A Fuzzy Pure Pursuit for Autonomous UGVs Based on Model Predictive Control and Whole-Body Motion Control
Abstract
:1. Introduction
2. Simplified Robot Kinematics and Dynamics
2.1. Steering Kinematics for Quadruped Robot
2.2. Dynamics of Quadruped Robot
3. Fuzzy Pure Pursuit
3.1. Pure Pursuit for Quadruped Robots
3.2. Fuzzification of Parameters
4. Control Algorithm Combined MPC and WBC
5. Results
5.1. Simulation Experiments
5.1.1. Ground Undulation 3 cm Test
5.1.2. Ground Undulation 6 cm Test
5.1.3. Robot Circle Walking
5.2. USLGO1 Walking
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Raibert, M.; Blankespoor, K.; Nelson, G.; Playter, R. Bigdog, the rough-terrain quadruped robot. IFAC Proc. Vol. 2008, 41, 10822–10825. [Google Scholar] [CrossRef]
- Meng, X.; Wang, S.; Cao, Z.; Zhang, L. A review of quadruped robots and environment perception. In Proceedings of the 2016 35th Chinese Control Conference (CCC), Chengdu, China, 27–29 July 2016; pp. 6350–6356. [Google Scholar]
- Katz, B.; Di Carlo, J.; Kim, S. Mini cheetah: A platform for pushing the limits of dynamic quadruped control. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 6295–6301. [Google Scholar]
- Ji, Y.; Margolis, G.B.; Agrawal, P. Dribblebot: Dynamic legged manipulation in the wild. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 5155–5162. [Google Scholar]
- Hwangbo, J.; Lee, J.; Dosovitskiy, A.; Bellicoso, D.; Tsounis, V.; Koltun, V.; Hutter, M. Learning agile and dynamic motor skills for legged robots. Sci. Robot. 2019, 4, eaau5872. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-W.; Wensing, P.M.; Kim, S. Jumping over obstacles with MIT Cheetah 2. Robot. Auton. Syst. 2021, 136, 103703. [Google Scholar] [CrossRef]
- Caluwaerts, K.; Iscen, A.; Kew, J.C.; Yu, W.; Zhang, T.; Freeman, D.; Lee, K.-H.; Lee, L.; Saliceti, S.; Zhuang, V. Barkour: Benchmarking animal-level agility with quadruped robots. arXiv 2023, arXiv:2305.14654. [Google Scholar]
- Yang, Y.; Norby, J.; Yim, J.K.; Johnson, A.M. Proprioception and tail control enable extreme terrain traversal by quadruped robots. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; pp. 735–742. [Google Scholar]
- Choi, S.; Ji, G.; Park, J.; Kim, H.; Mun, J.; Lee, J.H.; Hwangbo, J. Learning quadrupedal locomotion on deformable terrain. Sci. Robot. 2023, 8, eade2256. [Google Scholar] [CrossRef] [PubMed]
- Patané, L. Bio-Inspired Robotic Solutions for Landslide Monitoring. Energies 2019, 12, 1256. [Google Scholar] [CrossRef]
- Arena, P.; Patané, L.; Taffara, S. Learning risk-mediated traversability maps in unstructured terrains navigation through robot-oriented models. Inf. Sci. 2021, 576, 1–23. [Google Scholar] [CrossRef]
- Ji, G.; Mun, J.; Kim, H.; Hwangbo, J. Concurrent training of a control policy and a state estimator for dynamic and robust legged locomotion. IEEE Robot. Autom. Lett. 2022, 7, 4630–4637. [Google Scholar] [CrossRef]
- Rudin, N.; Kolvenbach, H.; Tsounis, V.; Hutter, M. Cat-like jumping and landing of legged robots in low gravity using deep reinforcement learning. IEEE Trans. Robot. 2021, 38, 317–328. [Google Scholar] [CrossRef]
- Park, H.-W.; Wensing, P.M.; Kim, S. High-speed bounding with the MIT Cheetah 2: Control design and experiments. Int. J. Robot. Res. 2017, 36, 167–192. [Google Scholar] [CrossRef]
- Hubicki, C.M.; Aguilar, J.J.; Goldman, D.I.; Ames, A.D. Tractable terrain-aware motion planning on granular media: An impulsive jumping study. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 3887–3892. [Google Scholar]
- Nguyen, Q.; Powell, M.J.; Katz, B.; Di Carlo, J.; Kim, S. Optimized jumping on the mit cheetah 3 robot. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 7448–7454. [Google Scholar]
- Kim, D.; Carballo, D.; Di Carlo, J.; Katz, B.; Bledt, G.; Lim, B.; Kim, S. Vision aided dynamic exploration of unstructured terrain with a small-scale quadruped robot. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 2464–2470. [Google Scholar]
- Loquercio, A.; Kumar, A.; Malik, J. Learning visual locomotion with cross-modal supervision. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 7295–7302. [Google Scholar]
- Rudin, N.; Hoeller, D.; Bjelonic, M.; Hutter, M. Advanced skills by learning locomotion and local navigation end-to-end. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 2497–2503. [Google Scholar]
- Wellhausen, L.; Hutter, M. Rough terrain navigation for legged robots using reachability planning and template learning. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 6914–6921. [Google Scholar]
- Peng, M.; Gong, Z.; Sun, C.; Chen, L.; Cao, D. Imitative reinforcement learning fusing vision and pure pursuit for self-driving. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 3298–3304. [Google Scholar]
- Sun, Q.; Wang, Z.; Li, M.; Liu, B.; Cheng, J.; Tai, J. Path tracking control of wheeled mobile robot based on improved pure pursuit algorithm. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 4239–4244. [Google Scholar]
- Lin, J.; Ni, T. Research on optimized motion control of soccer robot based on fuzzy-PID control. In Proceedings of the 2018 5th International Conference on Information Science and Control Engineering (ICISCE), Zhengzhou, China, 20–22 July 2018; pp. 952–956. [Google Scholar]
- Wildani, F.; Mardiati, R.; Mulyana, E.; Setiawan, A.E.; Nurmalasari, R.R.; Sartika, N. Fuzzy logic control for semi-autonomous navigation robot using integrated remote control. In Proceedings of the 2022 8th International Conference on Wireless and Telematics (ICWT), Yogyakarta, Indonesia, 21–22 July 2022; pp. 1–5. [Google Scholar]
- Moran, A.; Nagai, M. Autonomous driving of truck-trailer mobile robots with linear-fuzzy control for trajectory following. In Proceedings of the 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar]
- Di Carlo, J.; Wensing, P.M.; Katz, B.; Bledt, G.; Kim, S. Dynamic locomotion in the mit cheetah 3 through convex model-predictive control. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1–9. [Google Scholar]
- Bledt, G.; Powell, M.J.; Katz, B.; Di Carlo, J.; Wensing, P.M.; Kim, S. Mit cheetah 3: Design and control of a robust, dynamic quadruped robot. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 2245–2252. [Google Scholar]
- Ding, Y.; Pandala, A.; Li, C.; Shin, Y.-H.; Park, H.-W. Representation-free model predictive control for dynamic motions in quadrupeds. IEEE Trans. Robot. 2021, 37, 1154–1171. [Google Scholar] [CrossRef]
- Kim, D.; Di Carlo, J.; Katz, B.; Bledt, G.; Kim, S. Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control. arXiv 2019, arXiv:1909.06586. [Google Scholar]
- Bellicoso, C.D.; Jenelten, F.; Fankhauser, P.; Gehring, C.; Hwangbo, J.; Hutter, M. Dynamic locomotion and whole-body control for quadrupedal robots. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 3359–3365. [Google Scholar]
- Fahmi, S.; Mastalli, C.; Focchi, M.; Semini, C. Passive whole-body control for quadruped robots: Experimental validation over challenging terrain. IEEE Robot. Autom. Lett. 2019, 4, 2553–2560. [Google Scholar] [CrossRef]
- Li, S.; An, X.; Ding, L.; Wang, Q.; Gao, H.; Hou, Y.; Deng, Z. Adaptive neural network-based finite-time tracking control for nonstrict nonaffined MIMO nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 4814–4824. [Google Scholar] [CrossRef]
- Xu, P.; Ding, L.; Li, Z.; Yang, H.; Wang, Z.; Gao, H.; Zhou, R.; Su, Y.; Deng, Z.; Huang, Y. Learning physical characteristics like animals for legged robots. Natl. Sci. Rev. 2023, 10, nwad045. [Google Scholar] [CrossRef] [PubMed]
- Koco, E.; Mirkovic, D.; Kovačić, Z. Hybrid compliance control for locomotion of electrically actuated quadruped robot. J. Intell. Robot. Syst. 2019, 94, 537–563. [Google Scholar] [CrossRef]
- Xiao, A.; Tong, W.; Yang, L.; Zeng, J.; Li, Z.; Sreenath, K. Robotic guide dog: Leading a human with leash-guided hybrid physical interaction. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xian, China, 30 May–5 June 2021; pp. 11470–11476. [Google Scholar]
- Wang, R.; Li, Y.; Fan, J.; Wang, T.; Chen, X. A novel pure pursuit algorithm for autonomous vehicles based on salp swarm algorithm and velocity controller. IEEE Access 2020, 8, 166525–166540. [Google Scholar] [CrossRef]
- Huang, Y.; Tian, Z.; Jiang, Q.; Xu, J. Path tracking based on improved pure pursuit model and pid. In Proceedings of the 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Weihai, China, 14–16 October 2020; pp. 359–364. [Google Scholar]
- Macenski, S.; Singh, S.; Martín, F.; Ginés, J. Regulated pure pursuit for robot path tracking. Auton. Robot. 2023, 47, 685–694. [Google Scholar] [CrossRef]
- Liu, K. Study of Architecture System and Navigation Technology of Unmanned Grand Vehicle. Master’s Thesis, Beijing Institute of Technology, Beijing, China, 2010. [Google Scholar]
- Arena, P.; Patanè, L.; Spinosa, A.G. A New Embodied Motor-Neuron Architecture. IEEE Trans. Control Syst. Technol. 2021, 30, 2212–2219. [Google Scholar] [CrossRef]
NB | NM | NS | Z0 | PS | PM | PB | |
NB | PB | PB | PB | PB | PM | PS | Z0 |
NM | PB | PB | PB | PB | PM | Z0 | Z0 |
NS | PM | PM | PM | PM | Z0 | PS | NS |
Z0 | PM | PM | PS | Z0 | NS | NS | NM |
PS | PS | PS | Z0 | NS | NM | NM | NM |
PM | PS | Z0 | NS | NM | NM | NM | NB |
PB | Z0 | Z0 | NM | NM | NM | NB | NB |
NB | NM | NS | Z0 | PS | PM | PB | |
NB | PS | PS | Z0 | Z0 | Z0 | PB | PB |
NM | NS | NS | NS | NS | Z0 | NS | PM |
NS | NB | NB | NM | NM | NS | PS | PM |
Z0 | NB | NM | NM | NS | NS | NS | PM |
PS | NB | NM | NS | NS | Z0 | PS | PS |
PM | NM | NS | NS | NS | Z0 | PS | PS |
PB | NS | Z0 | Z0 | Z0 | Z0 | PB | PB |
Priority | Task |
---|---|
0 | No motion at the contact points |
1 | Body rotation control |
2 | Body lateral motion control |
3 | Swing leg foot trajectory tracking |
Variable/Parameters | Symbols | Value |
---|---|---|
Body mass | 12.786 kg | |
Body length | 0.267 m | |
Body width | 0.194 m | |
Body height | 0.114 m | |
Ab/Ad joint length | 0.075 m | |
Hip joint length | 0.22 m | |
Knee joint length | 0.22 m |
FpMW | FpM | pMW | |
---|---|---|---|
0.2801 | 0.2933 | 0.5133 | |
0.1957 | 0.1981 | 0.3822 | |
Completion time/s | 64 | 68 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, Y.; Yang, Z.; Zhuo, H.; You, Y.; Que, W.; He, N. A Fuzzy Pure Pursuit for Autonomous UGVs Based on Model Predictive Control and Whole-Body Motion Control. Drones 2024, 8, 554. https://doi.org/10.3390/drones8100554
Sui Y, Yang Z, Zhuo H, You Y, Que W, He N. A Fuzzy Pure Pursuit for Autonomous UGVs Based on Model Predictive Control and Whole-Body Motion Control. Drones. 2024; 8(10):554. https://doi.org/10.3390/drones8100554
Chicago/Turabian StyleSui, Yaoyu, Zhong Yang, Haoze Zhuo, Yulong You, Wenqiang Que, and Naifeng He. 2024. "A Fuzzy Pure Pursuit for Autonomous UGVs Based on Model Predictive Control and Whole-Body Motion Control" Drones 8, no. 10: 554. https://doi.org/10.3390/drones8100554
APA StyleSui, Y., Yang, Z., Zhuo, H., You, Y., Que, W., & He, N. (2024). A Fuzzy Pure Pursuit for Autonomous UGVs Based on Model Predictive Control and Whole-Body Motion Control. Drones, 8(10), 554. https://doi.org/10.3390/drones8100554