Cattle Detection Using Oblique UAV Images
Abstract
1. Introduction
2. Material and Methods
2.1. Dataset
2.2. Experimental Setup
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barbedo, J.G.A.; Koenigkan, L.V.; Santos, P.M.; Ribeiro, A.R.B. Counting Cattle in UAV Images—Dealing with Clustered Animals and Animal/Background Contrast Changes. Sensors 2020, 20, 2126. [Google Scholar] [CrossRef] [PubMed]
- Goolsby, J.A.; Jung, J.; Landivar, J.; McCutcheon, W.; Lacewell, R.; Duhaime, R.; Baca, D.; Puhger, R.; Hasel, H.; Varner, K.; et al. Evaluation of Unmanned Aerial Vehicles (UAVs) for detection of cattle in the Cattle Fever Tick Permanent Quarantine Zone. Subtrop. Agric. Environ. 2016, 67, 24–27. [Google Scholar]
- Barbedo, J.G.A.; Koenigkan, L.V.; Santos, T.T.; Santos, P.M. A Study on the Detection of Cattle in UAV Images Using Deep Learning. Sensors 2019, 19, 5436. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Wang, W.; Falzon, G.; Kwan, P.; Guo, L.; Chen, G.; Tait, A.; Schneider, D. Automated cattle counting using Mask R-CNN in quadcopter vision system. Comput. Electron. Agric. 2020, 171, 105300. [Google Scholar] [CrossRef]
- Xu, B.; Wang, W.; Falzon, G.; Kwan, P.; Guo, L.; Sun, Z.; Li, C. Livestock classification and counting in quadcopter aerial images using Mask R-CNN. Int. J. Remote Sens. 2020, 41, 1–22. [Google Scholar] [CrossRef]
- Andrew, W.; Gao, J.; Mullan, S.; Campbell, N.; Dowsey, A.W.; Burghardt, T. Visual Identification of Individual Holstein-Friesian Cattle via Deep Metric Learning. arXiv 2020, arXiv:2006.09205. [Google Scholar]
- Mufford, J.T.; Hill, D.J.; Flood, N.J.; Church, J.S. Use of unmanned aerial vehicles (UAVs) and photogrammetric image analysis to quantify spatial proximity in beef cattle. J. Unmanned Veh. Syst. 2019, 7, 194–206. [Google Scholar] [CrossRef]
- Nyamuryekung’e, S.; Cibils, A.; Estell, R.; Gonzalez, A. Use of an Unmanned Aerial Vehicle—Mounted Video Camera to Assess Feeding Behavior of Raramuri Criollo Cows. Rangel. Ecol. Manag. 2016, 69, 386–389. [Google Scholar] [CrossRef]
- Longmore, S.; Collins, R.; Pfeifer, S.; Fox, S.; Mulero-Pázmány, M.; Bezombes, F.; Goodwin, A.; Juan Ovelar, M.; Knapen, J.; Wich, S. Adapting astronomical source detection software to help detect animals in thermal images obtained by unmanned aerial systems. Int. J. Remote Sens. 2017, 38, 2623–2638. [Google Scholar] [CrossRef]
- Andrew, W.; Greatwood, C.; Burghardt, T. Aerial Animal Biometrics: Individual Friesian Cattle Recovery and Visual Identification via an Autonomous UAV with Onboard Deep Inference. arXiv 2019, arXiv:1907.05310v1. [Google Scholar]
- Shao, W.; Kawakami, R.; Yoshihashi, R.; You, S.; Kawase, H.; Naemura, T. Cattle detection and counting in UAV images based on convolutional neural networks. Int. J. Remote Sens. 2020, 41, 31–52. [Google Scholar] [CrossRef]
- Chamoso, P.; Raveane, W.; Parra, V.; González, A. UAVs Applied to the Counting and Monitoring of Animals. Advances in Intelligent Systems and Computing. Adv. Intell. Syst. Comput. 2014, 291, 71–80. [Google Scholar]
- Rahnemoonfar, M.; Dobbs, D.; Yari, M.; Starek, M. DisCountNet: Discriminating and Counting Network for Real-Time Counting and Localization of Sparse Objects in High-Resolution UAV Imagery. Remote Sens. 2019, 11, 1128. [Google Scholar] [CrossRef]
- Rivas, A.; Chamoso, P.; González-Briones, A.; Corchado, J. Detection of Cattle Using Drones and Convolutional Neural Networks. Sensors 2018, 18, 2048. [Google Scholar] [CrossRef] [PubMed]
- Barbedo, J.G.A.; Koenigkan, L.V. Perspectives on the use of unmanned aerial systems to monitor cattle. Outlook Agric. 2018, 47, 214–222. [Google Scholar] [CrossRef]
- Sun, Y.; Yi, S.; Hou, F.; Luo, D.; Hu, J.; Zhou, Z. Quantifying the Dynamics of Livestock Distribution by Unmanned Aerial Vehicles (UAVs): A Case Study of Yak Grazing at the Household Scale. Rangel. Ecol. Manag. 2020, 73, 642–648. [Google Scholar] [CrossRef]
- Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 2018, 106, 249–259. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. arXiv 2017, arXiv:1610.02357v3. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Miami, FL, USA, 2009. [Google Scholar]
Size | # Images in Each Cattle and Non-Cattle Classes |
---|---|
224 × 224 | 276 |
112 × 112 | 856 |
56 × 56 | 1754 |
28 × 28 | 3530 |
14 × 14 | 8984 |
Distance | % Total Number of Animals | % Total Number of Blocks with Animals |
---|---|---|
30–50 m | 37 | 65 |
50–100 m | 20 | 18 |
100–250 m | 43 | 17 |
over 250 m | - | - |
Block Size | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|
224 × 224 | 0.87 | 0.92 | 0.87 | 0.87 |
0.85 | 0.85 | 0.85 | 0.85 | |
0.81 | 0.79 | 0.81 | 0.82 | |
112 × 112 | 0.87 | 0.87 | 0.95 | 0.87 |
0.85 | 0.84 | 0.87 | 0.85 | |
0.83 | 0.80 | 0.82 | 0.83 | |
56 × 56 | 0.85 | 0.84 | 0.90 | 0.86 |
0.84 | 0.82 | 0.88 | 0.85 | |
0.84 | 0.81 | 0.87 | 0.84 | |
28 × 28 | 0.85 | 0.82 | 0.91 | 0.85 |
0.83 | 0.80 | 0.89 | 0.84 | |
0.81 | 0.77 | 0.88 | 0.83 | |
14 × 14 | 0.71 | 0.70 | 0.78 | 0.71 |
0.67 | 0.65 | 0.76 | 0.70 | |
0.65 | 0.63 | 0.73 | 0.69 |
Distance (m) | 224 × 224 | 112 × 112 | 56 × 56 | 28 × 28 | 14 × 14 |
---|---|---|---|---|---|
30–50 | 0.88 | 0.89 | 0.9 | 0.89 | 0.72 |
50–100 | 0.82 | 0.86 | 0.86 | 0.89 | 0.72 |
100–250 | 0.76 | 0.8 | 0.84 | 0.87 | 0.75 |
Distance (m) | 224 × 224 | 112 × 112 | 56 × 56 | 28 ×28 | 14 × 14 |
---|---|---|---|---|---|
30–50 | 0 | 0 | 0 | 0 | 0 |
50–100 | 6 | 2 | 0 | 0 | 11 |
100–250 | 25 | 18 | 11 | 5 | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbedo, J.G.A.; Koenigkan, L.V.; Santos, P.M. Cattle Detection Using Oblique UAV Images. Drones 2020, 4, 75. https://doi.org/10.3390/drones4040075
Barbedo JGA, Koenigkan LV, Santos PM. Cattle Detection Using Oblique UAV Images. Drones. 2020; 4(4):75. https://doi.org/10.3390/drones4040075
Chicago/Turabian StyleBarbedo, Jayme Garcia Arnal, Luciano Vieira Koenigkan, and Patrícia Menezes Santos. 2020. "Cattle Detection Using Oblique UAV Images" Drones 4, no. 4: 75. https://doi.org/10.3390/drones4040075
APA StyleBarbedo, J. G. A., Koenigkan, L. V., & Santos, P. M. (2020). Cattle Detection Using Oblique UAV Images. Drones, 4(4), 75. https://doi.org/10.3390/drones4040075