 3.17 | 3.52 | 3.39 | 3.37 | 3.54 | 5.05 |
M | 1.25 | 1.49 | 1.74 | 1.94 | 1.73 | 1.80 | 2.19 | 1.66 | 1.57 | 1.77 |
EMEC | 2.66 | 3.14 | 3.77 | 4.69 | 6.36 | 8.18 | 11.60 | 15.72 | 19.57 | 23.67 |
EMEC2 | 5.47 | 6.29 | 7.33 | 8.83 | 11.12 | 14.76 | 19.36 | 24.87 | 29.57 | 33.43 |
α | 0.80 | 0.82 | 0.84 | 0.86 | 0.88 | 0.90 | 0.92 | 0.94 | 0.96 | 0.98 |
---|---|---|---|---|---|---|---|---|---|---|
CR | 1.96 | 2.02 | 2.05 | 2.04 | 2.02 | 1.97 | 1.91 | 1.84 | 1.76 | 1.64 |
M1 | 1.48 | 1.84 | 1.07 | 1.07 | 1.16 | 1.20 | 1.19 | 1.10 | 1.17 | 1.06 |
M2 | 1.39 | 1.65 | 1.07 | 1.08 | 1.15 | 1.18 | 1.18 | 1.10 | 1.14 | 1.04 |
M3 | 2.09 | 5.09 | 4.31 | 3.57 | 4.40 | 5.25 | 4.74 | 5.57 | 7.66 | 6.54 |
M | 1.63 | 2.49 | 1.70 | 1.60 | 1.80 | 1.96 | 1.88 | 1.89 | 2.17 | 1.93 |
EMEC | 7.28 | 7.68 | 8.28 | 9.32 | 10.41 | 12.17 | 14.62 | 17.45 | 21.08 | 23.87 |
EMEC2 | 7.27 | 8.35 | 9.26 | 10.17 | 11.45 | 13.99 | 17.08 | 20.62 | 23.74 | 27.17 |
α | 0.80 | 0.82 | 0.84 | 0.86 | 0.88 | 0.90 | 0.92 | 0.94 | 0.96 | 0.98 |
---|---|---|---|---|---|---|---|---|---|---|
CR | 1.76 | 1.77 | 1.77 | 1.76 | 1.77 | 1.78 | 1.75 | 1.65 | 1.55 | 1.49 |
M1 | 1.19 | 1.37 | 1.07 | 1.55 | 1.04 | 2.97 | 2.29 | 3.64 | 1.92 | 1.08 |
M2 | 1.04 | 1.15 | 0.99 | 1.24 | 0.97 | 1.99 | 1.62 | 2.33 | 1.41 | 0.97 |
M3 | 1.90 | 2.46 | 2.76 | 2.98 | 3.40 | 19.33 | 5.26 | 4.26 | 4.02 | 4.51 |
M | 1.33 | 1.57 | 1.43 | 1.79 | 1.51 | 4.85 | 2.69 | 3.31 | 2.22 | 1.67 |
EMEC | 5.26 | 5.89 | 6.61 | 7.75 | 8.95 | 10.47 | 12.62 | 15.52 | 18.48 | 22.23 |
EMEC2 | 8.07 | 9.30 | 11.32 | 13.70 | 16.29 | 19.35 | 22.93 | 26.16 | 28.06 | 26.74 |
α | 0.80 | 0.82 | 0.84 | 0.86 | 0.88 | 0.90 | 0.92 | 0.94 | 0.96 |
---|---|---|---|---|---|---|---|---|---|
CR | 2.26 | 2.34 | 2.39 | 2.49 | 2.53 | 2.53 | 2.43 | 2.23 | 1.92 |
M1 | 1.48 | 1.58 | 4.73 | 1.69 | 1.79 | 1.93 | 1.85 | 1.89 | 1.91 |
M2 | 1.47 | 1.57 | 4.77 | 1.69 | 1.81 | 1.98 | 1.91 | 1.99 | 2.02 |
M3 | 2.98 | 2.11 | 5.33 | 2.49 | 3.04 | 7.17 | 3.20 | 5.60 | 6.53 |
M | 1.87 | 1.73 | 4.94 | 1.92 | 2.14 | 3.02 | 2.24 | 2.76 | 2.93 |
EMEC | 7.25 | 7.84 | 8.13 | 8.56 | 9.10 | 9.78 | 11.19 | 12.69 | 15.52 |
EMEC2 | 8.09 | 9.03 | 10.30 | 11.13 | 11.97 | 13.69 | 14.69 | 17.15 | 22.16 |
α | 0.80 | 0.82 | 0.84 | 0.86 | 0.88 | 0.90 | 0.92 | 0.94 | 0.96 | 0.98 |
---|---|---|---|---|---|---|---|---|---|---|
CR | 1.91 | 1.86 | 1.82 | 1.83 | 1.90 | 2.03 | 2.23 | 2.27 | 1.99 | 1.64 |
M1 | 1.39 | 6.55 | 3.29 | 1.53 | 1.54 | 1.70 | 1.51 | 1.62 | 1.41 | 1.78 |
M2 | 1.28 | 5.18 | 2.56 | 1.26 | 1.27 | 1.40 | 1.29 | 1.40 | 1.27 | 1.54 |
M3 | 1.72 | 2.12 | 2.25 | 2.82 | 4.72 | 3.09 | 3.28 | 3.66 | 4.38 | 4.16 |
M | 1.41 | 4.16 | 2.67 | 1.75 | 2.10 | 1.95 | 1.86 | 2.02 | 1.98 | 2.25 |
EMEC | 8.12 | 8.20 | 8.52 | 8.75 | 9.31 | 10.07 | 11.49 | 13.79 | 17.24 | 21.09 |
EMEC2 | 8.45 | 9.60 | 10.56 | 11.55 | 12.41 | 13.32 | 14.71 | 17.21 | 23.39 | 27.74 |
α | 0.80 | 0.82 | 0.84 | 0.86 | 0.88 | 0.90 | 0.92 | 0.94 | 0.96 | 0.98 |
---|---|---|---|---|---|---|---|---|---|---|
CR | 1.96 | 2.09 | 2.20 | 2.24 | 2.28 | 2.30 | 2.20 | 2.03 | 1.81 | 1.69 |
M1 | 1.73 | 13.19 | 2.13 | 1.46 | 1.82 | 1.98 | 1.77 | 1.65 | 1.51 | 1.45 |
M2 | 1.44 | 8.85 | 1.69 | 1.30 | 1.52 | 1.58 | 1.45 | 1.38 | 1.27 | 1.21 |
M3 | 1.49 | 2.39 | 2.30 | 2.90 | 3,29 | 3.86 | 7.14 | 4.08 | 4.84 | 4.90 |
M | 1.55 | 6.53 | 2.02 | 1.77 | 2.09 | 2.30 | 2.64 | 2.10 | 2.10 | 2.05 |
EMEC | 3.29 | 3.49 | 3.58 | 3.87 | 4.55 | 5.49 | 7.41 | 10.79 | 14.57 | 17.48 |
EMEC2 | 6.35 | 6.85 | 7.49 | 8.00 | 9.16 | 10.73 | 13.61 | 19.46 | 24.06 | 27.31 |
α | 0.80 | 0.82 | 0.84 | 0.86 | 0.88 | 0.90 | 0.92 | 0.94 | 0.96 | 0.98 |
---|---|---|---|---|---|---|---|---|---|---|
CR | 1.90 | 1.96 | 2.07 | 2.18 | 2.30 | 2.40 | 2.44 | 2.32 | 2.01 | 1.68 |
M1 | 1.58 | 2.33 | 2.13 | 1.98 | 2.26 | 2.46 | 2.23 | 2.45 | 2.53 | 2.73 |
M2 | 1.48 | 1.96 | 1.66 | 1.50 | 1.61 | 1.64 | 1.48 | 1.53 | 1.50 | 1.55 |
M3 | 1.60 | 4.61 | 1.77 | 5.79 | 5.23 | 2.75 | 5.54 | 4.27 | 5.10 | 8.12 |
M | 1.55 | 2.76 | 1.84 | 2.58 | 2.67 | 2.23 | 2.64 | 2.52 | 2.69 | 3.25 |
EMEC | 11.23 | 11.49 | 11.91 | 12.33 | 12.79 | 13.26 | 13.89 | 14.65 | 16.39 | 18.80 |
EMEC2 | 10.91 | 12.26 | 12.52 | 12.76 | 12.82 | 13.23 | 13.54 | 14.83 | 16.86 | 19.21 |
α | 0.80 | 0.82 | 0.84 | 0.86 | 0.88 | 0.90 | 0.92 | 0.94 | 0.96 | 0.98 |
---|---|---|---|---|---|---|---|---|---|---|
CR | 2.15 | 2.21 | 2.26 | 2.29 | 2.28 | 2.21 | 2.05 | 1.96 | 1.68 | 1.57 |
M1 | 1.36 | 1.46 | 1.20 | 1.47 | 1.28 | 3.27 | 1.15 | 1.65 | 1.29 | 1.14 |
M2 | 1.34 | 1.42 | 1.27 | 1.39 | 1.21 | 2.85 | 1.12 | 1.56 | 1.27 | 1.16 |
M3 | 7.65 | 2.40 | 6.32 | 3.88 | 4.73 | 3.74 | 4.52 | 4.96 | 5.32 | 6.41 |
M | 2.41 | 1.71 | 2.19 | 1.99 | 1.95 | 3.27 | 1.80 | 2.34 | 2.06 | 2.03 |
EMEC | 8.74 | 8.38 | 8.34 | 8.53 | 8.81 | 9.24 | 10.96 | 12.98 | 15.79 | 20.15 |
EMEC2 | 10.29 | 11.59 | 13.15 | 14.53 | 15.50 | 16.87 | 19.40 | 22.92 | 26.00 | 26.13 |
α | CCD1 | CCD2 | CCD3 | CCD4 | CRD | M1 | M2 | M3 | M | EMEC | EMEC2 |
---|---|---|---|---|---|---|---|---|---|---|---|
0.80 | 0.2147 | 0.225 | 0.2226 | 0.2165 | 0.5 | 1.48 | 1.39 | 2.09 | 1.63 | 7.28 | 7.27 |
0.82 | 0.2472 | 0.2182 | 0.2253 | 0.2249 | 0.56 | 1.84 | 1.65 | 5.09 | 2.49 | 7.68 | 8.35 |
0.84 | 0.2221 | 0.2392 | 0.2199 | 0.2211 | 0.59 | 1.07 | 1.07 | 4.31 | 1.7 | 8.28 | 9.26 |
0.86 | 0.2392 | 0.2437 | 0.2197 | 0.2207 | 0.58 | 1.07 | 1.08 | 3.57 | 1.6 | 9.32 | 10.17 |
0.88 | 0.2168 | 0.2152 | 0.2176 | 0.2226 | 0.56 | 1.16 | 1.15 | 4.4 | 1.8 | 10.41 | 11.45 |
0.90 | 0.2081 | 0.2135 | 0.2229 | 0.2247 | 0.51 | 1.2 | 1.18 | 5.25 | 1.96 | 12.17 | 13.99 |
0.92 | 0.2192 | 0.2232 | 0.2191 | 0.2181 | 0.45 | 1.19 | 1.18 | 4.74 | 1.88 | 14.62 | 17.08 |
0.94 | 0.2391 | 0.2138 | 0.2269 | 0.2255 | 0.38 | 1.1 | 1.1 | 5.57 | 1.89 | 17.45 | 20.62 |
0.96 | 0.1936 | 0.2082 | 0.2258 | 0.226 | 0.3 | 1.17 | 1.14 | 7.66 | 2.17 | 21.08 | 23.74 |
α | Top1 | Top2 | Top3 | Top4 | Top5 | Top6 | Top7 | Top8 |
---|---|---|---|---|---|---|---|---|
0.80 | −2.3859 | −1.8312 | −3.7225 | −2.6850 | −2.1274 | −2.0834 | −2.0460 | −2.0335 |
0.82 | −0.3212 | 4.1938 | 4.7600 | 4.5406 | 4.2164 | 4.3240 | 4.3326 | 4.3392 |
0.84 | −1.9399 | −3.1562 | −2.4624 | −2.9127 | −2.7433 | −2.0728 | −2.2016 | −2.1016 |
0.86 | −2.3892 | −3.6643 | −2.4188 | −2.0191 | −2.1756 | −1.9049 | −1.7412 | −1.8276 |
0.88 | −0.7759 | −1.4759 | −1.6936 | −2.9685 | −2.9446 | −3.8138 | −3.6845 | −3.6347 |
0.90 | 0.8552 | 0.8143 | 0.6425 | −0.2265 | 0.4831 | 0.4284 | 0.2712 | 0.1624 |
0.92 | −0.0110 | −1.0206 | −1.7941 | −1.5270 | −2.7993 | −2.9996 | −3.1293 | −3.1523 |
0.94 | 2.4122 | 2.1147 | 3.2998 | 4.6102 | 4.9642 | 4.3527 | 4.2984 | 4.3335 |
0.96 | 4.5598 | 4.0253 | 3.389 | 3.1880 | 3.1265 | 3.7694 | 3.9003 | 3.9147 |
α | CCD1 | CCD 2 | CCD 3 | CCD 4 | CRD | Voting Score | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Value | RS | Value | RS | Value | RS | Value | RS | Value | RS | ||
0.80 | 0.2147 | 3 | 0.2250 | 7 | 0.2226 | 5 | 0.2165 | 1 | 0.5 | 6 | 22 |
0.82 | 0.2472 | 9 | 0.2182 | 5 | 0.2253 | 7 | 0.2249 | 7 | 0.56 | 4 | 32 |
0.84 | 0.2221 | 6 | 0.2392 | 8 | 0.2199 | 4 | 0.2211 | 4 | 0.59 | 2 | 24 |
0.86 | 0.2392 | 8 | 0.2437 | 9 | 0.2197 | 3 | 0.2207 | 3 | 0.58 | 3 | 26 |
0.88 | 0.2168 | 4 | 0.2152 | 4 | 0.2176 | 1 | 0.2226 | 5 | 0.56 | 4 | 18 |
0.90 | 0.2081 | 2 | 0.2135 | 2 | 0.2229 | 6 | 0.2247 | 6 | 0.51 | 5 | 21 |
0.92 | 0.2192 | 5 | 0.2232 | 6 | 0.2191 | 2 | 0.2181 | 2 | 0.45 | 7 | 22 |
0.94 | 0.2391 | 7 | 0.2138 | 3 | 0.2269 | 9 | 0.2255 | 8 | 0.38 | 8 | 35 |
0.96 | 0.1936 | 1 | 0.2082 | 1 | 0.2258 | 8 | 0.2260 | 9 | 0.3 | 9 | 28 |
Artist: Raphaello Sanzio | |||||||
---|---|---|---|---|---|---|---|
Painting Name | CR | M1 | M2 | M3 | M | EMEC | EMEC2 |
‘The Vision of a Knight’ Figure 11 | 1.50 | 2.35 | 2.58 | 4.62 | 3.03 | 23.08 | 35.42 |
‘Madonna and Child with Book’ Figure 13 | 1.64 | 1.51 | 1.22 | 4.86 | 2.08 | 19.89 | 28.91 |
‘Madonna Estergazi’ | 1.54 | 2.11 | 2.43 | 5.71 | 3.08 | 24.36 | 32.07 |
‘Canigiani Holy Family’ Figure 12 | 1.50 | 1.70 | 1.46 | 3.48 | 2.05 | 23.97 | 27.74 |
‘Colonna Madonna’ Figure 14 | 1.49 | 2.97 | 1.63 | 7.89 | 3.37 | 20.46 | 20.98 |
‘Madonna and Child Enthroned with Saints’ | 1.38 | 1.12 | 1.11 | 4.18 | 1.73 | 16.39 | 38.68 |
‘St. Catherine of Alexandria’ Figure 15 | 1.51 | 1.06 | 1.09 | 7.27 | 2.03 | 25.14 | 24.09 |
‘Crucifixion’ | 1.41 | 1.61 | 1.65 | 2.29 | 1.83 | 16.91 | 28.21 |
‘The Niccolini-Cowper Madonna’ | 1.45 | 2.20 | 1.59 | 4.04 | 2.42 | 25.52 | 21.03 |
…… | … | … | … | … | … | … | … |
Average (over 30 paintings) | 1.61 | 1.59 | 1.65 | 6.39 | 2.44 | 22.31 | 31.66 |
Artist: Leonardo da Vinci | |||||||
---|---|---|---|---|---|---|---|
Painting Name | CR | M1 | M2 | M3 | M | EMEC | EMEC2 |
‘Madonna Litta’ Figure 9 and Figure 13 | 1.56 | 1.53 | 1.36 | 5.24 | 2.22 | 25.72 | 29.98 |
‘The Virgin and Child with St. Anne’ Figure 10 | 1.46 | 1.60 | 1.24 | 4.39 | 2.06 | 26.87 | 24.68 |
‘Madonna Benois’ | 1.55 | 1.71 | 2.18 | 5.86 | 2.80 | 29.62 | 32.44 |
‘Madonna with the Carnation’ | 1.57 | 2.45 | 2.46 | 4.47 | 3.00 | 23.02 | 20.42 |
‘St. Hieronymus’ | 1.61 | 3.64 | 3.86 | 4.90 | 4.10 | 26.49 | 37.01 |
‘Madonna of the Rocks’ | 1.48 | 0.79 | 0.96 | 6.78 | 1.73 | 24.46 | 30.95 |
‘Madonna of the Yarnwinder’ Figure 5 | 1.48 | 1.18 | 1.08 | 6.43 | 2.02 | 22.43 | 29.86 |
‘Portrait of Cecilia Gallerani (Lady with an Ermine)’ Figure 4 | 1.60 | 4.95 | 6.17 | 2.15 | 4.03 | 24.20 | 30.53 |
…… | … | … | … | … | … | … | … |
Average (over 25 paintings) | 1.46 | 2.86 | 2.84 | 5.84 | 2.67 | 24.35 | 26.35 |
Artist: Rembrandt | |||||||
---|---|---|---|---|---|---|---|
Painting Name | CR | M1 | M2 | M3 | M | EMEC | EMEC2 |
‘Tobit and Anna with a Kid’ Figure 6 and Figure 8 | 1.58 | 1.08 | 1.05 | 3.68 | 1.61 | 27.56 | 35.74 |
‘Self-Portrait’ | 1.67 | 2.31 | 2.20 | 2.31 | 2.28 | 21.16 | 25.08 |
‘Christ in the Storm on the Lake of Galilee’ | 1.46 | 1.58 | 1.52 | 1.30 | 1.46 | 17.61 | 21.04 |
‘Philosopher Reading’ | 1.44 | 2.86 | 3.24 | 3.57 | 3.21 | 29.85 | 23.25 |
‘Portrait of a Young Woman with the Fan’ | 1.42 | 2.27 | 2.44 | 1.80 | 2.15 | 20.19 | 23.07 |
‘Feast of Belshazzar’ | 1.49 | 1.65 | 1.80 | 4.19 | 2.32 | 21.40 | 33.48 |
…… | … | … | … | … | … | … | … |
Average (over 50 paintings) | 1.65 | 2.71 | 2.96 | 3.13 | 2.70 | 22.01 | 26.65 |
Rembrandt’s “Tobit and Anna with a Kid” | Raphael’s “Canigiani Holy Family” | ||
Existing image | Predicted color (α = 0.96) | Existing image | Predicted color (α = 0.98) |
Raphael’s “Madonna and Child with Book” | Raphael’s “Colonna Madonna” | ||
Existing image | Predicted color (α = 0.98) | Existing image | Predicted color (α = 0.98) |
Raphael’s “St. Catherina of Alexandria” | Da Vinci’s “Virgin and Child with Saint Anne” | ||
Existing image | Predicted color (α = 0.94) | Existing color image | Predicted color (α = 0.90) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigoryan, A.M.; Agaian, S.S.; Liu, S. Cognitive Computing for Understanding and Restoring Color in Renaissance Art. Big Data Cogn. Comput. 2025, 9, 113. https://doi.org/10.3390/bdcc9050113
Grigoryan AM, Agaian SS, Liu S. Cognitive Computing for Understanding and Restoring Color in Renaissance Art. Big Data and Cognitive Computing. 2025; 9(5):113. https://doi.org/10.3390/bdcc9050113
Chicago/Turabian StyleGrigoryan, Artyom M., Sos S. Agaian, and Shao Liu. 2025. "Cognitive Computing for Understanding and Restoring Color in Renaissance Art" Big Data and Cognitive Computing 9, no. 5: 113. https://doi.org/10.3390/bdcc9050113
APA StyleGrigoryan, A. M., Agaian, S. S., & Liu, S. (2025). Cognitive Computing for Understanding and Restoring Color in Renaissance Art. Big Data and Cognitive Computing, 9(5), 113. https://doi.org/10.3390/bdcc9050113