The Use of UAVs for Morphological Coastal Change Monitoring—A Bibliometric Analysis
Abstract
:1. Introduction
1.1. The Importance of Coastal Monitoring
1.2. Coastal Monitoring Methods
1.3. Increasing Use of UAVs and Their Advantages
2. Materials and Methods
2.1. Data Selection and Screening
- -
- 3.2 Marine Biology;
- -
- 3.60 Herbicides, Pesticides & Ground Poisoning;
- -
- 4.116 Robotics;
- -
- 4.17 Computer Vision & Graphics;
- -
- 4.46 Distributed & Real Time Computing;
- -
- 8.283 Archaeometry;
- -
- 8.93 Archaeology.
2.2. Data Analysis
3. Results and Discussion
3.1. Keyword Analysis
3.2. Influential Authors
3.3. Citation Analysis
3.4. Co-Citations Analysis
3.5. Country and Academic Institution Analysis
3.6. Article’s Sources Analysis
3.7. Limitations and Potentials of UAVs for Coastal Monitoring
4. Conclusions
- -
- Overall, the literature has grown rapidly and attracted great attention from researchers in recent years, as the number of publications since 2017 suggests. It is believed that this topic is at its highest level in terms of innovation. However, it is important to highlight the advent of a new technology strongly linked to the use of drones for coastal monitoring: LiDAR [102].
- -
- This review found that the literature has evolved from the development of new coastal change monitoring methods using UAVs to suggestions for minimising errors and optimising results, and later to the incorporation of sensors and other technologies in drones (multispectral cameras, infrared, LiDAR, etc.)
- -
- Research on the use of drones for coastal change surveying is mainly related to the topographic/geomorphological monitoring of coastal areas in conjunction with 3D mapping. Some of the most influential studies in these areas of knowledge include [20,42,53,58,104]. These studies have developed key contributions for the use of drones for coastal change surveying.
- -
- The current bibliometric analysis allows us to conclude that, regarding the methodology, most of the publications reviewed were based on real-life case studies, which allows us to infer that the use of drones for monitoring shoreline changes is feasible and delivers sound, qualitative, and quantitative results.
- -
- Although there are still some limitations to their use in coastal change research (as well as in other areas of research), the potential of these technologies, the advantages they offer over other methodologies, and the interest revealed by the scientific community (as well as the investment being made by industry) reinforce their importance and guarantee their increasingly intensive and widespread use.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dolan, R.; Fenster, M.S.; Holme, S.J. Temporal Analysis of Shoreline Recession and Accretion. J. Coast. Res. 1991, 7, 723–744. [Google Scholar]
- Misra, A.; Balaji, R. A Study on the Shoreline Changes and LAND-Use/Land-Cover along the South Gujarat Coastline. Procedia Eng. 2015, 116, 381–389. [Google Scholar] [CrossRef]
- Dias, J.M.A. Estudo de Avaliação Da Situação Ambiental e Propostas de Salvaguarda Para a Faixa Costeira Portuguesa; Relatório: Lisboa, Portugal, 1993. [Google Scholar]
- Salghuna, N.N.; Bharathvaj, S.A. Shoreline Change Analysis for Northern Part of the Coromandel Coast. Aquat. Procedia 2015, 4, 317–324. [Google Scholar] [CrossRef]
- Gonçalves, G.; Santos, S.; Duarte, D.; Gomes, J. Monitoring Local Shoreline Changes by Integrating UASs, Airborne LiDAR, Historical Images and Orthophotos. In Proceedings of the 5th International Conference on Geographical Information Systems Theory, Applications and Management, Crete, Greece, 3–5 May 2019; SCITEPRESS—Science and Technology Publications: Setúbal, Portugal, 2019; pp. 126–134. [Google Scholar]
- Filatova, T.; Voinov, A.; van der Veen, A. Land Market Mechanisms for Preservation of Space for Coastal Ecosystems: An Agent-Based Analysis. Environ. Model. Softw. 2011, 26, 179–190. [Google Scholar] [CrossRef]
- Spalding, M.D.; McIvor, A.L.; Beck, M.W.; Koch, E.W.; Möller, I.; Reed, D.J.; Rubinoff, P.; Spencer, T.; Tolhurst, T.J.; Wamsley, T.V.; et al. Coastal Ecosystems: A Critical Element of Risk Reduction. Conserv. Lett. 2014, 7, 293–301. [Google Scholar] [CrossRef]
- Liquete, C.; Piroddi, C.; Drakou, E.G.; Gurney, L.; Katsanevakis, S.; Charef, A.; Egoh, B. Current Status and Future Prospects for the Assessment of Marine and Coastal Ecosystem Services: A Systematic Review. PLoS ONE 2013, 8, e67737. [Google Scholar] [CrossRef]
- Jaafar, S.N.; Yusoff, M.M.; Hua, A.K.; Ping, O.W. How Possible the Coastal Erosion and Coastal Deposition to Influenced on the Life Quality of Kemeruk Residents? A Structure Equation Model Study. Int. J. Acad. Res. Environ. Geogr. 2018, 5, 59–69. [Google Scholar]
- Gu, M.; Wong, P.P. Residents’ Perception of Tourism Impacts: A Case Study of Homestay Operators in Dachangshan Dao, North-East China. Tour. Geogr. 2006, 8, 253–273. [Google Scholar] [CrossRef]
- Short, A.D.; Trembanis, A.C. Decadal Scale Patterns in Beach Oscillation and Rotation Narrabeen Beach, Australia—Time Series, PCA and Wavelet Analysis. J. Coast. Res. 2004, 20, 523–532. [Google Scholar] [CrossRef]
- Saito, K.; Spence, R.J.S.; Going, C.; Markus, M. Using High-Resolution Satellite Images for Post-Earthquake Building Damage Assessment: A Study Following the 26 January 2001 Gujarat Earthquake. Earthq. Spectra 2004, 20, 145–169. [Google Scholar] [CrossRef]
- Tan, Z.; Di, L.; Zhang, M.; Guo, L.; Gao, M. An Enhanced Deep Convolutional Model for Spatiotemporal Image Fusion. Remote Sens. 2019, 11, 2898. [Google Scholar] [CrossRef]
- Bio, A.; Bastos, L.; Granja, H.; Pinho, J.L.S.; Gonçalves, J.A.; Henriques, R.; Madeira, S.; Magalhães, A.; Rodrigues, D. Methods for Coastal Monitoring and Erosion Risk Assessment: Two Portuguese Case Studies. Rev. Gestão Costeira Integr. 2015, 15, 47–63. [Google Scholar] [CrossRef]
- Barry, P.; Coakley, R. Accuracy of Uav Photogrammetry Compared with Network RTK GPS. Int. Arch. Photogramm. Remote Sens. 2013, 2, 2731. [Google Scholar]
- Haala, N.; Cramer, M.; Weimer, F.; Trittler, M. Performance Test on UAV-Based Photogrammetric Data Collection. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXVIII-1/C22, 7–12. [Google Scholar] [CrossRef]
- Vallet, J.; Panissod, F.; Strecha, C.; Tracol, M. Photogrammetric Performance of an Ultra Light Weight Swinglet “UAV”. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXVIII-1/C22, 253–258. [Google Scholar] [CrossRef]
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for Coastal Surveying. Coast. Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
- Gonçalves, J.A.; Bastos, L.; Perez, B.; Magalhães, A. Monitoring of Beaches and Sand Dunes Using Digital Aerial Photography with Direct Georreferencing. In Proceedings of the ISPRS TC VII Symposium—100 Years ISPRS, Part B, Vienna, Austria, 5–7 July 2010; pp. 228–232. [Google Scholar]
- Gonçalves, J.A.; Henriques, R. UAV Photogrammetry for Topographic Monitoring of Coastal Areas. ISPRS J. Photogramm. Remote Sens. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- Arora, S.D.; Chakraborty, A. Intellectual Structure of Consumer Complaining Behavior (CCB) Research: A Bibliometric Analysis. J. Bus. Res. 2021, 122, 60–74. [Google Scholar] [CrossRef]
- Kapoor, K.K.; Tamilmani, K.; Rana, N.P.; Patil, P.; Dwivedi, Y.K.; Nerur, S. Advances in Social Media Research: Past, Present and Future. Inf. Syst. Front. 2018, 20, 531–558. [Google Scholar] [CrossRef]
- Mishra, D.; Luo, Z.; Jiang, S.; Papadopoulos, T.; Dubey, R. A Bibliographic Study on Big Data: Concepts, Trends and Challenges. Bus. Process Manag. J. 2017, 23, 555–573. [Google Scholar] [CrossRef]
- Small, H. Visualizing Science by Citation Mapping. J. Am. Soc. Inf. Sci. 1999, 50, 799–813. [Google Scholar] [CrossRef]
- Tahai, A.; Rigsby, J.T. Information Processing Using Citations to Investigate Journal Influence in Accounting. Inf. Process. Manag. 1998, 34, 341–359. [Google Scholar] [CrossRef]
- Casillas, J.; Acedo, F. Evolution of the Intellectual Structure of Family Business Literature: A Bibliometric Study of FBR. Fam. Bus. Rev. 2007, 20, 141–162. [Google Scholar] [CrossRef]
- Thelwall, M. Bibliometrics to Webometrics. J. Inf. Sci. 2008, 34, 605–621. [Google Scholar] [CrossRef]
- Folharini, S.; Vieira, A.; Bento-Gonçalves, A.; Silva, S.; Marques, T.; Novais, J. Bibliometric Analysis on Wildfires and Protected Areas. Sustainability 2023, 15, 8536. [Google Scholar] [CrossRef]
- dos Santos, S.M.B.; Bento-Gonçalves, A.; Vieira, A. Research on Wildfires and Remote Sensing in the Last Three Decades: A Bibliometric Analysis. Forests 2021, 12, 604. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, M.; Qing, X.; Li, G.; Tian, C. Bibliometric Analysis of Global Remote Sensing Research during 2010–2015. ISPRS Int. J. Geo-Inf. 2017, 6, 332. [Google Scholar] [CrossRef]
- Zupic, I.; Čater, T. Bibliometric Methods in Management and Organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, Y.; Wu, Z.; Lv, T. A Bibliometric Analysis on Land Degradation: Current Status, Development, and Future Directions. Land 2020, 9, 28. [Google Scholar] [CrossRef]
- Nita, A. Empowering Impact Assessments Knowledge and International Research Collaboration—A Bibliometric Analysis of Environmental Impact Assessment Review Journal. Environ. Impact Assess. Rev. 2019, 78, 106283. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Rodríguez-Soler, R.; Uribe-Toril, J.; De Pablo Valenciano, J. Worldwide Trends in the Scientific Production on Rural Depopulation, a Bibliometric Analysis Using Bibliometrix R-Tool. Land Use Policy 2020, 97, 104787. [Google Scholar] [CrossRef]
- Bakır, M.; Özdemir, E.; Akan, Ş.; Atalık, Ö. A Bibliometric Analysis of Airport Service Quality. J. Air Transp. Manag. 2022, 104, 102273. [Google Scholar] [CrossRef]
- Yakath Ali, N.S.; Yu, C.; See, K.F. Four Decades of Airline Productivity and Efficiency Studies: A Review and Bibliometric Analysis. J. Air Transp. Manag. 2021, 96, 102099. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhang, Y.; Dong, L.; Guo, X. Bibliometric Analysis of Stroke and Quality of Life. Front. Neurol. 2023, 14, 1143713. [Google Scholar] [CrossRef]
- Jumansyah, R.; Dewi, N.P.; Soegoto, E.S.; Luckyardi, S.; Alshiqi, S. Modeling Islamic Marketing Research Using VOSviewer Application: A Bibliometric Analysis. J. East. Eur. Cent. Asian Res. 2023, 10, 31–45. [Google Scholar] [CrossRef]
- Ventura, D.; Bonifazi, A.; Gravina, M.F.; Ardizzone, G.D. Unmanned Aerial Systems (UASs) for Environmental Monitoring: A Review with Applications in Coastal Habitats. In Aerial Robots—Aerodynamics, Control and Applications; InTech: London, UK, 2017. [Google Scholar]
- Papakonstantinou, A.; Topouzelis, K.; Pavlogeorgatos, G. Coastline Zones Identification and 3D Coastal Mapping Using UAV Spatial Data. ISPRS Int. J. Geo-Inf. 2016, 5, 75. [Google Scholar] [CrossRef]
- Uddin, A.; Singh, V.K.; Pinto, D.; Olmos, I. Scientometric Mapping of Computer Science Research in Mexico. Scientometrics 2015, 105, 97–114. [Google Scholar] [CrossRef]
- Day, R.A. How to Write and Publish Scientific Papers. Mem. Inst. Oswaldo Cruz 1998, 93, 423–424. [Google Scholar] [CrossRef]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from Motion Photogrammetry in Forestry: A Review. Curr. For. Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef]
- Mallet, C.; Bretar, F. Full-Waveform Topographic Lidar: State-of-the-Art. ISPRS J. Photogramm. Remote Sens. 2009, 64, 1–16. [Google Scholar] [CrossRef]
- Baltsavias, E.P. A Comparison between Photogrammetry and Laser Scanning. ISPRS J. Photogramm. Remote Sens. 1999, 54, 83–94. [Google Scholar] [CrossRef]
- Kale, M.M.; Ataol, M.; Tekkanat, İ.S. Assessment of Shoreline Alterations Using a Digital Shoreline Analysis System: A Case Study of Changes in the Yeşilırmak Delta in Northern Turkey from 1953 to 2017. Environ. Monit. Assess. 2019, 191, 398. [Google Scholar] [CrossRef] [PubMed]
- Sheeja, P.S.; Ajay Gokul, A.J. Application of Digital Shoreline Analysis System in Coastal Erosion Assessment. Int. J. Eng. Sci. Comput. 2016, 6, 7876–7883. [Google Scholar]
- Weingart, P. Impact of Bibliometrics upon the Science System: Inadvertent Consequences? Scientometrics 2005, 62, 117–131. [Google Scholar] [CrossRef]
- Waltman, L.; Calero-Medina, C.; Kosten, J.; Noyons, E.C.M.; Tijssen, R.J.W.; van Eck, N.J.; van Leeuwen, T.N.; van Raan, A.F.J.; Visser, M.S.; Wouters, P. The Leiden Ranking 2011/2012: Data Collection, Indicators, and Interpretation. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 2419–2432. [Google Scholar] [CrossRef]
- Sharma, R.; Shishodia, A.; Gunasekaran, A.; Min, H.; Munim, Z.H. The Role of Artificial Intelligence in Supply Chain Management: Mapping the Territory. Int. J. Prod. Res. 2022, 60, 7527–7550. [Google Scholar] [CrossRef]
- Harwin, S.; Lucieer, A. Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery. Remote Sens. 2012, 4, 1573–1599. [Google Scholar] [CrossRef]
- Laporte-Fauret, Q.; Marieu, V.; Castelle, B.; Michalet, R.; Bujan, S.; Rosebery, D. Low-Cost UAV for High-Resolution and Large-Scale Coastal Dune Change Monitoring Using Photogrammetry. J. Mar. Sci. Eng. 2019, 7, 63. [Google Scholar] [CrossRef]
- Gonçalves, G.; Andriolo, U.; Pinto, L.; Bessa, F. Mapping Marine Litter Using UAS on a Beach-Dune System: A Multidisciplinary Approach. Sci. Total Environ. 2020, 706, 135742. [Google Scholar] [CrossRef] [PubMed]
- Brasington, J.; Langham, J.; Rumsby, B. Methodological Sensitivity of Morphometric Estimates of Coarse Fluvial Sediment Transport. Geomorphology 2003, 53, 299–316. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Cheng, Y.-T.; Zhou, T.; Ravi, R.; Hasheminasab, S.; Flatt, J.; Troy, C.; Habib, A. Evaluation of UAV LiDAR for Mapping Coastal Environments. Remote Sens. 2019, 11, 2893. [Google Scholar] [CrossRef]
- Guisado-Pintado, E.; Jackson, D.W.T.; Rogers, D. 3D Mapping Efficacy of a Drone and Terrestrial Laser Scanner over a Temperate Beach-Dune Zone. Geomorphology 2019, 328, 157–172. [Google Scholar] [CrossRef]
- Lantuit, H.; Pollard, W.H. Fifty Years of Coastal Erosion and Retrogressive Thaw Slump Activity on Herschel Island, Southern Beaufort Sea, Yukon Territory, Canada. Geomorphology 2008, 95, 84–102. [Google Scholar] [CrossRef]
- Ruessink, B.G.; Arens, S.M.; Kuipers, M.; Donker, J.J.A. Coastal Dune Dynamics in Response to Excavated Foredune Notches. Aeolian Res. 2018, 31, 3–17. [Google Scholar] [CrossRef]
- Forbes, D.L.; Parkes, G.S.; Manson, G.K.; Ketch, L.A. Storms and Shoreline Retreat in the Southern Gulf of St. Lawrence. Mar. Geol. 2004, 210, 169–204. [Google Scholar] [CrossRef]
- Le Mauff, B.; Juigner, M.; Ba, A.; Robin, M.; Launeau, P.; Fattal, P. Coastal Monitoring Solutions of the Geomorphological Response of Beach-Dune Systems Using Multi-Temporal LiDAR Datasets (Vendée Coast, France). Geomorphology 2018, 304, 121–140. [Google Scholar] [CrossRef]
- Fletcher, C.; Rooney, M.; Barbee, M.; Lim, S.C.; Richmond, B. Mapping Shoreline Change Using Digital Orthophotogrammetry on Maui, Hawaii. J. Coast. Res. 2003, 38, 106–124. [Google Scholar]
- Westoby, M.J.; Lim, M.; Hogg, M.; Pound, M.J.; Dunlop, L.; Woodward, J. Cost-Effective Erosion Monitoring of Coastal Cliffs. Coast. Eng. 2018, 138, 152–164. [Google Scholar] [CrossRef]
- Warrick, J.A.; Ritchie, A.C.; Schmidt, K.M.; Reid, M.E.; Logan, J. Characterizing the Catastrophic 2017 Mud Creek Landslide, California, Using Repeat Structure-from-Motion (SfM) Photogrammetry. Landslides 2019, 16, 1201–1219. [Google Scholar] [CrossRef]
- Thornton, E.B.; Sallenger, A.; Sesto, J.C.; Egley, L.; McGee, T.; Parsons, R. Sand Mining Impacts on Long-Term Dune Erosion in Southern Monterey Bay. Mar. Geol. 2006, 229, 45–58. [Google Scholar] [CrossRef]
- Gonçalves, G.R.; Pérez, J.A.; Duarte, J. Accuracy and Effectiveness of Low Cost UASs and Open Source Photogrammetric Software for Foredunes Mapping. Int. J. Remote Sens. 2018, 39, 5059–5077. [Google Scholar] [CrossRef]
- Norcross, Z.M.; Fletcher, C.H.; Merrifield, M. Annual and Interannual Changes on a Reef-Fringed Pocket Beach: Kailua Bay, Hawaii. Mar. Geol. 2002, 190, 553–580. [Google Scholar] [CrossRef]
- Pikelj, K.; Ruzic, I.; Ilic, S.; James, M.R.; Kordic, B. Implementing an Efficient Beach Erosion Monitoring System for Coastal in Croatia. Ocean Coast. Manag. 2018, 156, 223–238. [Google Scholar] [CrossRef]
- Gmür, M. Co-Citation Analysis and the Search for Invisible Colleges: A Methodological Evaluation. Scientometrics 2003, 57, 27–57. [Google Scholar] [CrossRef]
- Small, H. Co-Citation in the Scientific Literature: A New Measure of the Relationship between Two Documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Wright, L.; Short, A. Morphodynamic Variability of Surf Zones and Beaches: A Synthesis. Mar. Geol. 1984, 56, 93–118. [Google Scholar] [CrossRef]
- Brunier, G.; Fleury, J.; Anthony, E.J.; Gardel, A.; Dussouillez, P. Close-Range Airborne Structure-from-Motion Photogrammetry for High-Resolution Beach Morphometric Surveys: Examples from an Embayed Rotating Beach. Geomorphology 2016, 261, 76–88. [Google Scholar] [CrossRef]
- Casella, E.; Rovere, A.; Pedroncini, A.; Stark, C.P.; Casella, M.; Ferrari, M.; Firpo, M. Drones as Tools for Monitoring Beach Topography Changes in the Ligurian Sea (NW Mediterranean). Geo-Marine Lett. 2016, 36, 151–163. [Google Scholar] [CrossRef]
- Hesp, P. Foredunes and Blowouts: Initiation, Geomorphology and Dynamics. Geomorphology 2002, 48, 245–268. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; D’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV Topographic Surveys Processed with Structure-from-Motion: Ground Control Quality, Quantity and Bundle Adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef]
- Long, N.; Millescamps, B.; Guillot, B.; Pouget, F.; Bertin, X. Monitoring the Topography of a Dynamic Tidal Inlet Using UAV Imagery. Remote Sens. 2016, 8, 387. [Google Scholar] [CrossRef]
- Scarelli, F.M.; Sistilli, F.; Fabbri, S.; Cantelli, L.; Barboza, E.G.; Gabbianelli, G. Seasonal Dune and Beach Monitoring Using Photogrammetry from UAV Surveys to Apply in the ICZM on the Ravenna Coast (Emilia-Romagna, Italy). Remote Sens. Appl. Soc. Environ. 2017, 7, 27–39. [Google Scholar] [CrossRef]
- Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic Structure from Motion: A New Development in Photogrammetric Measurement. Earth Surf. Process. Landf. 2013, 38, 421–430. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Straightforward Reconstruction of 3D Surfaces and Topography with a Camera: Accuracy and Geoscience Application. J. Geophys. Res. Earth Surf. 2012, 117, F03017. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Mitigating Systematic Error in Topographic Models Derived from UAV and Ground-Based Image Networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef]
- Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments. Remote Sens. 2013, 5, 6880–6898. [Google Scholar] [CrossRef]
- Rosser, N.J.; Petley, D.N.; Lim, M.; Dunning, S.A.; Allison, R.J. Terrestrial Laser Scanning for Monitoring the Process of Hard Rock Coastal Cliff Erosion. Q. J. Eng. Geol. Hydrogeol. 2005, 38, 363–375. [Google Scholar] [CrossRef]
- Snavely, N.; Seitz, S.M.; Szeliski, R. Modeling the World from Internet Photo Collections. Int. J. Comput. Vis. 2008, 80, 189–210. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Boak, E.H.; Turner, I.L. Shoreline Definition and Detection: A Review. J. Coast. Res. 2005, 214, 688–703. [Google Scholar] [CrossRef]
- Crowell, M.; Leatherman, S.P.; Buckley, M.K. Historical Shoreline Change: Error Analysis and Mapping Accuracy. J. Coast. Res. 1991, 7, 839–852. [Google Scholar]
- Moore, L.J. Shoreline Mapping Techniques. J. Coast. Res. 2000, 16, 111–124. [Google Scholar]
- Klemas, V.V. Coastal and Environmental Remote Sensing from Unmanned Aerial Vehicles: An Overview. J. Coast. Res. 2015, 315, 1260–1267. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for Uncertainty in DEMs from Repeat Topographic Surveys: Improved Sediment Budgets. Earth Surf. Process. Landf. 2009, 35, 135–156. [Google Scholar] [CrossRef]
- Chapman, D.M. Coastal Erosion and the Sediment Budget, with Special Reference to the Gold Coast, Australia. Coast. Eng. 1980, 4, 207–227. [Google Scholar] [CrossRef]
- Masroor, R.; Naeem, M.; Ejaz, W. Resource Management in UAV-Assisted Wireless Networks: An Optimization Perspective. Ad Hoc Netw. 2021, 121, 102596. [Google Scholar] [CrossRef]
- Huang, Y.B.; Thomson, S.J.; Hoffmann, W.C.; Lan, Y.B.; Fritz, B.K. Development and Prospect of Unmanned Aerial Vehicle Technologies for Agricultural Production Management. Int. J. Agric. Biol. Eng. 2013, 6, 1–10. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A Review on UAV-Based Applications for Precision Agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef]
- Hardin, P.J.; Hardin, T.J. Small-Scale Remotely Piloted Vehicles in Environmental Research. Geogr. Compass 2010, 4, 1297–1311. [Google Scholar] [CrossRef]
- Laliberte, A.S.; Rango, A.; Herrick, J.E. Unmanned Aerial Vehicles for Rangeland Mapping and Monitoring: A Comparison of Two Systems. In Proceedings of the ASPRS Annual Conference Proceedings, Tampa, FL, USA, 7–11 May 2007. [Google Scholar]
- Nebiker, S.; Annen, A.; Scherrer, M.; Oesch, D.A. Light-Weight Multispectral Sensor for Micro UAV—Opportunities for Very High Resolution Airborne Remote Sensing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, XXXVII, 1193–1200. [Google Scholar]
- Hardin, P.J.; Jensen, R.R. Small-Scale Unmanned Aerial Vehicles in Environmental Remote Sensing: Challenges and Opportunities. GIScience Remote Sens. 2011, 48, 99–111. [Google Scholar] [CrossRef]
- Laliberte, A.S.; Rango, A. Image Processing and Classification Procedures for Analysis of Sub-Decimeter Imagery Acquired with an Unmanned Aircraft over Arid Rangelands. GISci. Remote Sens. 2011, 48, 4–23. [Google Scholar] [CrossRef]
- Warrick, J.A.; Ritchie, A.C.; Adelman, G.; Adelman, K.; Limber, P.W. New Techniques to Measure Cliff Change from Historical Oblique Aerial Photographs and Structure-from-Motion Photogrammetry. J. Coast. Res. 2017, 33, 39–55. [Google Scholar] [CrossRef]
- Nikolakopoulos, K.G.; Sardelianos, D.; Fakiris, E.; Papatheodorou, G. New Perspectives in Coastal Monitoring. In Earth Resources and Environmental Remote Sensing/GIS Applications X; Schulz, K., Nikolakopoulos, K.G., Michel, U., Eds.; SPIE: Washington, DC, USA, 2019; p. 1. [Google Scholar]
- Laghari, A.A.; Jumani, A.K.; Laghari, R.A.; Nawaz, H. Unmanned Aerial Vehicles: A Review. Cogn. Robot. 2023, 3, 8–22. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Y.; Wen, H.; Ruan, H.; Zhou, Z.; Luo, K.; Zhong, F. High-Resolution Monitoring of Beach Topography and Its Change Using Unmanned Aerial Vehicle Imagery. Ocean Coast. Manag. 2018, 160, 103–116. [Google Scholar] [CrossRef]
Search Operators | Keyword Query |
---|---|
OR | drone* “unmanned aerial vehicle*” “uav” “unmanned aircraft system*” “uas” “remotely piloted aircraft*” “rpa*” “structure from motion” “photogrammetry” “digital photogrammetry” “aerial photogrammetry” |
AND | |
OR | “beach erosion” “coastline chang*” “shoreline chang*” “coast* erosion” “shoreline monitoring” “coast* survey*” “beach dune*” “shoreline erosion” “topograph* monitoring” |
NOT | “satellite” |
NOT | “satellite imagery” |
Rank | 2002–2017 | Occurrences | 2018–2022 | Occurrences |
---|---|---|---|---|
1 | photogrammetry | 14 | coastal erosion | 26 |
2 | coastal erosion | 9 | uav | 23 |
3 | lidar | 5 | lidar | 14 |
4 | monitoring | 8 | structure from motion | 11 |
5 | uav | 5 | photogrammetry | 9 |
6 | beach erosion | 4 | shoreline | 9 |
7 | coastal | 3 | erosion | 8 |
8 | coastal management | 3 | dune | 7 |
9 | gps | 3 | remote sensing | 7 |
10 | sediment transport | 3 | dsas | 6 |
Rank | 2002–2017 | Citations | Publications | 2018–2022 | Citations | Occurrences |
---|---|---|---|---|---|---|
1 | Steve Harwin | 414 | 1 | David Rosebery | 104 | 26 |
2 | Arko Lucieer | 414 | 1 | Quentin Laport-Fauret | 101 | 23 |
3 | José A. Gonçalves | 334 | 1 | Stephane Bujan | 99 | 14 |
4 | Renato Henriques | 334 | 1 | Vincent Marieu | 87 | 11 |
5 | James Brasington | 331 | 1 | Gil Gonçalves | 84 | 9 |
6 | Joe Langham | 331 | 1 | Bruno Castelle | 80 | 9 |
7 | Barbara Rumsby | 331 | 1 | Umberto Andriolo | 78 | 8 |
8 | Christopher D. Drummond | 232 | 1 | Filipa Bessa | 78 | 7 |
9 | Mitchell D. Harley | 232 | 1 | Derek W. Jackson | 60 | 7 |
10 | Ian Turner | 232 | 1 | David Rogers | 60 | 6 |
Rank | 2002–2017 | 2018–2022 | ||||
---|---|---|---|---|---|---|
Document | Reference | Citations | Document | Citations | Reference | |
1 | Harwin and Lucieer (2012) | [53] | 414 | Laporte-Fauret et al. (2019) | 80 | [54] |
2 | Gonçalves and Henriques (2015) | [20] | 334 | Gonçalves et al. (2020) | 55 | [55] |
3 | Brasington et al. (2003) | [56] | 331 | Lin et al. (2019) | 51 | [57] |
4 | Turner et al. (2016) | [18] | 232 | Guisado-Pintado et al. (2019) | 49 | [58] |
5 | Lantuit and Pollard (2008) | [59] | 216 | Ruessink et al. (2018) | 49 | [60] |
6 | Forbes et al. (2004) | [61] | 156 | Le Mauff et al. (2018) | 46 | [62] |
7 | Fletcher et al. (2003) | [63] | 150 | Westoby et al. (2018) | 45 | [64] |
8 | Papakonstantinou et al. (2016) | [42] | 74 | Warrick et al. (2019) | 35 | [65] |
9 | Thornton et al. (2006) | [66] | 56 | Gonçalves et al. (2018) | 35 | [67] |
10 | Norcross et al. (2002) | [68] | 55 | Pikelj et al. (2018) | 27 | [69] |
Cluster | Broad Theme | References |
---|---|---|
1 | Sand dune morphodynamics; high-resolution surveys; optimizing GCPs; use of low-cost drones for beach monitoring | [18,20,42,54,72,73,74,75,76,77,78] |
2 | Comparison of results with LiDAR; 3D reconstruction; structure-from-motion techniques; error minimization | [53,79,80,81,82,83,84,85] |
3 | Coastal mapping; shoreline detection; digitization and correction of old aerial photographs | [86,87,88] |
4 | New equipment and drones; state-of-the-art overview | [89,90,91] |
Rank | 2002–2017 | 2018–2022 | ||||
---|---|---|---|---|---|---|
Countries | Publications | Citations | Countries | Publications | Citations | |
1 | USA | 30 | 414 | USA | 66 | 120 |
2 | France | 20 | 43 | France | 51 | 189 |
3 | United Kingdom | 19 | 381 | South Korea | 40 | 21 |
4 | Greece | 9 | 94 | Spain | 35 | 130 |
5 | Italy | 9 | 3 | Italy | 27 | 28 |
6 | Turkey | 9 | 10 | Portugal | 24 | 119 |
7 | Australia | 8 | 648 | Australia | 22 | 57 |
8 | Canada | 8 | 372 | Brazil | 19 | 11 |
9 | South Korea | 8 | 25 | Japan | 19 | 21 |
10 | Romania | 7 | 0 | United Kingdom | 17 | 61 |
Rank | 2002–2022 | ||
---|---|---|---|
Institutions | Country | Articles | |
1 | Universidade de Coimbra | Portugal | 14 |
2 | Université de Bordeaux | France | 11 |
3 | Universidad de Cádiz | Spain | 11 |
4 | Northumbria University | United Kingdom | 10 |
5 | Universidad de Santiago de Compostela | Spain | 10 |
6 | Deakin University | Australia | 7 |
7 | Université de Bretagne Occidentale | France | 7 |
8 | Kangwon National University | South Korea | 6 |
9 | Purdue University | United States | 6 |
10 | University of Cape Coast | Ghana | 6 |
11 | Universidade Federal do Rio Grande do Sul | Brazil | 6 |
12 | University of Windsor | Canada | 6 |
13 | Norsk Institutt for Kulturminneforskning | Norway | 5 |
14 | Seoul National University | South Korea | 5 |
15 | Universidad de Extremadura | Spain | 5 |
Rank | 2002–2022 | ||
---|---|---|---|
Journals | Publications | Citations | |
1 | Journal of Coastal Research | 6 | 243 |
2 | Marine Geology | 4 | 295 |
3 | Fresenius Environmental Bulletin | 2 | 27 |
4 | Geomorphology | 2 | 547 |
5 | ISPRS Journal of Photogrammetry and Remote Sensing | 2 | 388 |
6 | Remote Sensing | 2 | 430 |
7 | ICCSCE 2013 | 1 | 16 |
8 | Acta Montanistica Slovaca | 1 | 3 |
9 | ISPRS International Journal of Geo-Information | 1 | 74 |
10 | Coastal Engineering | 1 | 232 |
Rank | 2018–2022 | ||
---|---|---|---|
Journals | Publications | Citations | |
1 | Journal of Coastal Research | 13 | 52 |
2 | Remote Sensing | 10 | 126 |
3 | Earth Surface Processes and Landforms | 7 | 45 |
4 | Geomorphology | 5 | 111 |
5 | Science of the Total Environment | 5 | 113 |
6 | Water | 4 | 39 |
7 | Coastal Engineering | 3 | 54 |
8 | Drones | 3 | 29 |
9 | Journal of Marine Science and Engineering | 3 | 90 |
10 | International Journal of Remote Sensing | 2 | 41 |
Barrier | Description |
---|---|
Implementation costs | This may be the case for researchers or institutions with limited financial means [93]. |
Labour knowledge and expertise | In most cases, experienced pilots and skilled people are needed to fly the drones in hazardous situations or adverse conditions [94,95]. |
Engine power and flight duration | Drones cannot be operated for long hours or cover broad areas [96,97]. |
Stability, reliability, and manoeuvrability | Drones are not stable in adverse weather conditions [96,97]. |
Payload limitations and sensor quality | Due to their weight, drones cannot carry heavy loads, making it difficult to attach cameras and sensors [98]. |
Regulation | Drones can pose a threat to public safety, so rules are being tightened [99,100]. |
Barrier | Description |
---|---|
Mobility and accessibility | UAVs are highly mobile and can be easily transported to remote or hard-to-reach coastal areas. This makes it possible to monitor coastal sites that may be inaccessible by terrestrial methods [79,82]. |
Cost effectiveness | Compared to manned aircraft or satellite imagery, UAVs are relatively more affordable in terms of acquisition and operating costs. This allows organizations with limited budgets to carry out regular monitoring [20,54]. |
High spatial resolution | UAVs can capture high-resolution images, allowing the detection of minute details in coastal landscapes, such as small-scale erosion, changes in vegetation, and sedimentation patterns [15,20]. |
Agility and flexibility | UAVs can be quickly mobilised and reconfigured for different types of sensors such as RGB or multispectral cameras, and LiDAR depending on monitoring needs. This provides significant flexibility [62,90]. |
Real-time monitoring | Data captured by UAVs can be processed and analysed in real time or immediately after the flight, enabling a rapid response to unforeseen coastal events such as storms [14,18]. |
Safety | Operating UAVs is generally safer than sending people into potentially dangerous areas, such as unstable cliffs or erosive beaches. This reduces the risk for the monitoring team [41,101]. |
Digital data storage | Data captured by UAVs are stored digitally rather than physically, making them easier to share, analyse, and archive in the long term. This is especially useful for long-term studies and historical comparisons [16,64]. |
Integration with other advanced technologies | Due to georeferencing capabilities, data collected by UAVs can be easily integrated into geographic information systems (GIS) and processed with advanced techniques such as machine learning and spatial analysis [64,102]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novais, J.; Vieira, A.; Bento-Gonçalves, A.; Silva, S.; Folharini, S.; Marques, T. The Use of UAVs for Morphological Coastal Change Monitoring—A Bibliometric Analysis. Drones 2023, 7, 629. https://doi.org/10.3390/drones7100629
Novais J, Vieira A, Bento-Gonçalves A, Silva S, Folharini S, Marques T. The Use of UAVs for Morphological Coastal Change Monitoring—A Bibliometric Analysis. Drones. 2023; 7(10):629. https://doi.org/10.3390/drones7100629
Chicago/Turabian StyleNovais, Jorge, António Vieira, António Bento-Gonçalves, Sara Silva, Saulo Folharini, and Tiago Marques. 2023. "The Use of UAVs for Morphological Coastal Change Monitoring—A Bibliometric Analysis" Drones 7, no. 10: 629. https://doi.org/10.3390/drones7100629
APA StyleNovais, J., Vieira, A., Bento-Gonçalves, A., Silva, S., Folharini, S., & Marques, T. (2023). The Use of UAVs for Morphological Coastal Change Monitoring—A Bibliometric Analysis. Drones, 7(10), 629. https://doi.org/10.3390/drones7100629