Measuring Height Characteristics of Sagebrush (Artemisia sp.) Using Imagery Derived from Small Unmanned Aerial Systems (sUAS)
Abstract
:1. Introduction
Study Objectives and Hypotheses
2. Methods and Materials
2.1. Study Area
2.2. Data Collection
- Height: 30.5 m AGL, 45 m AGL, 75 m AGL, and 120 m AGLPre-flight calculations of spatial resolutions range from approximately 0.75 cm (30.5 m) to approximately 3 cm (120 m, Table 2). Higher resolution (lower Ground Sampling Distance, GSD) is expected to result in higher accuracy of photogrammetrically derived plant height values [44]. In addition, higher flights have a higher viewing angle, which we predict will negatively impact our ability to achieve an oblique view for optimal point cloud generation. Flight time decreases by roughly half with each successive increase in height AGL (Table 2).
- Flight pattern: Single pass vs. Double pass with non-nadir imagerySingle pass methods decrease flight time compared to double pass (or quadruple pass, which we did not test in this study). Double pass methods are expected to improve point cloud generation by utilizing the multiple viewing angles of each plant with non-nadir imagery (camera angle of about 70%). Flight time is roughly doubled by implementing a double pass flight (Table 2).
- Flight Speed: Continuous mode vs. Safe modeLower heights are more susceptible to motion blur using continuous flight methods (“Continuous mode”), while pausing the drone, taking a picture, and resuming flight (“Safe mode”) decreases the risk of blur and improves overall image quality, which is also expected to aid in point cloud generation. Flight time is roughly tripled by implementing safe mode (Table 2).
2.3. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tonkin, T.N.; Midgley, N.G.; Graham, D.J.; Labadz, J.C. The potential of small unmanned aircraft systems and structure-from-motion for topographic surveys: A test of emerging integrated approaches at Cwm Idwal, North Wales. Geomorphology 2014, 226, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Rango, A.; Laliberte, A.; Herrick, J.E.; Winters, C.; Havstad, K.; Steele, C.; Browning, D. Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management. J. Appl. Remote Sens. 2009, 3, 33542. [Google Scholar] [CrossRef]
- Gillan, J.K.; Karl, J.W.; Duniway, M.; Elaksher, A. Modeling vegetation heights from high resolution stereo aerial photography: An application for broad-scale rangeland monitoring. J. Environ. Manag. 2014, 144, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Snavely, N.; Seitz, S.M.; Szeliski, R. Modeling the World from Internet Photo Collections. Int. J. Comput. Vis. 2008, 80, 189–210. [Google Scholar] [CrossRef] [Green Version]
- Dandois, J.P.; Olano, M.; Ellis, C.E. Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure. Remote Sens. 2015, 7. [Google Scholar] [CrossRef] [Green Version]
- Morino, C.; Conway, S.J.; Balme, M.R.; Hillier, J.; Jordan, C.; Sæmundsson, Þ.; Argles, T. Debris-flow release processes investigated through the analysis of multi-temporal LiDAR datasets in north-western Iceland. Earth Surf. Process. Landf. 2019, 44, 144–159. [Google Scholar] [CrossRef]
- Stylianidis, E.; Akça, D.; Poli, D.; Hofer, M.; Gruen, A.; Sánchez Martín, V.; Smagas, K.; Walli, A.; Altan, O.; Jimeno, E. FORSAT: A 3D forest monitoring system for cover mapping and volumetric 3D change detection. Int. J. Digit. Earth 2019, 1–32. [Google Scholar] [CrossRef]
- Díaz-Varela, A.R.; de la Rosa, R.; León, L.; Zarco-Tejada, J.P. High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: Application in breeding trials. Remote Sens. 2015, 7, 4213–4232. [Google Scholar] [CrossRef] [Green Version]
- Filippelli, S.K.; Lefsky, M.A.; Rocca, M.E. Comparison and integration of lidar and photogrammetric point clouds for mapping pre-fire forest structure. Remote Sens. Environ. 2019, 224, 154–166. [Google Scholar] [CrossRef]
- Cunliffe, A.M.; Brazier, R.E.; Anderson, K. Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sens. Environ. 2016, 183, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Process. Landf. 2013, 38, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Wallace, L.; Lucieer, A.; Malenovský, Z.; Turner, D.; Vopěnka, P. Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds. Forests 2016, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Prosek, J.; Simova, P. UAV for mapping shrubland vegetation: Does fusion of spectral and vertical information derived from a single sensor increase the classification accuracy? Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 151–162. [Google Scholar] [CrossRef]
- Davies, K.W.; Svejcar, T.J. Comparison of Medusahead-Invaded and Noninvaded Wyoming Big Sagebrush Steppe in Southeastern Oregon. Rangel. Ecol. Manag. 2008, 61, 623–629. [Google Scholar] [CrossRef]
- Connelly, J.W.; Knick, S.T.; Schroeder, M.A.; Stiver, S.J. Conservation Assessment of Greater Sage-Grouse and Sagebrush Habitats; Utah State University: Logan, UT, USA, 2004; pp. 1–611. [Google Scholar]
- Knick, S.T.; Dobkin, D.S.; Rotenberry, J.T.; Schroeder, M.A.; Vander Haegen, W.M.; Van Riper, C., III. Teetering on the edge or too late? Conservation and research issues for avifauna of sagebrush habitats. Condor 2003, 105, 611–634. [Google Scholar] [CrossRef]
- Beck, J.L.; Connelly, J.W.; Wambolt, C.L. Consequences of treating Wyoming big sagebrush to enhance wildlife habitats. Rangel. Ecol. Manag. 2012, 65, 444–455. [Google Scholar] [CrossRef]
- Westover, M.; Baxter, J.; Baxter, R.; Day, C.; Jensen, R.; Petersen, S.; Larsen, R. Assessing Greater sage-grouse selection of brood-rearing habitat using remotely-sensed imagery: Can readily available high-resolution imagery be used to identify brood-rearing habitat across a broad landscape? PLoS ONE 2016, 11, e0156290. [Google Scholar] [CrossRef]
- Knapp, P.A. Cheatgrass (Bromus tectorum L) dominance in the Great Basin Desert: History, persistence, and influences to human activities. Glob. Environ. Chang. 1996, 6, 37–52. [Google Scholar] [CrossRef]
- Walker, B.L.; Naugle, D.E.; Doherty, K.E. Greater sage-grouse population response to energy development and habitat loss. J. Wildl. Manag. 2007, 71, 2644–2654. [Google Scholar] [CrossRef]
- Schroeder, M.A.; Aldridge, C.L.; Apa, A.D.; Bohne, J.R.; Braun, C.E.; Bunnell, S.D.; Connelly, J.W.; Deibert, P.A.; Gardner, S.C.; Hilliard, M.A.; et al. Distribution of sage-grouse in North America. Condor 2004, 106, 363–376. [Google Scholar] [CrossRef]
- Baxter, J.J.; Baxter, R.J.; Dahlgren, D.K.; Larsen, R.T. Resource selection by greater sage-grouse reveals preference for mechanically-altered habitats. Rangel. Ecol. Manag. 2017, 70, 493–503. [Google Scholar] [CrossRef]
- Klebenow, D.A. Sage grouse nesting and brood habitat in Idaho. J. Wildl. Manag. 1969, 33, 649–662. [Google Scholar] [CrossRef]
- Drut, M.S.; Crawford, J.A.; Gregg, M.A. Brood habitat use by sage grouse in Oregon. Great Basin Nat. 1994, 54, 170–176. [Google Scholar]
- Connelly, J.W.; Schroeder, M.A.; Sands, A.R.; Braun, C.E. Guidelines to manage sage grouse populations and their habitats. Wildlife Soc. Bull. 2000, 28, 967–985. [Google Scholar]
- Smith, K.T.; Beck, J.L.; Kirol, C.P. Reproductive state leads to intraspecific habitat partitioning and survival differences in greater sage-grouse: Implications for conservation. Wildl. Res. 2018. [Google Scholar] [CrossRef]
- Connelly, J.W.; Hagen, C.A.; Schroeder, M.A. Characteristics and dynamics of greater sage-grouse populations. In Greater Sage-Grouse: Ecology and Conservation of a Landscape Species and Its Habitats; Connelly, S.T.K.a.J.W., Ed.; University of California Press: Berkeley, CA, USA, 2011; Volume 38, pp. 53–67. [Google Scholar]
- Canfield, R.H. Application of the Line Interception Method in Sampling Range Vegetation. J. For. 1941, 39, 388–394. [Google Scholar] [CrossRef]
- Hanley, T.A. A Comparison of the Line-Interception and Quadrat Estimation Methods of Determining Shrub Canopy Coverage. J. Range Manag. 1978, 31, 60–62. [Google Scholar] [CrossRef] [Green Version]
- Boyd, C.S.; Bates, J.D.; Miller, R.F. The Influence of Gap Size on Sagebrush Cover Estimates with the Use of Line Intercept Technique. Rangel. Ecol. Manag. 2007, 60, 199–202. [Google Scholar] [CrossRef]
- Seefeldt, S.S.; Booth, D.T. Measuring Plant Cover in Sagebrush Steppe Rangelands: A Comparison of Methods. Environ. Manag. 2006, 37, 703–711. [Google Scholar] [CrossRef]
- Hulet, A.; Roundy, B.A.; Petersen, S.L.; Jensen, R.R.; Bunting, S.C. Assessing the Relationship between Ground Measurements and Object-Based Image Analysis of Land Cover Classes in Pinyon and Juniper Woodlands. Photogramm. Eng. Remote Sens. 2013, 79, 799–808. [Google Scholar] [CrossRef]
- NRCS. NRCS National Resources Conservation Service. Available online: https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=435 (accessed on 6 July 2018).
- Miller, R.F.; Eddleman, L. Spatial and Temporal Changes of Sage Grouse Habitat in the Sagebrush Biome; Utah State University: Logan, UT, USA, 2000. [Google Scholar]
- Tisdale, E. The sagebrush-grass region: A review of the ecological literature [North America]. Idaho. For. 1981, 33, 31. [Google Scholar]
- Griner, L.A. A Study of the Sage Grouse (Centrocercus Urophasianus), with Special Reference to Life History, Habitat Requirements, and Numbers and Distribution; Utah State University: Logan, UT, USA, 1939. [Google Scholar]
- Bunnell, K.D. Ecological Factors Limiting Sage Grouse Recovery and Expansion in Strawberry Valley; Utah Brigham Young University: Provo, UT, USA, 2000. [Google Scholar]
- Peck, R.D. Seasonal Habitat Selection by Greater Sage Grouse in Strawberry Valley Utah; Brigham Young University: Provo, UT, USA, 2011. [Google Scholar]
- Baxter, R.J.; Bunnell, K.D.; Flinders, J.T.; Mitchell, D.L. Impacts of predation on greater sage-grouse in Strawberry Valley, Utah. In Proceedings of the 72nd North American Wildlife and Natural Resources Conference, Portland, OR, USA, 20–24 March 2007. [Google Scholar]
- Baxter, R.J.; Flinders, J.T.; Mitchell, D.L. Survival, movements, and reproduction of translocated greater sage-grouse in Strawberry Valley, Utah. J. Wildl. Manag. 2008, 72, 179–186. [Google Scholar] [CrossRef]
- Oyler-McCance, S.J.; Taylor, S.E.; Quinn, T.W. A multilocus population genetic survey of the greater sage-grouse across their range. Mol. Ecol. 2005, 14, 1293–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahlgren, D.K.; Larsen, R.T.; Danvir, R.; Wilson, G.; Thacker, E.T.; Black, T.A.; Naugle, D.E.; Connelly, J.W.; Messmer, T.A. Greater sage-grouse and range management: Insights from a 25-year case study in Utah and Wyoming. Rangel. Ecol. Manag. 2015, 68, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Fraser, R.H.; Olthof, I.; Lantz, T.C.; Schmitt, C. UAV photogrammetry for mapping vegetation in the low-Arctic. Arct. Sci. 2016, 2, 79–102. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, J.J.; Glenn, N.F.; Sankey, T.T.; Derryberry, D.R.; Anderson, M.O.; Hruska, R.C. Small-footprint Lidar Estimations of Sagebrush Canopy Characteristics. Photogramm. Eng. Remote Sens. 2011, 77, 521–530. [Google Scholar] [CrossRef]
- Streutker, D.R.; Glenn, N.F. LiDAR measurement of sagebrush steppe vegetation heights. Remote Sens. Environ. 2006, 102, 135–145. [Google Scholar] [CrossRef]
- Glenn, N.F.; Spaete, L.P.; Sankey, T.T.; Derryberry, D.R.; Hardegree, S.P.; Mitchell, J.J. Errors in LiDAR-derived shrub height and crown area on sloped terrain. J. Arid Environ. 2011, 75, 377–382. [Google Scholar] [CrossRef]
Camera | |
CMOS | 1″ |
Megapixels | 20 |
Lens | F/2.8-11 |
FOV | 77° |
Electrical Rolling Shutter | 8-1/8000 s |
Resolution | 5472 × 3648 |
ISO range | 100–12,800 |
Aircraft | |
Takeoff weight | 907 g |
Max flight time | 31 min |
Max Speed | 72 kph |
Height AGL (m) | Flight | Time | Resolution (cm) |
---|---|---|---|
30.5 | Single Pass/Continuous | 46 min 14 s | 0.71 |
Double Pass/Continuous | 91 min 26 s | 0.76 | |
Single Pass/Safe | 122 min 19 s | 0.71 | |
45 | Single Pass/Continuous | 23 min 26 s | 1.06 |
Double Pass/Continuous | 46 min 2 s | 1.14 | |
Single Pass/Safe | 62 min 29 s | 1.06 | |
75 | Single Pass/Continuous | 11 min 30 s | 1.77 |
Double Pass/Continuous | 21 min 20 s | 1.9 | |
Single Pass/Safe | 30 min 58 s | 1.77 | |
120 | Single Pass/Continuous | 6 min 55 s | 2.79 |
Double Pass/Continuous | 11 min 45 s | 2.91 | |
Single Pass/Safe | 17 min 30 s | 2.79 |
Height AGL (m) | Flight | # of Images | Processing Time (Minutes) | Average DSM GSD (cm) | Average DTM/Height GSD (cm) | RMSE (Mosaic) | RMSE (Height) | Plant Height R2 | DTM R2 |
---|---|---|---|---|---|---|---|---|---|
30.5 | Single Continuous b | 1244 | 2453 | 0.62 | 3 | Sub 1: <0.001 Sub 2: 0.0678 Sub 3: <0.001 | Sub 1: 0.05 Sub 2: <0.001 Sub 3: <0.001 | 0.5851 | 0.9695 |
Double Continuous c | 2402 | 3210 | 0.69 | 3.4 | 0.5656 | 0.0127 | 0.4319 | 0.9195 | |
Single Safe b | 1251 | 2099 | 0.6 | 3 | Sub 1: <0.001 Sub 2: <0.001 Sub 3: <0.001 | Sub 1: <0.001 Sub 2: 0.005 Sub 3: <0.001 | 0.4711 | 0.8811 | |
45 | Single Continuous | 567 | 1232 | 0.98 | 4.9 | 0.142 | 0.015 | 0.5204 | 0.9281 |
Double Continuous a | 1188 | 1425 | 1.11 | 5.5 | Sub 1: <0.001 Sub 2: <0.001 | Sub 1: <0.001 Sub 2: 0.03636 | 0.4244 | 0.9591 | |
Single Safe | 567 | 1212 | 1 | 4.9 | 0.0604 | 0.0095 | 0.5774 | 0.9769 | |
75 | Single Continuous | 240 | 570 | 1.74 | 8.7 | 0.1442 | 0.011 | 0.482 | 0.964 |
Double Continuous | 481 | 920 | 1.97 | 9.8 | 0.0655 | 0.0506 | 0.5631 | 0.9948 | |
Single Safe | 239 | 473 | 1.72 | 8.5 | 0.0713 | 0.0957 | 0.5515 | 0.9914 | |
120 | Single Continuous | 111 | 262 | 2.74 | 13.7 | 0.076 | 0.112 | 0.5297 | 0.9842 |
Double Continuous | 219 | 681 | 3.13 | 15.6 | 0.0417 | 0.037 | 0.5815 | 0.9777 | |
Single Safe | 111 | 314 | 2.86 | 14.3 | 0.074 | 0.105 | 0.6162 | 0.9849 |
Height AGL (m) | Flight | Uncorrected Average Difference Shrub Height (m) | Uncorrected SE | Corrected Average Difference Shrub Height (m) | Corrected SE |
---|---|---|---|---|---|
30.5 | Single Continuous b | 0.1559 | 0.012 | 0.0856 | 0.0118 |
Double Continuous c | 0.1154 | 0.0216 | 0.1311 | 0.0159 | |
Single Safe b | 0.1372 | 0.0147 | 0.1208 | 0.0132 | |
45 | Single Continuous | 0.183 | 0.013 | 0.106 | 0.0123 |
Double Continuous a | 0.2427 | 0.0153 | 0.135 | 0.0152 | |
Single Safe | 0.2195 | 0.0127 | 0.0849 | 0.0121 | |
75 | Single Continuous | 0.1923 | 0.0133 | 0.1191 | 0.0128 |
Double Continuous | 0.283 | 0.0146 | 0.105 | 0.0101 | |
Single Safe | 0.2501 | 0.0133 | 0.1063 | 0.108 | |
120 | Single Continuous | 0.219 | 0.0128 | 0.1034 | 0.0123 |
Double Continuous | 0.3133 | 0.0142 | 0.096 | 0.0107 | |
Single Safe | 0.2929 | 0.014 | 0.0935 | 0.0094 |
Points Within a: | Percent Within: | ||||||||
---|---|---|---|---|---|---|---|---|---|
20 cm | 15 cm | 10 cm | 5 cm | 20 cm | 15 cm | 10 cm | 5 cm | ||
120 | Single Continuous | 60 | 58 | 52 | 29 | 86.96 | 84.06 | 75.36 | 42.03 |
Single Safe | 60 | 54 | 46 | 27 | 86.96 | 78.26 | 66.67 | 39.13 | |
Double Continuous | 59 | 54 | 41 | 27 | 85.51 | 78.26 | 59.42 | 39.13 | |
75 | Single Continuous | 55 | 47 | 37 | 23 | 79.71 | 68.12 | 53.62 | 33.33 |
Single Safe | 61 | 57 | 41 | 20 | 88.41 | 82.61 | 59.42 | 28.99 | |
Double Continuous | 64 | 50 | 38 | 24 | 92.75 | 72.46 | 55.07 | 34.78 | |
45 | Single Continuous | 59 | 53 | 44 | 25 | 85.51 | 76.81 | 63.77 | 36.23 |
Single Safe | 62 | 59 | 52 | 37 | 89.86 | 85.51 | 75.36 | 53.62 | |
Double Continuous b | 52 | 43 | 33 | 22 | 80.00 | 66.15 | 50.77 | 33.85 | |
30.5 | Single Continuous | 64 | 60 | 50 | 33 | 92.75 | 86.96 | 72.46 | 47.83 |
Single Safe | 57 | 52 | 41 | 22 | 82.61 | 75.36 | 59.42 | 31.88 | |
Double Continuous c | 49 | 44 | 33 | 19 | 81.67 | 73.33 | 55.00 | 31.67 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Howell, R.G.; Jensen, R.R.; Petersen, S.L.; Larsen, R.T. Measuring Height Characteristics of Sagebrush (Artemisia sp.) Using Imagery Derived from Small Unmanned Aerial Systems (sUAS). Drones 2020, 4, 6. https://doi.org/10.3390/drones4010006
Howell RG, Jensen RR, Petersen SL, Larsen RT. Measuring Height Characteristics of Sagebrush (Artemisia sp.) Using Imagery Derived from Small Unmanned Aerial Systems (sUAS). Drones. 2020; 4(1):6. https://doi.org/10.3390/drones4010006
Chicago/Turabian StyleHowell, Ryan G., Ryan R. Jensen, Steven L. Petersen, and Randy T. Larsen. 2020. "Measuring Height Characteristics of Sagebrush (Artemisia sp.) Using Imagery Derived from Small Unmanned Aerial Systems (sUAS)" Drones 4, no. 1: 6. https://doi.org/10.3390/drones4010006
APA StyleHowell, R. G., Jensen, R. R., Petersen, S. L., & Larsen, R. T. (2020). Measuring Height Characteristics of Sagebrush (Artemisia sp.) Using Imagery Derived from Small Unmanned Aerial Systems (sUAS). Drones, 4(1), 6. https://doi.org/10.3390/drones4010006