Examining the Adoption of Drones and Categorisation of Precision Elements among Hungarian Precision Farmers Using a Trans-Theoretical Model
Abstract
:1. Introduction
1.1. Literature Review on Determinants of Drone Use
1.1.1. Farm Size
1.1.2. Age
1.1.3. Education
1.1.4. Gender
1.1.5. Importance of Full/Part-Time Employment
1.1.6. Agricultural Higher Education
1.2. Examining the Level of PF
- 1.
- Automated steering, GPS and row guide are the most commonly used elements—the basic elements of precision technology—not only in Hungary but worldwide. Their production and usability are well established, and new entrants are typically the first to buy them.
- 2.
- In the case of machinery steering, automatic section control and differential sowing, experience shows that their use is becoming more effective, although their customers are still only among those farmers who have been using PF for a longer period and are thinking of further developing it.
- 3.
- In the case of farm monitoring and differentiated fertiliser application, the lack of the technology’s maturity has meant that it has not been able to meet the heightened expectations, leading to a periodic decline in demand (and capital invested) until the technologies are further developed.
- 4.
- Drones were at the peak of interest, the media were increasingly covering their potential, and potential problems had not yet emerged due to a lack of reliable, long-term practical experience.
- 5.
- Research has focused on developing spatial plant development models and robotics. Interest is growing thanks to early results and success stories.
- 6.
- Basic technologies are used (auto-steering system, section control). Data collection is not available or, if it is, it is not integrated into production plans.
- 7.
- For at least one technological element (typically nutrient management systems), (mostly aggregated) GPS data are already collected and can be used as a basis for medium-term plans. However, these data are not suitable for integrated decision-making.
- 8.
- Collecting high accuracy GPS data via multiple technological processes, yield mapping and weather data evaluation. These data are already suitable for integrated assessment, sometimes carried out by an external consultant.
- 9.
- Data are collected for all field operations, allowing immediate in-season decision-making and correction. The evaluation is carried out by a specialised (in-house or external) expert.
- 10.
- A complete data set of at least three years will ensure that an optimal decision is made during the growing season, considering annual and seasonal variations.
- 11.
- The highest level is suitable for system-level optimal decision making and forecasting, and for further development of the optimising production models used in the previous levels.
2. Hypothesis, Materials and Methods
2.1. Hypothesis and Structure
- –
- Cultivated land size has a positive effect on the adoption process.
- –
- Age has a negative effect on the drone adoption process.
- –
- Higher education has a positive impact on the process of the adoption of drones.
- –
- Being a male farmer has a positive impact on the adoption process.
- –
- Being a full-time farmer has a positive effect on the adoption process.
- –
- Drone technology literacy has a positive impact on the adoption process.
- –
- Increasing the perceived job relevance of drones for operational procedures positively affects the adoption process.
- –
- Increased confidence in the process of working with drones has a positive effect on the process of acceptance.
- –
- Higher education in agriculture has a positive effect on the adoption process.
2.2. Survey and Sample Description
2.3. The Transtheoretical Model of Adoption
2.4. Descriptive Statistics and Econometric Model
3. Results and Discussion
3.1. Descriptive Statistics Results
3.2. Results of the Ordinal Logistic Regression
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pathan, M.; Patel, N.; Yagnik, H.; Shah, M. Artificial cognition for applications in smart agriculture: A comprehensive review. Artif. Intell. Agric. 2020, 4, 81–95. [Google Scholar] [CrossRef]
- Bannerjee, G.; Sarkar, U.; Das, S.; Ghosh, I. Artificial intelligence in agriculture: A literature survey. Int. J. Sci. Res. Comput. Sci. Appl. Manag. Stud. 2018, 7, 1–6. [Google Scholar]
- Bai, A.; Gabnai, Z.; Kovách, I.; Czibere, I.; Nagy, J.; Sulyok, D.; Maloku, D.; Balogh, P. Economic analysis of some agrotechnical factors in maize production-a Hungarian case study. Appl. Stud. Agribus. Commer. 2019, 13, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Almalki, F.A.; Soufiene, B.O.; Alsamhi, S.H.; Sakli, H. A low-cost platform for environmental smart farming monitoring system based on IoT and UAVs. Sustainability 2021, 13, 5908. [Google Scholar] [CrossRef]
- Rajesh Singh, R.; Gehlot, A.; Ranjit, P.S.; Sharma, D. Futuristic Sustainable Energy and Technology; CRC Press: London, UK, 2022. [Google Scholar] [CrossRef]
- Lezoche, M.; Hernandez, J.E.; Díaz, M.d.M.E.A.; Panetto, H.; Kacprzyk, J. Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Comput. Ind. 2020, 117, 103187. [Google Scholar] [CrossRef]
- Abba, S.; Wadumi Namkusong, J.; Lee, J.-A.; Liz Crespo, M. Design and performance evaluation of a low-cost autonomous sensor interface for a smart iot-based irrigation monitoring and control system. Sensors 2019, 19, 3643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, J. The Fourth Industrial Revolution and Precision. In Automation in Agriculture: Securing Food Supplies for Future Generations; Hussmann, S., Ed.; Intech: Rijeka, Croatia, 2018; pp. 3–17. [Google Scholar]
- DII. Global Drone Market Report 2021–2026. Drone Market Size, Forecast 2021–2026, Market Developments & Regulations; d.i.i. Hamburg GmbH: Hamburg, Germany, 2021. [Google Scholar]
- Nixon, A. Best Drones for Agriculture 2019: The Ultimate Buyer’s Guide; 2019. Available online: https://bestdroneforthejob.com/drone-buying-guides/agriculture-drone-buyers-guide/ (accessed on 21 October 2021).
- Wackwitz, K.; Schroth, L.; Alvarado, E. The Drone Industry Barometer. Drone Industry Insight. 2021, pp. 1–19. Available online: https://droneii.com/wp-content/uploads/2021/09/the-drone-industry-barometer-2021.pdf?utm_source=email&utm_medium=newsletter&utm_campaign=release-barometer-2021&utm_content=report-section&utm_term=report-headline&mc_cid=59355a936f&mc_eid=3633b9b580 (accessed on 11 January 2022).
- Jóri, J. A precíziós gazdálkodás gépesítési kérdései. Automation Issues in Precision Farming. 2019. Available online: https://magyarmezogazdasag.hu/2019/02/05/precizios-gazdalkodas-gepesitesi-kerdesei (accessed on 11 January 2022).
- Kendall, H.; Naughton, P.; Clark, B.; Taylor, J.; Li, Z.; Zhao, C.; Yang, G.; Chen, J.; Frewer, L. Precision agriculture in China: Exploring awareness, understanding, attitudes and perceptions of agricultural experts and end-users in China. Adv. Anim. Biosci. 2017, 8, 703–707. [Google Scholar] [CrossRef] [Green Version]
- Balogh, P.; Bai, A.; Czibere, I.; Kovách, I.; Fodor, L.; Bujdos, Á.; Sulyok, D.; Gabnai, Z.; Birkner, Z. Economic and social barriers of precision farming in Hungary. Agronomy 2021, 11, 1112. [Google Scholar] [CrossRef]
- HCSO. Agrárcenzus 2020. Előzetes Adatok. Agricultural Census 2020. Preliminary Data; Hungarian Central Statistical Office: Budapest, Hungary, 2021. [Google Scholar]
- HCA. Egyre Többen Végeznek Precíziós Gazdálkodást. More and More People Are Practicing Precision Farming; Hungarian Chamber of Agriculture: Budapest, Hungary, 2019. [Google Scholar]
- Folke, C.; Carpenter, S.R.; Walker, B.; Scheffer, M.; Chapin, T.; Rockström, J. Resilience thinking: Integrating resilience, adaptability and transformability. Ecol. Soc. 2010, 15, 20. [Google Scholar] [CrossRef]
- Pivoto, D.; Barham, B.; Dabdab, P.; Zhang, D.; Talamin, E. Factors influencing the adoption of smart farming by Brazilian grain farmers. Int. Food Agribus. Manag. Rev. 2019, 22, 571–588. [Google Scholar] [CrossRef]
- Pierpaoli, E.; Carli, G.; Pignatti, E.; Canavari, M. Drivers of precision agriculture technologies adoption: A literature review. Procedia Technol. 2013, 8, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Roberts, R.K.; English, B.C.; Larson, J.A.; Cochran, R.L.; Goodman, W.R.; Larkin, S.L.; Marra, M.C.; Martin, S.W.; Shurley, W.D.; Reeves, J.M. Adoption of site-specific information and variable-rate technologies in cotton precision farming. J. Agric. Appl. Econ. 2004, 36, 143–158. [Google Scholar] [CrossRef]
- Reichardt, M.; Jürgens, C. Adoption and future perspective of precision farming in Germany: Results of several surveys among different agricultural target groups. Precis. Agric. 2009, 10, 73–94. [Google Scholar] [CrossRef]
- Lambert, D.M.; English, B.C.; Harper, D.C.; Larkin, S.L.; Larson, J.A.; Mooney, D.F.; Roberts, R.K.; Velandia, M.; Reeves, J.M. Adoption and frequency of precision soil testing in cotton production. J. Agric. Resour. Econ. 2014, 39, 106–123. [Google Scholar]
- Michels, M.; von Hobe, C.-F.; Musshoff, O. A trans-theoretical model for the adoption of drones by large-scale German farmers. J. Rural. Stud. 2020, 75, 80–88. [Google Scholar] [CrossRef]
- EC. Drones in Agriculture; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Zhang, X.; Han, L.; Dong, Y.; Shi, Y.; Huang, W.; Han, L.; González-Moreno, P.; Ma, H.; Ye, H.; Sobeih, T. A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images. Remote Sens. 2019, 11, 1554. [Google Scholar] [CrossRef] [Green Version]
- Ruzzante, S.; Labarta, R.; Bilton, A. Adoption of agricultural technology in the developing world: A meta-analysis of the empirical literature. World Dev. 2021, 146, 105599. [Google Scholar] [CrossRef]
- Zuo, A.; Wheeler, S.A.; Sun, H. Flying over the farm: Understanding drone adoption by Australian irrigators. Precis. Agric. 2021, 22, 1973–1991. [Google Scholar] [CrossRef]
- Aubert, B.A.; Schroeder, A.; Grimaudo, J. IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decis. Support Syst. 2012, 54, 510–520. [Google Scholar] [CrossRef] [Green Version]
- Paustian, M.; Theuvsen, L. Adoption of precision agriculture technologies by German crop farmers. Precis. Agric. 2017, 18, 701–716. [Google Scholar] [CrossRef]
- Bruckmeier, K.; Tovey, H. Knowledge in sustainable rural development: From forms of knowledge to knowledge processes. Sociol. Rural. 2008, 48, 313–329. [Google Scholar] [CrossRef]
- Daberkow, S.G.; McBride, W.D. Farm and operator characteristics affecting the awareness and adoption of precision agriculture technologies in the US. Precis. Agric. 2003, 4, 163–177. [Google Scholar] [CrossRef]
- Caffaro, F.; Cremasco, M.M.; Roccato, M.; Cavallo, E. Drivers of farmers’ intention to adopt technological innovations in Italy: The role of information sources, perceived usefulness, and perceived ease of use. J. Rural. Stud. 2020, 76, 264–271. [Google Scholar] [CrossRef]
- Barnes, A.P.; Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.; Sánchez, B.; Vangeyte, J.; Fountas, S.; van der Wal, T.; Gómez-Barbero, M. Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers. Land Use Policy 2019, 80, 163–174. [Google Scholar] [CrossRef]
- Vecchio, Y.; Agnusdei, G.P.; Miglietta, P.P.; Capitanio, F. Adoption of precision farming tools: The case of Italian farmers. Int. J. Environ. Res. Public Health 2020, 17, 869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutter, T.; Tiemann, S.; Siebert, R.; Fountas, S. The role of communication and co-operation in the adoption of precision farming. Precis. Agric. 2011, 12, 2–17. [Google Scholar] [CrossRef]
- Wahlen, F. Internet-Strukturdaten IV. Quartal 2013. 2014. Available online: https://www.forschungsgruppe.de/Umfragen/Archiv__weitere_Umfragen/Internet-Strukturdaten/web_IV_13.pdf (accessed on 10 November 2021).
- D’Antoni, J.M.; Mishra, A.K.; Joo, H. Farmers’ perception of precision technology: The case of autosteer adoption by cotton farmers. Comput. Electron. Agric. 2012, 87, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Blackmore, B.S. Farming with robots. In Proceedings of the PREGA Conference, Budapest, Hungary, 22 February 2016. [Google Scholar]
- Blackmore, B.S. Toward robotic agriculture. In Proceedings of the Smart Technologies for Sustainable Agriculture, Symposium Handouts, London, UK, 17–21 January 2016. [Google Scholar]
- GATA. Six Levels of Precision Agriculture Adoption Identified by the Precision Ag Institute; The Global Ag Tech Alliance—North America: Willoughby, OH, USA, 2021. [Google Scholar]
- Prochaska, J.O. Transtheoretical model of behavior change. In Encyclopedia of Behavioral Medicine; Springer: Cham, Switzerland, 2020; pp. 2266–2270. [Google Scholar] [CrossRef]
- Lemken, D.; Spiller, A.; von Meyer-Höfer, M. The case of legume-cereal crop mixtures in modern agriculture and the transtheoretical model of gradual adoption. Ecol. Econ. 2017, 137, 20–28. [Google Scholar] [CrossRef]
- Tobler, C.; Visschers, V.H.; Siegrist, M. Eating green. Consumers’ willingness to adopt ecological food consumption behaviors. Appetite 2011, 57, 674–682. [Google Scholar] [CrossRef]
- Guzman-Castillo, M.; Brailsford, S.; Luke, M.; Smith, H. A tutorial on selecting and interpreting predictive models for ordinal health-related outcomes. Health Serv. Outcomes Res. Methodol. 2015, 15, 223–240. [Google Scholar] [CrossRef]
- Növekedés, H. KSH: Jelentősen Növekedett a Gazdaságok Átlagos Mérete (Significant Increase in the Average Size of Farms); Hungarian Central Statistic Office: Budapest, Hungary, 2022. [Google Scholar]
- HCSO. Regionális Különbségek a Magyar Mezőgazdaságban. Regional Differences in Hungarian Agriculture; Hungarian Central Statistic Office: Budapest, Hungary, 2018. [Google Scholar]
- HCSO. Agrárcenzus-Eredmények—Mezőgazdasági Munkaerő, Generációváltás. Agricultural Census Results—Agricultural Workforce, Generational Change; Hungarian Central Statistical Office: Budapest, Hungary, 2020. [Google Scholar]
- Higgins, V.; Bryant, M.; Howell, A.; Battersby, J. Ordering adoption: Materiality, knowledge and farmer engagement with precision agriculture technologies. J. Rural. Stud. 2017, 55, 193–202. [Google Scholar] [CrossRef]
Influencing Factor | Direction of Effect * | References |
---|---|---|
farm size | + | [18,19,20,21,23,24] |
0 | [25,26,27,28] | |
land use | + | [22] |
0 | [19] | |
Age | − | [27,28] |
0 | [27] | |
nature of the farm | 0 | [33] |
computer knowledge | + | [18,23,28] |
new software | + | [18,23,28] |
agricultural experience | + | [29] |
education (generally) | + | [24,26,30,31,32,33] |
agricultural higher education | + | [29] |
Marriage | 0 | [27] |
attitude, household income | + | [33] |
gender (male) | + | [23,25,27,36] |
full-time employment | + | [23,31] |
assessing of economic benefits | + | [23,25,37] |
Name of the Regional Unit | ≤300 ha | >300 ha | Total |
---|---|---|---|
North-West (Fejér, Komárom, Veszprém, Győr, Vas counties) | 16 | 15 | 31 |
South-West (Zala, Somogy, Tolna, Baranya counties) | 19 | 20 | 39 |
South-East (Pest, Bács, Csongrád, Békés counties) | 26 | 27 | 53 |
North-East (Jász, Hajdú, Szabolcs, Borsod, Heves, Nógrád counties) | 34 | 43 | 77 |
Total | 95 | 105 | 200 |
Categories * | n | Percentage |
---|---|---|
I will not use drones on my farm (TTMA = 1; precontemplation) | 47 | 23.5 |
I am principally willing to try out the application of drones on my farm (TTMA = 2; contemplation) | 85 | 42.5 |
I have concrete plans to use drones on my farm (TTMA = 3 preparation) | 35 | 17.5 |
I already use drones on my farm (own or as a service; action) (TTMA = 4) | 33 | 16.5 |
Hypothesis | Expected Sign | Mean | Std. Deviation | Minimum | Maximum | |
---|---|---|---|---|---|---|
TTMA a | 2.27 | 1.00 | 1 | 4 | ||
Drone b | 0.16 | - | 0 | 1 | ||
LandSize (Farm size in hectares of arable land) | H1 | + | 672.63 | 791.75 | 3 | 4000 |
Age (Farmer’s age in years) | H2 | − | 53.19 | 12.33 | 26 | 91 |
Education c | H3 | + | 0.49 | - | 0 | 1 |
Gender d | H4 | + | 0.94 | - | 0 | 1 |
FullTime e | H5 | + | 0.55 | - | 0 | 1 |
DroneTechLit f | H6 | + | 3.58 | 1.02 | 1 | 5 |
PjobRel g | H7 | + | 2.71 | 1.17 | 1 | 5 |
AttConf h | H8 | + | 4.03 | 1.05 | 1 | 5 |
AgrHighEdu i | H9 | + | 0.45 | - | 0 | 1 |
Hypothesis | Variable a | Odds Ratio | Std. Error | p-Value | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
H1 | LandSize | 1.00009 | 0 | 0.64 | 1.00 | 1.00 |
H2 | Age | 0.97 ** | 0.014 | 0.03 | 0.94 | 1.00 |
H3 | Education | 0.45 | 0.802 | 0.33 | 0.09 | 2.19 |
H4 | Gender | 0.52 | 0.614 | 0.28 | 0.16 | 1.72 |
H5 | FullTime | 3.34 *** | 0.321 | <0.01 | 1.78 | 6.26 |
H6 | DroneTechLit b | 1.54 ** | 0.207 | 0.04 | 1.03 | 2.31 |
H7 | PjobbRel b | 3.67 *** | 0.173 | <0.01 | 2.62 | 5.16 |
H8 | AttConf bc | 1.47 * | 0.204 | 0.06 | 0.99 | 2.19 |
H9 | AgrHighEdu | 6.33 ** | 0.817 | 0.02 | 1.28 | 31.37 |
TTMA Categories a | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
Predicted Probability | 0.24 | 0.43 | 0.17 | 0.16 | |
Marginal Effects | |||||
H1 | LandSize | −8.2 × 10−6 | −7.2 × 10−6 | 0.00001 | 3.9 × 10−6 |
H2 | Age | 0.003 ** | 0.002 * | −0.004 ** | −0.001 ** |
H3 | Education | 0.07 | 0.06 | −0.10 | −0.03 |
H4 | Gender | 0.05 | 0.08 | −0.09 | −0.04 |
H5 | FullTime | −0.12 *** | −0.08 ** | 0.14 *** | 0.05 *** |
H6 | DroneTechLit b | −0.04 * | −0.03 * | 0.05 * | 0.02 * |
H7 | PjobbRel b | −0.12 *** | −0.10 *** | 0.16 *** | 0.06 *** |
H8 | AttConf bc | −0.03 * | −0.03 | 0.05 * | 0.02 * |
H9 | AgrHighEdu | −0.16 ** | −0.16 * | 0.23 ** | 0.09 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, A.; Kovách, I.; Czibere, I.; Megyesi, B.; Balogh, P. Examining the Adoption of Drones and Categorisation of Precision Elements among Hungarian Precision Farmers Using a Trans-Theoretical Model. Drones 2022, 6, 200. https://doi.org/10.3390/drones6080200
Bai A, Kovách I, Czibere I, Megyesi B, Balogh P. Examining the Adoption of Drones and Categorisation of Precision Elements among Hungarian Precision Farmers Using a Trans-Theoretical Model. Drones. 2022; 6(8):200. https://doi.org/10.3390/drones6080200
Chicago/Turabian StyleBai, Attila, Imre Kovách, Ibolya Czibere, Boldizsár Megyesi, and Péter Balogh. 2022. "Examining the Adoption of Drones and Categorisation of Precision Elements among Hungarian Precision Farmers Using a Trans-Theoretical Model" Drones 6, no. 8: 200. https://doi.org/10.3390/drones6080200
APA StyleBai, A., Kovách, I., Czibere, I., Megyesi, B., & Balogh, P. (2022). Examining the Adoption of Drones and Categorisation of Precision Elements among Hungarian Precision Farmers Using a Trans-Theoretical Model. Drones, 6(8), 200. https://doi.org/10.3390/drones6080200