Dwarf Mongoose Optimization-Based Secure Clustering with Routing Technique in Internet of Drones
Abstract
:1. Introduction
1.1. Existing Works on Cluster-Based Routing in IoD
1.2. Paper Contributions
1.3. Paper Organization
2. The Proposed Secure Clustering with Routing Protocol
2.1. Overview of DMO Algorithm
2.1.1. Alpha Group
2.1.2. Scout Group
2.1.3. Babysitters Group
2.2. Design of DMOSC Technique
2.3. Process Involved in WHOMHR Technique
2.3.1. Population Initialization
2.3.2. Grazing Behavior
2.3.3. Horse Mating Behavior
Algorithm 1: Pseudocode of WHO algorithm |
Arbitrary initiation of the primary horse population |
Parameter initiatin |
Determine fitness of Horses |
Produce Foal groups and elect Stallions |
Determine optimum horse |
While the stopping criteria were unsatisfied |
Determine TDR |
For the number of Stallions |
Find |
For the number of Foals under various groups |
Update foal position |
End |
End |
If rand > 0.5 |
position |
Else |
b position |
End |
Stallion) |
End |
Arrange Foals of the group by cost |
Elect Foal with the least cost |
If the cost (Foa1) < cos (Stallion) |
Swap Foal and Stallion position |
End |
End |
Upgrade optimal |
End |
2.3.4. Group Leadership
2.3.5. Leaders’ Exchange and Selection
3. Results and Discussion
- Scenario-1: Grid size of 1000 × 1000 m2
- Scenario-2: Grid size of 2000 × 2000 m2
- Scenario-3: Grid size of 3000 × 3000 m2
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rovira-Sugranes, A.; Razi, A.; Afghah, F.; Chakareski, J. A review of AI-enabled routing protocols for UAV networks: Trends, challenges, and future outlook. Ad Hoc Netw. 2022, 130, 102790. [Google Scholar] [CrossRef]
- Nazib, R.A.; Moh, S. Routing protocols for unmanned aerial vehicle-aided vehicular ad hoc networks: A survey. IEEE Access 2020, 8, 77535–77560. [Google Scholar] [CrossRef]
- Gupta, V.; Seth, D. Design issues for developing routing protocols for flying ad hoc network. Multimed. Technol. Internet Things Environ. 2022, 3, 135–145. [Google Scholar]
- Lagkas, T.; Argyriou, V.; Bibi, S.; Sarigiannidis, P. UAV IoT framework views and challenges: Towards protecting drones as “Things”. Sensors 2018, 18, 4015. [Google Scholar] [CrossRef] [PubMed]
- Alsamhi, S.H.; Shvetsor, A.V.; Shvetsova, S.V.; Hawbani, A.; Guizan, M.; Alhartomi, M.A.; Ma, O. Blockchain-Empowered Security and Energy Efficiency of Drone Swarm Consensus for Environment Exploration. IEEE Trans. Green Commun. Netw. 2022. [Google Scholar] [CrossRef]
- Gopi, S.P.; Magarini, M.; Alsamhi, S.H.; Shvetsov, A.V. Machine learning-assisted adaptive modulation for optimized drone-user communication in b5g. Drones 2021, 5, 128. [Google Scholar] [CrossRef]
- Sharma, B.; Obaidat, M.S.; Sharma, V.; Hsiao, K.F. Routing and collision avoidance techniques for unmanned aerial vehicles: Analysis, optimal solutions, and future directions. Int. J. Commun. Syst. 2020, 33, e4628. [Google Scholar] [CrossRef]
- Arafat, M.Y.; Moh, S. A survey on cluster-based routing protocols for unmanned aerial vehicle networks. IEEE Access 2018, 7, 498–516. [Google Scholar] [CrossRef]
- Semiz, F.; Polat, F. Solving the area coverage problem with UAVs: A vehicle routing with time windows variation. Robot. Auton. Syst. 2020, 126, 103435. [Google Scholar] [CrossRef]
- Wang, H.; Fang, H.; Wang, X. Safeguarding cluster heads in UAV swarm using edge intelligence: Linear discriminant analysis-based cross-layer authentication. IEEE Open J. Commun. Soc. 2021, 2, 1298–1309. [Google Scholar] [CrossRef]
- Fatemidokht, H.; Rafsanjani, M.K.; Gupta, B.B.; Hsu, C.H. Efficient and secure routing protocol based on artificial intelligence algorithms with UAV-assisted for vehicular ad hoc networks in intelligent transportation systems. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4757–4769. [Google Scholar] [CrossRef]
- Fu, Z.; Mao, Y.; He, D.; Yu, J.; Xie, G. Secure multi-UAV collaborative task allocation. IEEE Access 2019, 7, 35579–35587. [Google Scholar] [CrossRef]
- Namdev, M.; Goyal, S.; Agarwal, R. An optimized communication scheme for energy efficient and secure flying ad-hoc network (FANET). Wirel. Pers. Commun. 2021, 120, 1291–1312. [Google Scholar] [CrossRef]
- Zhao, L.; Saif, M.B.; Hawbani, A.; Min, G.; Peng, S.; Lin, N. A novel improved artificial bee colony and blockchain-based secure clustering routing scheme for FANET. China Commun. 2021, 18, 103–116. [Google Scholar] [CrossRef]
- Ever, Y.K. A secure authentication scheme framework for mobile-sinks used in the internet of drones applications. Comput. Commun. 2020, 155, 143–149. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Kaur, N.; Vashisht, S.; Jain, S. SecRIP: Secure and reliable intercluster routing protocol for efficient data transmission in flying ad hoc networks. Trans. Emerg. Telecommun. Technol. 2021, 32, e4068. [Google Scholar] [CrossRef]
- Khan, I.U.; Shah, S.B.H.; Wang, L.; Aziz, M.A.; Stephan, T.; Kumar, N. Routing protocols & unmanned aerial vehicles autonomous localization in flying networks. Int. J. Commun. Syst. 2021, e4885. [Google Scholar] [CrossRef]
- Aldosari, F.; Abualigah, L.; Almotairi, K.H. A Normal Distributed Dwarf Mongoose Optimization Algorithm for Global Optimization and Data Clustering Applications. Symmetry 2022, 14, 1021. [Google Scholar] [CrossRef]
- Veerabadrappa, K.; Lingareddy, S.C. Secure Routing using Multi-Objective Trust Aware Hybrid Optimization for Wireless Sensor Networks. Int. J. Intell. Eng. Syst. 2022, 15, 540–548. [Google Scholar]
- Ali, M.H.; Kamel, S.; Hassan, M.H.; Tostado-Véliz, M.; Zawbaa, H.M. An improved wild horse optimization algorithm for reliability based optimal DG planning of radial distribution networks. Energy Rep. 2022, 8, 582–604. [Google Scholar] [CrossRef]
- Rao, P.C.; Lalwani, P.; Banka, H.; Rao, G. Competitive swarm optimization based unequal clustering and routing algorithms (CSO-UCRA) for wireless sensor networks. Multimed. Tools Appl. 2021, 80, 26093–26119. [Google Scholar] [CrossRef]
- Aftab, F.; Khan, A.; Zhang, Z. Hybrid self-organized clustering scheme for drone based cognitive Internet of Things. IEEE Access 2019, 7, 56217–56227. [Google Scholar] [CrossRef]
Cluster Building Time (s) | ||||
---|---|---|---|---|
No. of Drones | SCA-ITV | BICSF | HSCS | DOC-MHRS |
15 | 0.61 | 0.44 | 0.44 | 0.33 |
20 | 0.84 | 0.70 | 0.59 | 0.47 |
25 | 1.05 | 0.86 | 0.79 | 0.62 |
30 | 1.19 | 1.06 | 0.92 | 0.73 |
35 | 1.25 | 1.14 | 1.11 | 0.89 |
Energy Consumption (J) | ||||
---|---|---|---|---|
No. of Drones | SCA-ITV | BICSF | HSCS | DMOSC-MHRS |
Scenario-1 | ||||
15 | 0.61 | 0.44 | 0.44 | 0.33 |
20 | 0.84 | 0.70 | 0.59 | 0.47 |
25 | 1.05 | 0.86 | 0.79 | 0.62 |
30 | 1.19 | 1.06 | 0.92 | 0.73 |
35 | 1.25 | 1.14 | 1.11 | 0.89 |
Scenario-2 | ||||
15 | 1.73 | 1.66 | 1.39 | 1.07 |
20 | 2.81 | 2.49 | 2.25 | 1.47 |
25 | 3.57 | 3.30 | 2.91 | 2.11 |
30 | 4.37 | 3.90 | 3.20 | 2.76 |
35 | 4.66 | 4.14 | 3.77 | 3.02 |
Scenario-3 | ||||
15 | 2.78 | 2.03 | 1.77 | 1.23 |
20 | 3.38 | 2.74 | 2.58 | 1.95 |
25 | 3.95 | 3.52 | 3.18 | 2.55 |
30 | 4.52 | 4.04 | 3.66 | 2.91 |
35 | 4.66 | 4.46 | 3.95 | 3.45 |
Cluster Life Time (s) | ||||
---|---|---|---|---|
No. of Drones | SCA-ITV | BICSF | HSCS | DMOSC-MHRS |
Scenario-1 | ||||
15 | 36.73 | 46.37 | 48.67 | 52.34 |
20 | 34.90 | 44.08 | 47.75 | 52.49 |
25 | 32.60 | 40.41 | 44.54 | 50.35 |
30 | 30.31 | 38.72 | 41.78 | 49.13 |
35 | 28.78 | 34.74 | 37.65 | 48.36 |
Scenario-2 | ||||
15 | 43.85 | 50.78 | 52.78 | 55.71 |
20 | 40.78 | 48.63 | 51.09 | 54.78 |
25 | 37.70 | 44.78 | 47.86 | 53.24 |
30 | 36.00 | 42.62 | 46.16 | 50.32 |
35 | 32.77 | 38.77 | 41.39 | 49.70 |
Scenario-3 | ||||
15 | 48.78 | 55.01 | 56.26 | 58.59 |
20 | 43.48 | 50.65 | 54.08 | 57.50 |
25 | 38.81 | 45.51 | 50.49 | 56.26 |
30 | 35.85 | 44.88 | 46.75 | 52.83 |
35 | 35.69 | 40.83 | 43.79 | 52.83 |
Reliability (%) | ||||
---|---|---|---|---|
No. of Drones | SCA-ITV | BICSF | HSCS | DMOSC-MHRS |
15 | 87.36 | 89.13 | 90.43 | 94.29 |
20 | 88.05 | 89.60 | 91.06 | 94.90 |
25 | 89.56 | 90.91 | 92.52 | 94.98 |
30 | 90.63 | 92.05 | 93.77 | 95.56 |
35 | 91.90 | 93.66 | 95.11 | 96.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrayes, F.S.; Alzahrani, J.S.; Alissa, K.A.; Alharbi, A.; Alshahrani, H.; Elfaki, M.A.; Yafoz, A.; Mohamed, A.; Hilal, A.M. Dwarf Mongoose Optimization-Based Secure Clustering with Routing Technique in Internet of Drones. Drones 2022, 6, 247. https://doi.org/10.3390/drones6090247
Alrayes FS, Alzahrani JS, Alissa KA, Alharbi A, Alshahrani H, Elfaki MA, Yafoz A, Mohamed A, Hilal AM. Dwarf Mongoose Optimization-Based Secure Clustering with Routing Technique in Internet of Drones. Drones. 2022; 6(9):247. https://doi.org/10.3390/drones6090247
Chicago/Turabian StyleAlrayes, Fatma S., Jaber S. Alzahrani, Khalid A. Alissa, Abdullah Alharbi, Hussain Alshahrani, Mohamed Ahmed Elfaki, Ayman Yafoz, Abdullah Mohamed, and Anwer Mustafa Hilal. 2022. "Dwarf Mongoose Optimization-Based Secure Clustering with Routing Technique in Internet of Drones" Drones 6, no. 9: 247. https://doi.org/10.3390/drones6090247
APA StyleAlrayes, F. S., Alzahrani, J. S., Alissa, K. A., Alharbi, A., Alshahrani, H., Elfaki, M. A., Yafoz, A., Mohamed, A., & Hilal, A. M. (2022). Dwarf Mongoose Optimization-Based Secure Clustering with Routing Technique in Internet of Drones. Drones, 6(9), 247. https://doi.org/10.3390/drones6090247