Of Course We Fly Unmanned—We’re Women!
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Freeman, B.R.; Huang, W. Strength in diversity. Nature 2014, 513, 305. [Google Scholar] [CrossRef]
- Thomasen, K. Beyond Airspace Safety: A Feminist Perspective on Drone Privacy Regulation. SSRN Electron. J. 2017. [Google Scholar] [CrossRef]
- Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Glendell, M.; McShane, G.; Farrow, L.; James, M.R.; Quinton, J.; Anderson, K.; Evans, M.; Benaud, P.; Rawlins, B.; Morgan, D.; et al. Testing the utility of structure-from-motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion. Earth Surf. Process. Landf. 2017, 42, 1860–1871. [Google Scholar] [CrossRef]
- Joyce, E.K.; Duce, S.; Leahy, S.M.; Leon, J.; Maier, S.W. Principles and practice of acquiring drone-based image data in marine environments. Mar. Freshw. Res. 2019, 70, 952. [Google Scholar] [CrossRef]
- Hernandez-Santin, L.; Rudge, M.L.; Bartolo, R.E.; Erskine, P.D. Identifying Species and Monitoring Understorey from UAS-Derived Data: A Literature Review and Future Directions. Drones 2019, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Levick, R.S.; Whiteside, T.; Loewensteiner, D.A.; Rudge, M.; Bartolo, R. Leveraging TLS as a Calibration and Validation Tool for MLS and ULS Mapping of Savanna Structure and Biomass at Landscape-Scales. Remote Sens. 2021, 13, 257. [Google Scholar] [CrossRef]
- D’hont, B.; Calders, K.; Bartholomeus, H.; Whiteside, T.; Bartolo, R.; Levick, S.; Moorthy, S.M.K.; Terryn, L.; Verbeeck, H. Characterising Termite Mounds in a Tropical Savanna with UAV Laser Scanning. Remote Sens. 2021, 13, 476. [Google Scholar] [CrossRef]
- Clark, L. Gender and Drone Warfare: A Hauntological Perspective, 1st ed.; Routledge: London, UK, 2019. [Google Scholar] [CrossRef]
- Garber, S. Style Guide for NASA History Authors and Editors. 2012. Available online: https://history.nasa.gov/styleguide.html (accessed on 9 February 2021).
- Spender, D. Man Made Language; Routledge & Kegan Paul: London, UK; Boston, MA, USA, 1985. [Google Scholar]
- Larivière, V.; Ni, C.; Gingras, Y.; Cronin, B.; Sugimoto, C. Bibliometrics: Global Gender Disparities in Science. Nature 2013, 504, 211–213. [Google Scholar] [CrossRef]
- Huang, J.A.; Gates, J.; Sinatra, R.; Barabási, A.-L. Historical comparison of gender inequality in scientific careers across countries and disciplines. Proc. Natl. Acad. Sci. USA 2020, 117, 4609–4616. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, J.; Dugdale, H.L.; Radersma, R.; Hinsch, M.; Buehler, D.M.; Saul, J.; Porter, L.; Liker, A.; de Cauwer, I.; Johnson, P.J.; et al. Fewer invited talks by women in evolutionary biology symposia. J. Evol. Biol. 2013, 26, 2063–2069. [Google Scholar] [CrossRef]
- Bennett, K.M.; Younes, N.; Joyce, K.E. Automating Drone Image Processing to Map Coral Reef Substrates Using Google Earth Engine. Drones 2020, 4, 50. [Google Scholar] [CrossRef]
- Windle, E.A.; Poulin, S.K.; Johnston, D.W.; Ridge, J.T. Rapid and Accurate Monitoring of Intertidal Oyster Reef Habitat Using Unoccupied Aircraft Systems and Structure from Motion. Remote Sens. 2019, 11, 2394. [Google Scholar] [CrossRef] [Green Version]
- Brunton, A.E.; Leon, J.X.; Burnett, S.E. Evaluating the Efficacy and Optimal Deployment of Thermal Infrared and True-Colour Imaging When Using Drones for Monitoring Kangaroos. Drones 2020, 4, 20. [Google Scholar] [CrossRef]
- Mapes, L.K.; Pricope, N.G.; Baxley, J.B.; Schaale, L.E.; Danner, R.M. Thermal Imaging of Beach-Nesting Bird Habitat with Unmanned Aerial Vehicles: Considerations for Reducing Disturbance and Enhanced Image Accuracy. Drones 2020, 4, 12. [Google Scholar] [CrossRef]
- Francis, J.R.; Lyons, M.B.; Kingsford, R.T.; Brandis, K.J. Counting Mixed Breeding Aggregations of Animal Species Using Drones: Lessons from Waterbirds on Semi-Automation. Remote Sens. 2020, 12, 1185. [Google Scholar] [CrossRef] [Green Version]
- Bird, N.C.; Dawn, A.H.; Dale, J.; Johnston, D.W. A Semi-Automated Method for Estimating Adélie Penguin Colony Abundance from a Fusion of Multispectral and Thermal Imagery Collected with Unoccupied Aircraft Systems. Remote Sens. 2020, 12, 3692. [Google Scholar] [CrossRef]
- Colloredo-Mansfeld, M.; Laso, F.J.; Arce-Nazario, J. Drone-Based Participatory Mapping: Examining Local Agricultural Knowledge in the Galapagos. Drones 2020, 4, 62. [Google Scholar] [CrossRef]
- Garzon-Lopez, X.C.; Lasso, E. Species Classification in a Tropical Alpine Ecosystem Using UAV-Borne RGB and Hyperspectral Imagery. Drones 2020, 4, 69. [Google Scholar] [CrossRef]
- Joyce, E.K.; Meiklejohn, N.; Mead, P.C.H. Using minidrones to teach geospatial technology fundamentals. Drones 2020, 4, 57. [Google Scholar] [CrossRef]
- Kalacska, M.; Lucanus, O.; Arroyo-Mora, J.P.; Laliberté, É.; Elmer, K.; Leblanc, G.; Groves, A. Accuracy of 3D Landscape Reconstruction without Ground Control Points Using Different UAS Platforms. Drones 2020, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Rogers, R.S.; Manning, I.; Livingstone, W. Comparing the Spatial Accuracy of Digital Surface Models from Four Unoccupied Aerial Systems: Photogrammetry Versus LiDAR. Remote Sens. 2020, 12, 2806. [Google Scholar] [CrossRef]
- Talucci, C.A.; Forbath, E.; Kropp, H.; Alexander, H.D.; DeMarco, J.; Paulson, A.K.; Zimov, N.S.; Zimov, S.; Loranty, M.M. Evaluating Post-Fire Vegetation Recovery in Cajander Larch Forests in Northeastern Siberia Using UAV Derived Vegetation Indices. Remote Sens. 2020, 12, 2970. [Google Scholar] [CrossRef]
- Rudic, E.T.; McCulloch, L.A.; Cushman, K. Comparison of Smartphone and Drone Lidar Methods for Characterizing Spatial Variation in PAI in a Tropical Forest. Remote Sens. 2020, 12, 1765. [Google Scholar] [CrossRef]
- Kislik, C.; Genzoli, L.; Lyons, A.; Kelly, M. Application of UAV Imagery to Detect and Quantify Submerged Filamentous Algae and Rooted Macrophytes in a Non-Wadeable River. Remote Sens. 2020, 12, 3332. [Google Scholar] [CrossRef]
- DiGiacomo, E.A.; Bird, C.N.; Pan, V.G.; Dobroski, K.; Atkins-Davis, C.; Johnston, D.W.; Ridge, J.T. Modeling Salt Marsh Vegetation Height Using Unoccupied Aircraft Systems and Structure from Motion. Remote Sens. 2020, 12, 2333. [Google Scholar] [CrossRef]
- Cillero Castro, C.; Gómez, J.A.D.; Martín, J.D.; Sánchez, B.A.H.; Arango, J.L.C.; Tuya, F.A.C.; Díaz-Varela, R. An UAV and Satellite Multispectral Data Approach to Monitor Water Quality in Small Reservoirs. Remote Sens. 2020, 12, 1514. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joyce, K.E.; Anderson, K.; Bartolo, R.E. Of Course We Fly Unmanned—We’re Women! Drones 2021, 5, 21. https://doi.org/10.3390/drones5010021
Joyce KE, Anderson K, Bartolo RE. Of Course We Fly Unmanned—We’re Women! Drones. 2021; 5(1):21. https://doi.org/10.3390/drones5010021
Chicago/Turabian StyleJoyce, Karen E., Karen Anderson, and Renee E. Bartolo. 2021. "Of Course We Fly Unmanned—We’re Women!" Drones 5, no. 1: 21. https://doi.org/10.3390/drones5010021
APA StyleJoyce, K. E., Anderson, K., & Bartolo, R. E. (2021). Of Course We Fly Unmanned—We’re Women! Drones, 5(1), 21. https://doi.org/10.3390/drones5010021