Singular Zone in Quadrotor Yaw–Position Feedback Linearization
Abstract
:1. Introduction
2. Dynamics and Feedback Linearization in UAV Control
3. Invertibility Analysis
3.1. Necessary and Sufficient Condition to Be Invertible
3.2. Proof of The Invertible Condition
4. Visualize The Singular Zone
5. Switch Controller
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Parameter | Value |
---|---|
mass | 0.429 kg |
gravitational acceleration | |
length of the arm | 0.1785 m |
moment of inertia of the body | |
coefficient of the thrust | |
coefficient of the drag moment |
Appendix B
References
- Mistler, V.; Benallegue, A.; M’Sirdi, N.K. Exact Linearization and Noninteracting Control of a 4 Rotors Helicopter via Dynamic Feedback. In Proceedings of the 10th IEEE International Workshop on Robot and Human Interactive Communication, Paris, France, 18–21 September 2001; ROMAN 2001 (Cat. No.01TH8591). pp. 586–593. [Google Scholar]
- Bolandi, H.; Rezaei, M.; Mohsenipour, R.; Nemati, H.; Smailzadeh, S.M. Attitude Control of a Quadrotor with Optimized PID Controller. ICA 2013, 4, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Bouabdallah, S.; Noth, A.; Siegwart, R. PID vs LQ Control Techniques Applied to an Indoor Micro Quadrotor. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sendai, Japan, 28 September–2 October 2004; Volume 3, pp. 2451–2456. [Google Scholar]
- Martins, L.; Cardeira, C.; Oliveira, P. Feedback Linearization with Zero Dynamics Stabilization for Quadrotor Control. J. Intell. Robot. Syst. 2021, 101, 7. [Google Scholar] [CrossRef]
- Wang, S.; Polyakov, A.; Zheng, G. Quadrotor Stabilization under Time and Space Constraints Using Implicit PID Controller. J. Frankl. Inst. 2022, 359, 1505–1530. [Google Scholar] [CrossRef]
- Bouabdallah, S.; Siegwart, R. Backstepping and Sliding-Mode Techniques Applied to an Indoor Micro Quadrotor. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 2247–2252. [Google Scholar]
- Madani, T.; Benallegue, A. Backstepping Control for a Quadrotor Helicopter. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 3255–3260. [Google Scholar]
- Chen, F.; Lei, W.; Zhang, K.; Tao, G.; Jiang, B. A Novel Nonlinear Resilient Control for a Quadrotor UAV via Backstepping Control and Nonlinear Disturbance Observer. Nonlinear Dyn. 2016, 85, 1281–1295. [Google Scholar] [CrossRef]
- Liu, P.; Ye, R.; Shi, K.; Yan, B. Full Backstepping Control in Dynamic Systems With Air Disturbances Optimal Estimation of a Quadrotor. IEEE Access 2021, 9, 34206–34220. [Google Scholar] [CrossRef]
- Xu, R.; Ozguner, U. Sliding Mode Control of a Quadrotor Helicopter. In Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA, 13–15 December 2006; pp. 4957–4962. [Google Scholar]
- Runcharoon, K.; Srichatrapimuk, V. Sliding Mode Control of Quadrotor. In Proceedings of the 2013 The International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), Konya, Turkey, 9–11 May 2013; pp. 552–557. [Google Scholar]
- Luque-Vega, L.; Castillo-Toledo, B.; Loukianov, A.G. Robust Block Second Order Sliding Mode Control for a Quadrotor. J. Frankl. Inst. 2012, 349, 719–739. [Google Scholar] [CrossRef]
- Xu, L.; Shao, X.; Zhang, W. USDE-Based Continuous Sliding Mode Control for Quadrotor Attitude Regulation: Method and Application. IEEE Access 2021, 9, 64153–64164. [Google Scholar] [CrossRef]
- Ganga, G.; Dharmana, M.M. MPC Controller for Trajectory Tracking Control of Quadcopter. In Proceedings of the 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Kollam, India, 20–21 April 2017; pp. 1–6. [Google Scholar]
- Abdolhosseini, M.; Zhang, Y.M.; Rabbath, C.A. An Efficient Model Predictive Control Scheme for an Unmanned Quadrotor Helicopter. J. Intell. Robot. Syst. 2013, 70, 27–38. [Google Scholar] [CrossRef]
- Alexis, K.; Nikolakopoulos, G.; Tzes, A. Model Predictive Control Scheme for the Autonomous Flight of an Unmanned Quadrotor. In Proceedings of the 2011 IEEE International Symposium on Industrial Electronics, 27–30 June 2011; pp. 2243–2248. [Google Scholar]
- Torrente, G.; Kaufmann, E.; Föhn, P.; Scaramuzza, D. Data-Driven MPC for Quadrotors. IEEE Robot. Autom. Lett. 2021, 6, 3769–3776. [Google Scholar] [CrossRef]
- Ryll, M.; Bulthoff, H.H.; Giordano, P.R. A Novel Overactuated Quadrotor Unmanned Aerial Vehicle: Modeling, Control, and Experimental Validation. IEEE Trans. Contr. Syst. Technol. 2015, 23, 540–556. [Google Scholar] [CrossRef] [Green Version]
- Ryll, M.; Bulthoff, H.H.; Giordano, P.R. Modeling and Control of a Quadrotor UAV with Tilting Propellers. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, St. Paul, MN, USA, 14–18 May 2012; pp. 4606–4613. [Google Scholar]
- Kumar, R.; Nemati, A.; Kumar, M.; Sharma, R.; Cohen, K.; Cazaurang, F. Tilting-Rotor Quadcopter for Aggressive Flight Maneuvers Using Differential Flatness Based Flight Controller; American Society of Mechanical Engineers: Tysons, VA, USA, 2017; p. V003T39A006. [Google Scholar]
- Ahmed, A.M.; Katupitiya, J. Modeling and Control of a Novel Vectored-Thrust Quadcopter. J. Guid. Control. Dyn. 2021, 44, 1399–1409. [Google Scholar] [CrossRef]
- Xu, J.; D’Antonio, D.S.; Saldaña, D. H-ModQuad: Modular Multi-Rotors with 4, 5, and 6 Controllable DOF. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 190–196. [Google Scholar]
- Phong Nguyen, N.; Kim, W.; Moon, J. Observer-Based Super-Twisting Sliding Mode Control with Fuzzy Variable Gains and Its Application to Overactuated Quadrotors. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC), Miami Beach, FL, USA, 17–19 December 2018; pp. 5993–5998. [Google Scholar]
- Convens, B.; Merckaert, K.; Nicotra, M.M.; Naldi, R.; Garone, E. Control of Fully Actuated Unmanned Aerial Vehicles with Actuator Saturation. IFAC-PapersOnLine 2017, 50, 12715–12720. [Google Scholar] [CrossRef]
- Cotorruelo, A.; Nicotra, M.M.; Limon, D.; Garone, E. Explicit Reference Governor Toolbox (ERGT). In Proceedings of the 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI), Palermo, Italy, 10–13 September 2018; pp. 1–6. [Google Scholar]
- Dunham, W.; Petersen, C.; Kolmanovsky, I. Constrained Control for Soft Landing on an Asteroid with Gravity Model Uncertainty. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 5842–5847. [Google Scholar]
- Hosseinzadeh, M.; Garone, E. An Explicit Reference Governor for the Intersection of Concave Constraints. IEEE Trans. Automat. Contr. 2020, 65, 1–11. [Google Scholar] [CrossRef]
- Scholz, G.; Trommer, G.F. Model Based Control of a Quadrotor with Tiltable Rotors. Gyroscopy Navig. 2016, 7, 72–81. [Google Scholar] [CrossRef]
- Taniguchi, T.; Sugeno, M. Trajectory Tracking Controls for Non-Holonomic Systems Using Dynamic Feedback Linearization Based on Piecewise Multi-Linear Models. IAENG Int. J. Appl. Math. 2017, 47, 339–351. [Google Scholar]
- Shen, Z.; Tsuchiya, T. State Drift and Gait Plan in Feedback Linearization Control of A Tilt Vehicle. In Proceedings of the Computer Science & Information Technology (CS & IT), Vienna, Austria, 19 March 2022; Academy & Industry Research Collaboration Center (AIRCC): Chennai, India; Volume 12, pp. 1–17. [Google Scholar]
- Shen, Z.; Tsuchiya, T. Gait Analysis for a Tiltrotor: The Dynamic Invertible Gait. Robotics 2022, 11, 33. [Google Scholar] [CrossRef]
- Das, A.; Subbarao, K.; Lewis, F. Dynamic Inversion of Quadrotor with Zero-Dynamics Stabilization. In Proceedings of the 2008 IEEE International Conference on Control Applications, San Antonio, TX, USA, 3–5 September 2008; pp. 1189–1194. [Google Scholar]
- Ghandour, J.; Aberkane, S.; Ponsart, J.-C. Feedback Linearization Approach for Standard and Fault Tolerant Control: Application to a Quadrotor UAV Testbed. J. Phys. Conf. Ser. 2014, 570, 082003. [Google Scholar] [CrossRef] [Green Version]
- Cowling, I.; Yakimenko, O.; Whidborne, J.; Cooke, A. Direct Method Based Control System for an Autonomous Quadrotor. J. Intell. Robot. Syst. 2010, 60, 285–316. [Google Scholar] [CrossRef]
- Voos, H. Nonlinear Control of a Quadrotor Micro-UAV Using Feedback-Linearization. In Proceedings of the 2009 IEEE International Conference on Mechatronics, Malaga, Spain, 14–17 April 2009; pp. 1–6. [Google Scholar]
- Wie, B. New Singularity Escape/Avoidance Steering Logic for Control Moment Gyro Systems. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, TX, USA, 11 August 2003; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2003. [Google Scholar]
- Sands, T.; Kim, J.; Agrawal, B. Singularity Penetration with Unit Delay (SPUD). Mathematics 2018, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Luukkonen, T. Modelling and Control of Quadcopter. Indep. Res. Proj. Appl. Math. Espoo 2011, 22, 22. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Z.; Tsuchiya, T. Singular Zone in Quadrotor Yaw–Position Feedback Linearization. Drones 2022, 6, 84. https://doi.org/10.3390/drones6040084
Shen Z, Tsuchiya T. Singular Zone in Quadrotor Yaw–Position Feedback Linearization. Drones. 2022; 6(4):84. https://doi.org/10.3390/drones6040084
Chicago/Turabian StyleShen, Zhe, and Takeshi Tsuchiya. 2022. "Singular Zone in Quadrotor Yaw–Position Feedback Linearization" Drones 6, no. 4: 84. https://doi.org/10.3390/drones6040084
APA StyleShen, Z., & Tsuchiya, T. (2022). Singular Zone in Quadrotor Yaw–Position Feedback Linearization. Drones, 6(4), 84. https://doi.org/10.3390/drones6040084