Ice Accretion on Fixed-Wing Unmanned Aerial Vehicle—A Review Study
Abstract
:1. Introduction
2. Methods of Studying Ice Accretion on a UAV
2.1. Analytical Modelling
2.2. Field Measurements
2.3. Lab Experiments
2.4. Numerical Simulation
3. Effect of Environmental, Geometrical, and Material Conditions on Ice Accretion
3.1. Effect of Atmospheric Temperature
3.2. Effect of LWC and MVD
3.3. Effect of Reynolds Number (Re)
3.4. Effect of Free Stream Air Velocity )
3.5. Effect of Angle of Attack
3.6. Effect of Geometric Parameters
3.7. Effect of Material Properties
4. Aerodynamic Performance Penalties
5. Effect of Icing on the Structural Integrity of UAVs
6. Ice Detection and Ice Mitigation Techniques
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singhal, G.; Bansod, B.S.; Mathew, L. Unmanned Aerial Vehicle Classification, Applications and Challenges: A Review. Preprints 2018, 2018110601. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Ghonge, M.; Jawandhiya, P. Review of Unmanned Aircraft System (UAS). Int. J. Adv. Res. Comput. Eng. Technol. 2013, 2, 1646–1657. [Google Scholar] [CrossRef]
- Alvarado, E. Drone Application Report 2021. 2021. Available online: https://droneii.com/237-ways-drone-applications-revolutionize-business (accessed on 15 January 2022).
- Weatherington, D.; Deputy, U. Unmanned Aircraft Systems Roadmap, 2005–2030; U.S. Department of Defense: Washington, DC, USA, 2005.
- Curry, J.; Maslanik, J.; Holland, G.; Pinto, J. Applications of Aerosondes in the Arctic. Bull. Am. Meteorol. Soc.-Bull. Am. Meteorol. Soc. 2004, 85, 1855–1861. [Google Scholar] [CrossRef] [Green Version]
- Clark, D.G.; Ford, J.D.; Tabish, T. What Role Can Unmanned Aerial Vehicles Play in Emergency Response in the Arctic: A Case Study from Canada. PLoS ONE 2018, 13, e0205299. [Google Scholar] [CrossRef] [PubMed]
- CAA. CAP 1036: Global Fatal Accident Review 2002 to 2011. In Civil Aviation Authority 1036; CAA: Los Angeles, CA, USA, 2013; pp. 1–134. [Google Scholar]
- Haulman, D.L. US Unmanned Aerical Vehicles in Combat 1991–2003; Air Force Historical Research Agency: Montgomery, AL, USA, 2003. [Google Scholar]
- Peck, L.; Ryerson, C.C. Army Aircraft Icing; Technical Report ERDC/CRREL TR-02-13; US Army Corps of Engineers: Washington, DC, USA, 2002. [Google Scholar]
- Koenig, G.; Ryerson, C.; Larsson, J.; Reehorst, A. Effect of Variable LWC on Ice Shape in the NASA-GRC IRT. In Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 2003. [Google Scholar]
- Li, N.; Liu, X.; Yu, B.; Li, L.; Xu, J.; Tan, Q. Study on the environmental adaptability of lithium-ion battery powered UAV under extreme temperature conditions. Energy 2021, 219, 119481. [Google Scholar] [CrossRef]
- Wang, B.H.; Wang, D.B.; Ali, Z.A.; Ting Ting, B.; Wang, H. An overview of various kinds of wind effects on unmanned aerial vehicle. Meas. Control 2019, 52, 731–739. [Google Scholar] [CrossRef]
- How Is an UAV Affected by In-Flight Icing and Can We Simulate It Accurately? Available online: https://uavicinglab.com/2021/05/28/how-is-an-uav-affected-by-in-flight-icing-and-can-we-simulate-it-accurately/ (accessed on 15 January 2022).
- Avery, A.S. Ice Accretion on Small Unmanned Aircraft; Oklahoma State University: Stillwater, OK, USA, 2019. [Google Scholar]
- Hacker, P.T.; Dorsch, R.G. A Summary of Meteorological Conditions Associated with Aircraft Icing and a Proposed Method of Selecting Design Criterions for Ice-Protection Equipment; National Advisory Committee for Aeronautics: Washington, DC, USA, 1951.
- Siquig, R.A. Impact of Icing on Unmanned Aerial Vehicle (UAV) Operations; Naval Environmental Prediction Research Facility: Monterey, CA, USA, 1990. [Google Scholar]
- Li, L.; Liu, Y.; Zhang, Z.; Hu, H. Effects of thermal conductivity of airframe substrate on the dynamic ice accretion process pertinent to UAS inflight icing phenomena. Int. J. Heat Mass Transf. 2019, 131, 1184–1195. [Google Scholar] [CrossRef]
- Lynch, F.; Khodadoust, A. Effects of ice accretions on aircraft aerodynamics. Prog. Aerosp. Sci. 2001, 37, 669–767. [Google Scholar] [CrossRef]
- Bragg, M.B.; Broeren, A.P.; Blumenthal, L.A. Iced-airfoil aerodynamics. Prog. Aerosp. Sci. 2005, 41, 323–362. [Google Scholar] [CrossRef]
- Makkonen, L.E. Ice and Construction, 1st ed.; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Makkonen, L. Modeling of Ice Accretion on Wires. J. Appl. Meteorol. Climatol. 1984, 23, 929–939. [Google Scholar] [CrossRef]
- Makkonen, L.; Laakso, T.; Marjaniemi, M.; Finstad, K. Modelling and Prevention of Ice Accretion on Wind Turbines. Wind. Eng. 2001, 25, 3–21. [Google Scholar] [CrossRef]
- Farzaneh, M. Atmospheric Icing of Power Networks; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Finstad, K.J. Numerical and Experimental Studies of Rime Ice Accretion on Cylinders and Airfoils; University of Alberta: Edmonton, AB, Canada, 1986. [Google Scholar]
- Szilder, K.; McIlwain, S. In-flight icing of UAVs—The influence of flight speed coupled with chord size. Can. Aeronaut. Space J. 2012, 58, 83–94. [Google Scholar] [CrossRef]
- Avery, A.S.; Jacob, J.D. Evaluation of Low Altitude Icing Conditions for Small Unmanned Aircraft. In Proceedings of the 9th AIAA Atmospheric and Space Environments Conference, Denver, CO, USA, 5–9 June 2017; p. 3929. [Google Scholar]
- Williams, N.B.A.; Brian, G.; Ol, M. The effect of icing on small unmanned aircraft low Reynolds number airfoils. In Proceedings of the 17th Australian International Aerospace Congress (AIAC), Melbourne, Australia, 26–28 February 2017. [Google Scholar]
- Matiychyk, L.; Suvorova, N.; Tereshchenko, D.; Plakhotniuk, I.; Trachuk, K.; Komarova, K. Influence of Icing on Aircraft Performance of Unmanned Aerial Vehicle M-10-2 “Oko”. Proc. Natl. Aviat. Univ. 2017, 4, 52–59. [Google Scholar] [CrossRef]
- Siddique, M.A. An Experimental Study on the Effects of Adverse Weathers on the Flight Performance of an Unmanned-Aerial-System (UAS). Ph.D. Thesis, Iowa State University, Ames, Iowa, 2021. [Google Scholar] [CrossRef]
- Gray, V.H. Aerodynamic Effects Caused by Icing of an Unswept NACA 65A004 Airfoil; National Advisory Commitee for Aeronautics, Lewis Flight Propulsion Laboratory: Cleveland, OH, USA, 1958.
- Shin, J.; Bond, T.H. Experimental and computational ice shapes and resulting drag increase for a NACA 0012 airfoil. In Proceedings of the Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows, Long Beach, CA, USA, 13–15 January 1992. [Google Scholar]
- Shin, J.; BOND, T. Results of an icing test on a NACA 0012 airfoil in the NASA Lewis icing research tunnel. In Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1992; p. 647. [Google Scholar]
- Potapczuk, M.G. Aircraft Icing Research at NASA Glenn Research Center. J. Aerosp. Eng. 2013, 26, 260–276. [Google Scholar] [CrossRef]
- Cain, G.E.; Yurczyk, R.F.; Belter, D.L.; Chintamani, S.H. Boeing Research Aerodynamic/Icing Tunnel Capabilities and Calibration; SAE Technical Paper; SAE International: Warrendale, PA, USA, 1994. [Google Scholar] [CrossRef]
- Oleskiw, M.; Hyde, F.; Penna, P. In-flight icing simulation capabilities of NRC’s altitude icing wind tunnel. In Proceedings of the 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2001. [Google Scholar]
- Bansmer, S.E.; Baumert, A.; Sattler, S.; Knop, I.; Leroy, D.; Schwarzenboeck, A.; Jurkat-Witschas, T.; Voigt, C.; Pervier, H.; Esposito, B. Design, construction and commissioning of the Braunschweig Icing Wind Tunnel. Atmos. Meas. Tech. 2018, 11, 3221–3249. [Google Scholar] [CrossRef] [Green Version]
- Hammond, D. Cranfield University Icing Wind Tunnel. In Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 2003; p. 901. [Google Scholar]
- Vecchione, L.; De Matteis, P. An Overview of the CIRA Icing Wind Tunnel. In Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 2003; p. 900. [Google Scholar]
- Fengler, M. Study of Propeller Icing Hazard in Mini-UAV Aviation; Meteomatics GmbH Technical Report; Meteomatics GmbH: Berlin, Germany, 2017. [Google Scholar]
- Kind, R.; Potapczuk, M.; Feo, A.; Golia, C.; Shah, A. Experimental and computational simulation of in-flight icing phenomena. Prog. Aerosp. Sci. 1998, 34, 257–345. [Google Scholar] [CrossRef]
- Messinger, B.L. Equilibrium Temperature of an Unheated Icing Surface as a Function of Air Speed. J. Aeronaut. Sci. 1953, 20, 29–42. [Google Scholar] [CrossRef]
- Wright, W. User’s Manual for LEWICE Version 3.2; NTRS—NASA Technical Reports Server (NASA/CR—2008-214255 November 2008); NASA Technical Reports Server (NTRS): Cleveland, OH, USA, 2008.
- Hedde, T.; Guffond, D. ONERA three-dimensional icing model. AIAA J. 1995, 33, 1038–1045. [Google Scholar] [CrossRef]
- Trontin, P.; Kontogiannis, A.; Blanchard, G.; Villedieu, P. Description and assessment of the new ONERA 2D icing suite IGLOO2D. In Proceedings of the 9th AIAA Atmospheric and Space Environments Conference, Denver, CO, USA, 5–9 June 2017. [Google Scholar] [CrossRef]
- Mingione, G.; Brandi, V.; Saporiti, A. A 3D ice accretion simulation code. In Proceedings of the 37th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 11–14 January 1999; p. 247. [Google Scholar]
- Paraschivoiu, I.; Saeed, F. Ice accretion simulation code canice. In Proceedings of the International Areospace Symposium, Bucharest, Romania, 19–20 October 2001; pp. 81–86. [Google Scholar]
- Szilder, K.; Lozowski, E.P. Simulation of airfoil icing with a novel morphogenetic model. J. Aerosp. Eng. 2005, 18, 102–110. [Google Scholar] [CrossRef]
- Morency, F.; Beaugendre, H.; Baruzzi, G.; Habashi, W. FENSAP-ICE-A comprehensive 3D simulation system for in-flight icing. In Proceedings of the 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, USA, 11–14 June 2001; p. 2566. [Google Scholar]
- Tran, P.; Barruzi, G.; Tremblay, F.; Habashi, W.; Petersen, P.; Ligget, M.; Vos, J.; Benquet, P.; Fiorucci, S. FENSAP-ICE applications to unmanned aerial vehicles (UAV). In Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 5–8 January 2004. [Google Scholar]
- Kind, R.J. Ice Accretion Simulation Evaluation Test (Essai d’evaluation de la simulation de l’accumulation de glace); North Atlantic Treaty Organization RTO Technical Rept. TR-038; Nato Research and Technology Organization: Neuilly-Sur-Seine, France, 2001; p. 32. [Google Scholar]
- AC-9C Aircraft Icing Technology Committee. Icing Wind Tunnel Interfacility Comparison Tests; Aerospace Information Report, AIR5666, SAE Aerospace; SAE International: Warrendale, PA, USA, 2012. [Google Scholar] [CrossRef]
- Hann, R. UAV Icing: Comparison of LEWICE and FENSAP-ICE for Ice Accretion and Performance Degradation. In Proceedings of the 2018 Atmospheric and Space Environments Conference, Atlanta, Georgia, 25–29 June 2018. [Google Scholar]
- Jeck, R.K. Icing Design Envelopes (14 CFR Parts 25 and 29, Appendix C) Converted to a Distance-Based; Federal Aviation Administration, U.S. Department of Transportation: Washington, DC, USA, 2002.
- Hann, R. UAV Icing: Ice Accretion Experiments and Validation In Proceedings of the International Conference on Icing of Aircraft, Engines, and Structures, Minneapolis, MN, USA, 17–21 June 2019.
- Hann, R.; Johansen, T.A. UAV icing: The influence of airspeed and chord length on performance degradation. Aircr. Eng. Aerosp. Technol. 2021, 93, 832–841. [Google Scholar] [CrossRef]
- Hann, R. Atmospheric Ice Accretions, Aerodynamic Icing Penalties, and Ice Protection Systems on Unmanned Aerial Vehicles. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2020. [Google Scholar]
- Hann, R.; Hearst, R.J.; Sætran, L.; Bracchi, T. Experimental and Numerical Icing Penalties of an S826 Airfoil at Low Reynolds Numbers. Aerospace 2020, 7, 46. [Google Scholar] [CrossRef]
- Tummers, M.J.; Steunebrink, M. Effect of surface roughness on heat transfer in Rayleigh-Bénard convection. Int. J. Heat Mass Transf. 2019, 139, 1056–1064. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Sun, C.; Bao, Y.; Zhou, Q. How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 2018, 836, R2. [Google Scholar] [CrossRef]
- Myers, T.G. Extension to the Messinger Model for Aircraft Icing. AIAA J. 2001, 39, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Dukhan, N.; Va, G., Jr.; Masiulaniec, K.; DeWitt, K. Convective heat transfer coefficients from various types of ice roughened surfaces in parallel and accelerating flow. In Proceedings of the 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 15–18 January 1996. [Google Scholar]
- Henry, R.C.; Guffond, D.; Garnier, F.; Bouveret, A. Heat Transfer Coefficient Measurement on Iced Airfoil in Small Icing Wind Tunnel. J. Thermophys. Heat Transf. 2000, 14, 348–354. [Google Scholar] [CrossRef]
- Koenig, G.; Ryerson, C.; Kmiec, R. UAV icing flight simulation. In Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 14–17 January 2002. [Google Scholar]
- Szilder, K.; McIlwain, S. In-Flight Icing of UAVs—The Influence of Reynolds Number on the Ice Accretion Process; SAE Technical Paper 2011-01-2572; SAE International: Warrendale, PA, USA, 2011. [Google Scholar] [CrossRef]
- Szilder, K.; Yuan, W. The Influence of Ice Accretion on the Aerodynamic Performance of a UAS Airfoil. In Proceedings of the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 5–9 January 2015. [Google Scholar] [CrossRef]
- Szilder, K.; Yuan, W. In-flight icing on unmanned aerial vehicle and its aerodynamic penalties. Prog. Flight Phys. 2017, 9, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Krøgenes, J.; Brandrud, L.; Hann, R.; Bartl, J.; Bracchi, T.; Sætran, L. Aerodynamic Performance of the NREL S826 Airfoil in Icing Conditions. Wind. Energ. Sci. Discuss. 2017, 2017, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Fajt, N.; Hann, R.; Lutz, T. The Influence of Meteorological Conditions on the Icing Performance Penalties on a UAV Airfoil. In Proceedings of the 8th European Conference for Aeronautics and Space Sciences (EUCASS), Madrid, Spain; 2019. [Google Scholar]
- Li, H.; Zhang, Y.; Chen, H. Optimization design of airfoils under atmospheric icing conditions for UAV. Chin. J. Aeronaut. 2021, 35, 118–133. [Google Scholar] [CrossRef]
- Cistriani, L. Falco UAV Low Reynolds Airfoil Design and Testing at Galileo Avionica. In UAV Design Processes/Design Criteria for Structures; Galileo Avionica Ronchi Dei Legionari (Italy) Simulators and Uav Business Unit; RTO: Neuilly-sur-Seine, France, 2007. [Google Scholar]
- Bottyán, Z. In-flight icing characteristics of unmanned aerial vehicles during special atmospheric condition over the Carpathian-basin. Landsc. Environ. 2013, 7, 74–80. [Google Scholar]
- Bottyán, Z. Estimation of in-flight icing characteristics of UAVs during different meteorological conditions. In Proceedings of the 8th International Conference on Intelligent Unmanned Systems (ICIUS 2012), Singapore, 22 October 2012; pp. 418–422. [Google Scholar]
- Körpe, D.S.; Yırtıcı, Ö.; Özgen, S. Aerodynamic Performance Losses due to Ice Formation on the UAV’s Wings. J. Aeronaut. Space Technol. 2020, 13, 207–215. [Google Scholar]
- Langtry, R.B.; Menter, F. Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes. AIAA J. 2009, 47, 2894–2906. [Google Scholar] [CrossRef]
- Oswald, J.W.; Enache, A.; Hann, R.; Glabeke, G.; Lutz, T. UAV Icing: Experimental and Numerical Study of Glaze Ice Performance Penalties on an RG-15 Airfoil. In Proceedings of the AIAA Scitech 2022 Forum, San Diego, CA, USA, 3–7 January 2022. [Google Scholar]
- Hain, R.; Kähler, C.; Radespiel, R. Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils. J. Fluid Mech. 2009, 630, 129–153. [Google Scholar] [CrossRef]
- Gurbacki, H. Ice-Induced Unsteady Flowfield Effects on Airfoil Performance. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2003. [Google Scholar]
- O’Meara, M.M.; Mueller, T.J. Laminar separation bubble characteristics on an airfoil at low Reynolds numbers. AIAA J. 1987, 25, 1033–1041. [Google Scholar] [CrossRef]
- Oo, N.L.; Kay, N.J.; Brenkley, A.J.; Sharma, R.N. Investigation into the behaviour of an iced low Reynolds number aerofoil. In Proceedings of the 10th International Micro-Air Vehicles Conference, Melbourne, Australia, 22–23 November 2018. [Google Scholar]
- Garbaruk, A.; Shur, M.; Strelets, M. NACA0021 at 60 deg. incidence. Notes Numer. Fluid Mech. Multidisiplinary Des. 2009, 103, 127–139. [Google Scholar]
- Oo, N.L.; Richards, P.J.; Sharma, R.N. Numerical investigation of clean and ice-accreted aerofoils at low Reynolds number and low angle of attack. In Proceedings of the 21st Australasian Fluid Mechanics Conference, Adelaide, Australia, 10–13 December 2018. [Google Scholar]
- Oo, N.L.; Richards, P.J.; Sharma, R.N. Ice-Induced Separation Bubble on RG-15 Airfoil at Low Reynolds Number. AIAA J. 2020, 58, 5156–5167. [Google Scholar] [CrossRef]
- Oo, N.L.; Richards, P.; Sharma, R. Influence of an ice-induced separation bubble on the laminar separation bubble on an RG-15 airfoil at low Reynolds numbers. In Proceedings of the AIAA AVIATION 2020 FORUM, Virtual, 15–19 June 2020. [Google Scholar] [CrossRef]
- Huang, R.F.; Lin, C.L. Vortex shedding and shear-layer instability of wing at low-Reynolds numbers. AIAA J. 1995, 33, 1398–1403. [Google Scholar] [CrossRef]
- Bragg, M.B.; Khodadoust, A.; Spring, S.A. Measurements in a leading-edge separation bubble due to a simulated airfoil ice accretion. AIAA J. 1992, 30, 1462–1467. [Google Scholar] [CrossRef]
- Oswald, J.W. UAV Icing: Numerical and Experimental Study of Performance Penalties on an RG-15 Airfoil. Master’s Thesis, University of Stuttgart, Stuttgart, Germany, 2021. [Google Scholar]
- Li, H.; Zhang, Y.; Chen, H. Aerodynamic Prediction of Iced Airfoils Based on Modified Three-Equation Turbulence Model. AIAA J. 2020, 58, 3863–3876. [Google Scholar] [CrossRef]
- Hann, R. UAV Icing: Comparison of LEWICE and FENSAP-ICE for Anti-Icing Loads. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar]
- Hann, R.; Wenz, A.; Gryte, K.; Johansen, T. Impact of Atmospheric Icing on UAV Aerodynamic Performance. In Proceedings of the 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS), Linköping, Sweden, 3–5 October 2017. [Google Scholar]
- Gantasala, S. Flutter Analysis of an Aerofoil Section with Different Ice Shapes at the Leading Edge; Luleå University of Technology: Luleå, Sweden, 2017. [Google Scholar]
- Gantasala, S.; Luneno, J.-C.; Aidanpää, J.-O. Influence of Icing on the Modal Behavior of Wind Turbine Blades. Energies 2016, 9, 862. [Google Scholar] [CrossRef] [Green Version]
- Etemaddar, M.; Hansen, M.; Moan, T. Wind turbine aerodynamic response under atmospheric icing conditions. Wind. Energy 2014, 17, 241–265. [Google Scholar] [CrossRef]
- Thomas, S.K.; Cassoni, R.P.; MacArthur, C.D. Aircraft anti-icing and de-icing techniques and modeling. J. Aircr. 1996, 33, 841–854. [Google Scholar] [CrossRef]
- Botura, G.; Fahrner, A. Icing Detection System—Conception, Development, Testing and Applicability to UAVs. In Proceedings of the 2nd AIAA Unmanned Unlimited Conference and Workshop & Exhibit, San Diego, CA, USA, 15–18 September 2003. [Google Scholar]
- Cristofaro, A.; Johansen, T.A.; Aguiar, A.P. Icing detection and identification for unmanned aerial vehicles: Multiple model adaptive estimation. In Proceedings of the 2015 European Control Conference (ECC), Linz, Austria, 15–17 July 2015; pp. 1651–1656. [Google Scholar]
- Cristofaro, A.; Johansen, T.A. An unknown input observer approach to icing detection for unmanned aerial vehicles with linearized longitudinal motion. In Proceedings of the 2015 American Control Conference (ACC), Chicago, IL, USA, 1–3 July 2015; pp. 207–213. [Google Scholar]
- Rotondo, D.; Cristofaro, A.; Johansen, T.A.; Nejjari, F.; Puig, V. Icing detection in unmanned aerial vehicles with longitudinal motion using an LPV unknown input observer. In Proceedings of the 2015 IEEE Conference on Control Applications (CCA), Sydney, Australia, 21–23 September 2015; pp. 984–989. [Google Scholar]
- Seron, M.M.; Johansen, T.A.; Doná, J.A.D.; Cristofaro, A. Detection and estimation of icing in unmanned aerial vehicles using a bank of unknown input observers. In Proceedings of the 2015 5th Australian Control Conference (AUCC), Gold Coast, Australia, 5–6 November 2015; pp. 87–92. [Google Scholar]
- Sorensen, K.L.; Blanke, M.; Johansen, T.A. Diagnosis of Wing Icing Through Lift and Drag Coefficient Change Detection for Small. IFAC-PapersOnLine 2015, 48, 541–546. [Google Scholar] [CrossRef] [Green Version]
- Wenz, A.; Johansen, T.A. Icing detection for small fixed wing UAVs using inflight aerodynamic coefficient estimation. In Proceedings of the 2016 IEEE Conference on Control Applications (CCA), Buenos Aires, Argentina, 19–22 September 2016; pp. 230–236. [Google Scholar]
- Rotondo, D.; Cristofaro, A.; Hassani, V.; Johansen, T.A. Icing diagnosis in unmanned aerial vehicles using an LPV multiple model estimator. IFAC-PapersOnLine 2017, 50, 5238–5243. [Google Scholar] [CrossRef]
- Wenz, A.; Johansen, T.A. Icing Detection for Small Fixed Wing UAVs using Inflight Aerodynamic Coefficient Estimation. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–9. [Google Scholar]
- Haaland, O.M.; Wenz, A.W.; Gryte, K.; Hann, R.; Johansen, T.A. Detection and Isolation of Propeller Icing and Electric Propulsion System Faults in Fixed-Wing UAVs. In Proceedings of the 2021 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021; pp. 377–386. [Google Scholar]
- Energy-Efficient Systems Eliminate Icing Danger for UAVs. Available online: https://spinoff.nasa.gov/Spinoff2010/ps_2.html (accessed on 15 January 2022).
- Bhakta, B. Novel Ice Protection System Suitable for Unmanned Aerial Vehcile Wing. Ph.D. Thesis, Cranfield University, Cranfield, UK, 2005. [Google Scholar]
- Venna, S.V.; Lin, Y.-J.; Botura, G. Piezoelectric Transducer Actuated Leading Edge De-Icing with Simultaneous Shear and Impulse Forces. J. Aircr. 2007, 44, 509–515. [Google Scholar] [CrossRef]
- Ameduri, S.; Guida, D. Investigations on the use of Lamb waves for de-icing purposes. In Proceedings of the ICAST2014: 25nd International Conference on Adaptive Structures and Technologies, The Hague, The Netherlands, 6–8 October 2014. [Google Scholar]
- Palacios, J.; Smith, E.; Gao, H.; Rose, J. Ultrasonic Shear Wave Anti-Icing System for Helicopter Rotor Blades. In Proceedings of the American Helicopter Society 62nd Annual Forum, Phoenix, AZ, USA, 9–11 May 2006. [Google Scholar]
- Myose, R.Y.; Horn, W.J.; Hwang, Y.; Herrero, J.; Huynh, C.; Boudraa, T. Application of Shape Memory Alloys for Leading Edge Deicing; SAE Technical Paper; SAE: Warrendale, PA, USA, 1999. [Google Scholar] [CrossRef]
- Buschhorn, S.T.; Kessler, S.S.; Lachmann, N.; Gavin, J.; Thomas, G.; Wardle, B.L. Electrothermal Icing protection of Aerosurfaces Using Conductive Polymer Nanocomposites. In Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, MA, USA, 8–11 April 2013. [Google Scholar]
- Farcas, C.; Galao, O.; Vertuccio, L.; Guadagno, L.; Romero-Sánchez, M.D.; Rodríguez-Pastor, I.; Garcés, P. Ice-Prevention and De-Icing Capacity of Epoxy Resin Filled with Hybrid Carbon-Nanostructured Forms: Self-Heating by Joule Effect. Nanomaterials 2021, 11, 2427. [Google Scholar] [CrossRef]
- Redondo, O.; Prolongo, S.G.; Campo, M.; Sbarufatti, C.; Giglio, M. Anti-icing and de-icing coatings based Joule’s heating of graphene nanoplatelets. Compos. Sci. Technol. 2018, 164, 65–73. [Google Scholar] [CrossRef]
- Guadagno, L.; Foglia, F.; Pantani, R.; Romero-Sanchez, M.D.; Calderón, B.; Vertuccio, L. Low-Voltage Icing Protection Film for Automotive and Aeronautical Industries. Nanomaterials 2020, 10, 1343. [Google Scholar] [CrossRef]
- Vertuccio, L.; Foglia, F.; Pantani, R.; Romero-Sánchez, M.D.; Calderón, B.; Guadagno, L. Carbon nanotubes and expanded graphite based bulk nanocomposites for de-icing applications. Compos. Part B Eng. 2021, 207, 108583. [Google Scholar] [CrossRef]
- Idris, M.K.; Qiu, J.; Melenka, G.W.; Grau, G. Printing electronics directly onto carbon fiber composites: Unmanned aerial vehicle (UAV) wings with integrated heater for de-icing. Eng. Res. Express 2020, 2, 025022. [Google Scholar] [CrossRef]
- Sorensen, K.; Helland, A.; Johansen, T. Carbon nanomaterial-based wing temperature control system for in-flight anti-icing and de-icing of unmanned aerial vehicles. In Proceedings of the IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 7–14 March 2015. [Google Scholar] [CrossRef] [Green Version]
- KimLynge Sørensen, T.A.J. Thermodynamics of a Carbon Nano-Materials Based Icing Protection System for Unmanned Aerial Vehicle. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016. [Google Scholar]
- S⊘rensen, K.L.; Johansen, T.A. Flight test results for autonomous icing protection solution for small unmanned aircraft. In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017; pp. 971–980. [Google Scholar]
- Hwang, H.; Ma, K.Y.; Kim, J.W.; Yuk, D.; Hong, J.; Jung, J.H.; Yong, S.-M.; Choi, J.; Kim, J.Y.; Shin, H.S. Radio-frequency-transmitting hexagonal boron nitride-based anti- and de-icing heating system. Nanoscale 2020, 12, 21895–21900. [Google Scholar] [CrossRef]
- Hann, R.; Enache, A.; Nielsen, M.C.; Stovner, B.N.; van Beeck, J.; Johansen, T.A.; Borup, K.T. Experimental Heat Loads for Electrothermal Anti-Icing and De-Icing on UAVs. Aerospace 2021, 8, 83. [Google Scholar] [CrossRef]
- Bhushan, B.; Chae Jung, Y. Wetting study of patterned surfaces for superhydrophobicity. Ultramicroscopy 2007, 107, 1033–1041. [Google Scholar] [CrossRef] [PubMed]
- Michael, N.; Bhushan, B. Hierarchical roughness makes superhydrophobic states stable. Microelectron. Eng. 2007, 84, 382–386. [Google Scholar] [CrossRef]
- Nosonovsky, M.; Bhushan, B. Roughness-induced superhydrophobicity: A way to design non-adhesive surfaces. J. Phys. Condens. Matter 2008, 20, 225009. [Google Scholar] [CrossRef]
- Nosonovsky, M.; Bhushan, B. Patterned Nonadhesive Surfaces: Superhydrophobicity and Wetting Regime Transitions. Langmuir 2008, 24, 1525–1533. [Google Scholar] [CrossRef]
- Farhadi, S.; Farzaneh, M.; Kulinich, S.A. Anti-icing performance of superhydrophobic surfaces. Appl. Surf. Sci. 2011, 257, 6264–6269. [Google Scholar] [CrossRef]
- Farzaneh, M.; Ryerson, C. Anti-icing and deicing techniques. Cold Reg. Sci. Technol. 2011, 65, 88–96. [Google Scholar] [CrossRef]
- Kulinich, S.; Farzaneh, M. How Wetting Hysteresis Influences Ice Adhesion Strength on Superhydrophobic Surfaces. Langmuir ACS J. Surf. Colloids 2009, 25, 8854–8856. [Google Scholar] [CrossRef]
- Kulinich, S.A.; Farzaneh, M. Ice adhesion on super-hydrophobic surfaces. Appl. Surf. Sci. 2009, 255, 8153–8157. [Google Scholar] [CrossRef]
- Kulinich, S.A.; Farzaneh, M. Effect of contact angle hysteresis on water droplet evaporation from super-hydrophobic surfaces. Appl. Surf. Sci. 2009, 255, 4056–4060. [Google Scholar] [CrossRef]
- Wang, F.; Li, C.; Lv, Y.; Lv, F.; Du, Y. Ice accretion on superhydrophobic aluminum surfaces under low-temperature conditions. Cold Reg. Sci. Technol. 2010, 62, 29–33. [Google Scholar] [CrossRef]
- Piscitelli, F.; Chiariello, A.; Dabkowski, D.; Corraro, G.; Marra, F.; Di Palma, L. Superhydrophobic Coatings as Anti-Icing Systems for Small Aircraft. Aerospace 2020, 7, 2. [Google Scholar] [CrossRef] [Green Version]
Reference | Year | Re × 105 | Airfoil | C (m) | Aerodynamic Data | Comments |
---|---|---|---|---|---|---|
Siquig [16] | 1990 | - | - | - | × | The impact of icing on two different UAVs is compared. |
Koenig [63] | 2000 | - | UAV airfoil | - | × | , LWC, and MVD on ice accretion. |
Koenig [10] | 2003 | - | NACA 0012 | - | × | Influence of LWC clustering on ice accretion. |
Avery [26] | 2003 | - | - | - | × | and LWC on ice accretion. |
Cistriani [70] | 2007 | 10 | flap slotted airfoil | 0.6 | ✓ | Ice accretion at CM and IM conditions. |
Szilder [64] | 2011 | 0.5, 1, 5, 1, 50 | NACA 0012 | 0.0625 to 0.625 | × | , LWC and MVD on ice accretion. |
Szilder [25] | 2012 | |||||
Bottyan [71] | 2013 | 4 | Roncz Low Drag airfoil | 0.3 | × | on ice accretion. |
40 | NASA NLF 1015 | 1.6 | ||||
Szilder [65] | 2015 | 9 | SD7037 | 0.47 | ✓ | , α, LWC, and MVD on ice accretion. |
Szilder [66] | 2017 | 9 | HQ309, SD7032SD7037 | 0.47 | ✓ | Effect of airfoil geometry on ice accretion. |
Williams [27] | 2017 | 2 | RG15 | 0.21 | ✓ | Icing tunnel experiments for 4 different cases. |
Hann [89] | 2017 | 15 | NREL S826 | 0.3 | ✓ | Aerodynamic performance studies based on flight simulation. |
Hann [52] | 2018 | 4 | NREL S826 | 0.45 | ✓ | Comparison of LEWICE and FENSAP-ICE. |
0o [79] | 2018 | 2 | RG-15 | 0.21 | ✓ | Flow separation behavior is studied using the SAS-SST turbulence model. |
0o [81] | 2018 | 1 | RG-15 | 0.21 | × | Flow separation behavior is studied using LES. |
Fajt [68] | 2019 | 8.6–10 | RG-15 | 0.45 | ✓ | , LWC, and MVD on ice accretion. |
Hann [54] | 2019 | 8.7 | NREL S826, RG-15 | 0.45 | × | Icing Tunnel studies, Two new ice shape acquisition techniques are discussed. |
Hann [57] | 2020 | 4 | NREL S826 | 0.45 | ✓ | . |
Oo [82] | 2020 | 1.07 | RG-15 | 0.21 | × | Flow separation behavior is studied using LES. |
Oo [83] | 2020 | 0.5, 1 | RG-15 | 0.21 | × | Flow separation behavior is studied using LES. |
Yirtici [73] | 2020 | 4 | NREL S826 | 0.45 | ✓ | Influence of aspect ratio on ice accretion. |
Oswald [75,86] | 2021 | 8.7 | RG-15 | 0.45 | ✓ | . |
Hann [55] | 2021 | 8.7 | RG-15 | 0.45 | ✓ | Effect of velocity and chord length on ice accretion. |
Li [69] | 2021 | 20 | NREL S826 | 0.45 | ✓ | A three-equation turbulence model is used, Design optimization of airfoils. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammed, M.; Virk, M.S. Ice Accretion on Fixed-Wing Unmanned Aerial Vehicle—A Review Study. Drones 2022, 6, 86. https://doi.org/10.3390/drones6040086
Muhammed M, Virk MS. Ice Accretion on Fixed-Wing Unmanned Aerial Vehicle—A Review Study. Drones. 2022; 6(4):86. https://doi.org/10.3390/drones6040086
Chicago/Turabian StyleMuhammed, Manaf, and Muhammad Shakeel Virk. 2022. "Ice Accretion on Fixed-Wing Unmanned Aerial Vehicle—A Review Study" Drones 6, no. 4: 86. https://doi.org/10.3390/drones6040086
APA StyleMuhammed, M., & Virk, M. S. (2022). Ice Accretion on Fixed-Wing Unmanned Aerial Vehicle—A Review Study. Drones, 6(4), 86. https://doi.org/10.3390/drones6040086