Evolution of Secondary Periglacial Environment Induced by Thawing Permafrost near China–Russia Crude Oil Pipeline Based on Airborne LiDAR, Geophysics, and Field Observation
Abstract
:1. Introduction
2. Study Region and Methods
2.1. Study Site
2.2. Data Acquisition
2.3. Data Processing
2.4. Accuracy Evaluation
3. Results and Analysis
3.1. Ponding Distribution
3.2. Icing Development
4. Discussion
4.1. Reasons for Pipe Trench Settlement
4.1.1. Permafrost Thawing around the Pipe
4.1.2. Pipeline Displacement
4.1.3. Ground Surface Deformation (GSD)
4.1.4. Thermal Influence of Ponding
4.2. Evolution of Ponding and Icing
4.3. Countermeasures for Ponding and Icing
4.4. Accuracy Evaluation of Airborne LiDAR Technology
5. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van Everdingen, R.O. Multi-Language Glossary of Permafrost and Related Groundice Terms in Chinese, English, French, German, Icelandic, Italian, Norwegian, Polish, Romanian, Russian, Spanish, and Swedish (Arctic Inst. of North America University of Calgary); International Permafrost Association: Alberta, Canada, 1998. [Google Scholar]
- Li, G.; Ma, W.; Wang, X.; Jin, H.; Wang, Y.; Zhao, Y.; Cai, Y.; Zhang, P. Frost hazards and mitigative measures following operation of Mohe-Daqing line of China-Russia crude oil pipeline. Rock Soil Mech. 2015, 36, 2963–2973. [Google Scholar] [CrossRef]
- Carey, K.L. Icings Developed from Surface Water and Ground Water; Monographs. III-D3; US Army, Cold Regions Research and Engineering Research: Hanover, NH, USA, 1973. [Google Scholar]
- Morse, P.D.; Wolfe, S.A. Geological and meteorological controls on icing (aufeis) dynamics (1985 to 2014) in subarctic Canada. J. Geophys. Res. Earth Sur. 2015, 120, 1670–1686. [Google Scholar] [CrossRef]
- You, Y.; Yang, M.; Yu, Q.; Wang, X.; Li, X.; Yue, Y. Investigation of an icing near a tower foundation along the Qinghai–Tibet Power Transmission Line. Cold Reg. Sci. Technol. 2016, 121, 250–257. [Google Scholar] [CrossRef]
- Zheng, Q. Prevention of railway constructions from damages due to ice cone and ice dome in permafrost areas. J. China Railw. Soc. 1986, 4, 44–49. [Google Scholar]
- Cheng, G. Constructing of Qinghai-Tibet railroad by cooling the roadbed. Sci. Technol. Rev. 2005, 1, 4–8. [Google Scholar]
- Turcotte, B.; Dubnick, A.; McKillop, R. Icing and aufeis in cold regions II: Consequences and mitigation. Can. J. Civ. Eng. 2024, 51, 125–139. [Google Scholar] [CrossRef]
- Li, G.; Jin, H.; Sheng, Y.; Zhang, J.; Yu, Q.; Qi, J.; Wen, Z.; Lv, L.; Tong, C.; Guo, D.; et al. Recent Advances in Frozen Ground Engineering Geology Survey along the China-Russia Crude Oil Pipeline Route (Mo’he-Daqing Section). J. Glaciol. Geocryol. 2008, 1, 170–175. [Google Scholar]
- Jin, H.; Hao, J.; Chang, X.; Zhang, J.; Yu, Q.; Qi, J.; Lü, L.; Wang, S. Zonation and assessment of frozen-ground conditions for engineering geology along the China–Russia crude oil pipeline route from Mo’he to Daqing, Northeastern China. Cold Reg. Sci. Technol. 2010, 64, 213–225. [Google Scholar] [CrossRef]
- Wang, F.; Li, G.; Ma, W.; Mu, Y.; Zhou, Z.; Mao, Y. Permafrost thawing along the China-Russia Crude Oil Pipeline and countermeasures: A case study in Jiagedaqi, Northeast China. Cold Reg. Sci. Technol. 2018, 155, 308–313. [Google Scholar] [CrossRef]
- Li, G.; Ma, W.; Wang, F.; Jin, H.; Fedorov, A.; Chen, D.; Wu, G.; Cao, Y.; Zhou, Y.; Mu, Y.; et al. A newly integrated ground temperature dataset of permafrost along the China–Russia crude oil pipeline route in Northeast China. Earth Syst. Sci. Data. 2022, 14, 5093–5110. [Google Scholar] [CrossRef]
- Wu, G.; Li, G.; Cao, Y.; Chen, D.; Qi, S.; Wang, F.; Gao, K.; Du, Q.; Wang, X.; Jing, H.; et al. Distribution and Degradation Processes of Isolated Permafrost near Buried Oil Pipelines by Means of Electrical Resistivity Tomography and Ground Temperature Monitoring: A Case Study of Da Xing’anling Mountains, Northeast China. Remote Sens. 2023, 15, 707. [Google Scholar] [CrossRef]
- Cao, Y.; Li, G.; Ma, W.; Wu, G.; Chen, Z.; Wang, B.; Gao, K.; Chen, D.; Du, Q.; Jing, H.; et al. Thaw bulb formation surrounding warm-oil pipelines and evaluation of the cooling performance of a new air convection pipeline embankment structure. Energy 2024, 293, 130668. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, X.; Yang, F.; Leng, Y.; Lv, Y. Study on the Distribution Characteristics of Freeze Injury along China-Russia Crude Oil Pipeline. Oil-Gas Field Surf. Eng. 2019, 38, 52–58. [Google Scholar]
- Mu, Y.; Chai, M.; Li, G.; Ma, W.; Wang, F.; Cao, Y. Thermal influence of ponding and buried warm-oil pipelines on permafrost: A case study of the China-Russia Crude Oil Pipeline. Sci. Cold Arid Reg. 2020, 12, 59–70. [Google Scholar] [CrossRef]
- Chai, M.; Li, G.; Ma, W.; Cao, Y.; Wu, G.; Mu, Y.; Chen, D.; Zhang, J.; Zhou, Z.; Zhou, Y.; et al. Assessment of Freeze–Thaw Hazards and Water Features along the China–Russia Crude Oil Pipeline in Permafrost Regions. Remote Sens. 2020, 12, 3576. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Bhardwaj, A.; Martín-Torres, F.J. LiDAR remote sensing of the cryosphere: Present applications and future prospects. Remote Sens. Environ. 2016, 177, 125–143. [Google Scholar] [CrossRef]
- Du, Q.; Chen, D.; Li, G.; Cao, Y.; Zhou, Y.; Chai, M.; Wang, F.; Qi, S.; Wu, G.; Gao, K.; et al. Preliminary Study on InSAR-Based Uplift or Subsidence Monitoring and Stability Evaluation of Ground Surface in the Permafrost Zone of the Qinghai–Tibet Engineering Corridor, China. Remote Sens. 2023, 15, 3728. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.; Li, L.; Huang, Z.; Wang, C.; Zhang, H.; Zhang, Z. InSAR time-series deformation forecasting surrounding Salt Lake using deep transformer models. Sci. Total Environ. 2023, 858, 159744. [Google Scholar] [CrossRef]
- Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; English, J.; Chamberland, J.; Alasset, P.J. Monitoring surface changes in discontinuous permafrost terrain using small baseline SAR interferometry, object-based classification, and geological features: A case study from Mayo, Yukon Territory, Canada. GISci. Remote Sens. 2019, 56, 485–510. [Google Scholar] [CrossRef]
- Chen, J.; Wu, T.; Zou, D.; Liu, L.; Wu, X.; Gong, W.; Zhu, X.; Li, R.; Hao, J.; Hu, G.; et al. Magnitudes and patterns of large-scale permafrost ground deformation revealed by Sentinel-1 InSAR on the central Qinghai-Tibet Plateau. Remote Sens. Environ. 2022, 268, 112778. [Google Scholar] [CrossRef]
- Wang, W.; Jin, X.; Jin, H.; Li, X.; Wang, X.; He, R.; Li, Y.; Li, X.; Wang, L.; Wang, W.; et al. Evaluation of ground surface deformation in discontinuous permafrost regions along the China-Russia Crude Oil Pipelines in Northeast China using InSAR and ground surveys. Eng. Geol. 2023, 323, 107227. [Google Scholar] [CrossRef]
- Zmarz, A.; Rodzewicz, M.; Dąbski, M.; Karsznia, I.; Korczak-Abshire, M.; Chwedorzewska, K.J. Application of UAV BVLOS remote sensing data for multi-faceted analysis of Antarctic ecosystem. Remote Sens. Environ. 2018, 217, 375–388. [Google Scholar] [CrossRef]
- Yan, W.; Shaker, A.; El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review. Remote Sens. Environ. 2015, 158, 295–310. [Google Scholar] [CrossRef]
- Zielke, O.; Klinger, Y.; Arrowsmith, J.R. Fault slip and earthquake recurrence along strike-slip faults—Contributions of high-resolution geomorphic data. Tectonophysics 2015, 638, 43–62. [Google Scholar] [CrossRef]
- Yang, Y.; Song, J.; Fan, J.; Zhang, Y.; Feng, H.; Ren, K.; Yue, X. Research Progress of the Application of LiDAR in Frozen Soil. Adv. Geosci. 2022, 12, 24–33. [Google Scholar] [CrossRef]
- Chen, F. Advantages and Application prospects Study of Airborne LIDAR technology. Beijing Surv. Mapp. 2013, 2, 12–14. [Google Scholar] [CrossRef]
- Stevens, C.W.; Wolfe, S.A. Wolfe, High-Resolution Mapping of Wet Terrain within Discontinuous Permafrost using LiDAR Intensity. Permafr. Periglac. Process. 2012, 23, 334–341. [Google Scholar] [CrossRef]
- Hubbard, S.S.; Gangodagamage, C.; Dafflon, B.; Wainwright, H.; Peterson, J.; Gusmeroli, A.; Ulrich, C.; Wu, Y.; Wilson, C.; Rowland, J.; et al. Quantifying and relating land-surface and subsurface variability in permafrost environments using LiDAR and surface geophysical datasets. Hydrogeol. J. 2013, 21, 149–169. [Google Scholar] [CrossRef]
- Paine, J.G.; Andrews, J.R.; Saylam, K.; Tremblay, T.A.; Averett, A.R.; Caudle, T.L.; Young, M.H. Airborne lidar on the Alaskan North Slope-Wetlands mapping, lake volumes, and permafrost features. Lead. Edge 2013, 32, 798–805. [Google Scholar] [CrossRef]
- Gangodagamage, C.; Rowland, J.C.; Hubbard, S.S.; Brumby, S.P.; Liljedahl, A.K.; Wainwright, H.; Wilson, C.J.; Altmann, G.L.; Dafflon, B.; Peterson, J.; et al. Extrapolating active layer thickness measurements across Arctic polygonal terrain using LiDAR and NDVI data sets. Water Resour. Res. 2014, 50, 6339–6357. [Google Scholar] [CrossRef]
- Wang, F.; Li, G.; Ma, W.; Wu, Q.; Serban, M.; Vera, S.; Alexandr, F.; Jiang, N.; Wang, B. Pipeline–permafrost interaction monitoring system along the China–Russia crude oil pipeline. Eng. Geol. 2019, 254, 113–125. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, H.; Li, G. Investigation of the freeze–thaw states of foundation soils in permafrost areas along the China–Russia Crude Oil Pipeline (CRCOP) route using ground-penetrating radar (GPR). Cold Reg. Sci. Technol. 2016, 126, 10–21. [Google Scholar] [CrossRef]
- Li, X.; Jin, X.; Wang, X.; Jin, H.; Tang, L.; Li, X.; He, R.; Li, Y.; Huang, C.; Zhang, S. Investigation of permafrost engineering geological environment with electrical resistivity tomography: A case study along the China-Russia crude oil pipelines. Eng. Geol. 2021, 291, 106237. [Google Scholar] [CrossRef]
- Bussière, L.; Schmutz, M.; Fortier, R.; Lemieux, J.M.; Dupuy, A. Near-surface geophysical imaging of a thermokarst pond in the discontinuous permafrost zone in Nunavik (Québec), Canada. Permafr. Periglac. Process. 2022, 33, 353–369. [Google Scholar] [CrossRef]
- Kunz, J.; Ullmann, T.; Kneisel, C.; Baumhauer, R. Three-dimensional subsurface architecture and its influence on the spatiotemporal development of a retrogressive thaw slump in the Richardson Mountains, Northwest Territories, Canada. Arct. Antarct. Alp. Res. 2023, 55, 2167358. [Google Scholar] [CrossRef]
- Chasmer, L.; Hopkinson, C.; Morrison, H.; Petrone, R.; Quinton, W. Fusion of airborne LiDAR and WorldView-2 MS data for classification of depth to permafrost within Canada’s sub-Arctic. In Proceedings of the SilviLaser 2011 Conference, Hobart, Tasmania, 16–20 October 2011; pp. 1–7. [Google Scholar]
- Levy, J.S.; Fountain, A.G.; Dickson, J.L.; Head, J.W.; Okal, M.; Marchant, D.R.; Watters, J. Accelerated thermokarst formation in the McMurdo Dry Valleys, Antarctica. Sci. Rep. 2013, 3, 2269. [Google Scholar] [CrossRef]
- Douglas, T.A.; Jorgenson, M.T.; Brown, D.R.N.; Campbell, S.W.; Hiemstra, C.A.; Saari, S.P.; Bjella, K.; Liljedahl, A.K. Degrading permafrost mapped with electrical resistivity tomography, airborne imagery and LiDAR, and seasonal thaw measurements. Geophysics 2015, 81, WA71–WA85. [Google Scholar] [CrossRef]
- Douglas, T.A.; Hiemstra, C.A.; Anderson, J.E.; Barbato, R.A.; Bjella, K.L.; Deeb, E.J.; Gelvin, A.B.; Nelsen, P.E.; Newman, S.D.; Saari, S.P.; et al. Recent degradation of interior Alaska permafrost mapped with ground surveys, geophysics, deep drilling, and repeat airborne lidar. Cryosphere 2021, 15, 3555–3575. [Google Scholar] [CrossRef]
- Obu, J.; Westermann, S.; Bartsch, A.; Berdnikov, N.; Christiansen, H.H.; Dashtseren, A.; Delaloye, R.; Elberling, B.; Etzelmüller, B.; Kholodov, A.; et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Sci. Rev. 2019, 193, 299–316. [Google Scholar] [CrossRef]
- Pricope, N.G.; Halls, J.N.; Mapes, K.L.; Baxley, J.B.; Wu, J.J. Quantitative comparison of uas-borne lidar systems for high-resolution forested wetland mapping. Sensors 2020, 20, 4453. [Google Scholar] [CrossRef]
- Cao, Y.; Ma, W.; Li, G.; Gao, K.; Li, C.; Chen, D.; Shang, Y.; Wei, X.; Chen, Z.; Wu, G.; et al. Rapid permafrost thaw under buried oil pipeline and effective solution using a novel mitigative technique based on field and laboratory results. Cold Reg. Sci. Technol. 2024, 219, 104119. [Google Scholar] [CrossRef]
- Johnson, E.; Hegdal, L. Permafrost-related performance of the Trans-Alaska oil pipeline. In Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, 29 June–3 July 2008; Volume 1, pp. 857–864. [Google Scholar]
- Gao, K.; Li, G.; Cao, Y.; Li, C.; Chen, D.; Wu, G.; Du, Q.; Wang, F.; Alexander, F.; Che, F.; et al. Permafrost thawing caused by the China-Russia Crude oil pipeline based on multi-type data and its impacts on geomorphological reshaping and water erosion. Catena 2024, 242, 108134. [Google Scholar] [CrossRef]
- Smith, S.L.; Riseborough, D.W. Modelling the thermal response of permafrost terrain to right-of-way disturbance and climate warming. Cold Reg. Sci. Technol. 2010, 60, 92–103. [Google Scholar] [CrossRef]
- Smith, S.L.; Burgess, M.M.; Riseborough, D.W. Ground temperature and thaw settlement in frozen peatlands along the Norman Wells pipeline corridor, NWT Canada: 22 years of monitoring. In Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, 29 June–3 July 2008; Volume 2, pp. 1665–1670. [Google Scholar]
- Périer, L.; Doré, G.; Burn, C.R. Influence of water temperature and flow on thermal regime around culverts built on permafrost. In Proceedings of the 68th Canadian Geotechnical Conference and 7th Canadian Permafrost, Quebec, QC, Canada, 20–23 September 2015. [Google Scholar]
- Hu, X.; Sheng, Y.; Peng, E. Effect of Thermokarst Lake on Foundation Under Embankment in Permafrost Regions. In Proceedings of the China-Europe Conference on Geotechnical Engineering, Vienna, Austria, 13–16 August 2018; Springer: Cham, Switzerland, 2018; Volume 2. [Google Scholar] [CrossRef]
- Seligman, B.J. Long-term variability of pipeline-permafrost interactions in north-west Siberia. Permafr. Periglac. Process. 2000, 11, 5–22. [Google Scholar] [CrossRef]
- Wang, F.; Li, G.; Ma, W. Progress in the research on the thermo-mechanical interaction between oil pipeline and permafrost in cold regions. J. Glaciol. Geocryol. 2022, 44, 217–228. [Google Scholar] [CrossRef]
- Burgess, M.; Harry, D. Norman Wells pipeline permafrost and terrain monitoring: Geothermal and geomorphic observations, 1984–1987. Can. Geotech. J. 1990, 27, 233–244. [Google Scholar] [CrossRef]
- Nixon, J.; Burgess, M. Norman Wells pipeline settlement and uplift movements. Can. Geotech. J. 1999, 36, 119–135. [Google Scholar] [CrossRef]
- Tataurov, S.B.; Surikov, V.I. An evaluation of the factors affecting the thermal state of frozen soils at the foundations of a buried oil pipeline. Pipeline Sci. Technol. 2018, 2, 83–95. [Google Scholar] [CrossRef]
- He, R.; Jin, H. Permafrost and cold-region environmental problems of the oil product pipeline from Golmud to Lhasa on the Qinghai–Tibet Plateau and their mitigation. Cold Reg. Sci. Technol. 2010, 64, 279–288. [Google Scholar] [CrossRef]
- Jin, H.; Yu, W.; Chen, Y.; Gao, X.; Li, F.; Yao, Z. (Differential) Frost Heave and Thaw Settlement in the Engineering Design and Construction of Oil Pipelines in Permafrost Regions: A Review. J. Glaciol. Geocryol. 2005, 3, 454–464. [Google Scholar]
- Guo, Y.; Qi, Y.; Shan, W. Research progress on investigation and control of highway salivary ice disease in China. J. Nat. Disasters 2022, 31, 15–26. [Google Scholar] [CrossRef]
- Li, G.; Cao, Y.; Ma, W.; Jin, X.; Chen, P.; Yu, Q.; Zhang, Z.; Mu, Y.; Jin, H. Research on frozen ground hazards of China-Russia Crude Oil Pipeline and mitigative countermeasures. Bull. Chin. Acad. Sci. 2021, 36, 150–159. [Google Scholar] [CrossRef]
- Štroner, M.; Urban, R.; Línková, L. A New Method for UAV Lidar Precision Testing Used for the Evaluation of an Affordable DJI ZENMUSE L1 Scanner. Remote Sens. 2021, 13, 4811. [Google Scholar] [CrossRef]
- Zheng, R.; Hong, L. Advantages and Development of Airborne LiDAR. Geospat. Inf. 2018, 16, 37–39. [Google Scholar]
- Lai, X.; Li, Y.; Chen, P.; Yang, J.; Zhu, Y. Current Status and Outlook of LiDAR Technology. Geospat. Inf. 2017, 15, 1–4+9. [Google Scholar]
- Wang, Y.; Fang, H. Estimation of LAI with the LiDAR Technology: A Review. Remote Sens. 2020, 12, 3457. [Google Scholar] [CrossRef]
- Kulawardhana, R.W.; Popescu, S.C.; Feagin, R.A. Airborne lidar remote sensing applications in non-forested short stature environments: A review. Ann. For. Res. 2017, 60, 173–196. [Google Scholar] [CrossRef]
- Qin, H.; Wang, C.; Xi, X.; Nie, S. Development of Airborne Laser Bathymetric Technology and Applications. Remote Sens. Technol. Appl. 2016, 31, 617–624. [Google Scholar]
- Wang, J.; Wang, L.; Feng, S.; Peng, B.; Huang, L.; Fatholahi, S.N.; Tang, L.; Li, J. An Overview of Shoreline Mapping by Using Airborne LiDAR. Remote Sens. 2023, 15, 253. [Google Scholar] [CrossRef]
- Hopkinson, C.; Sitar, M.; Chasmer, L.; Treitz, P. Mapping Snowpack Depth beneath Forest Canopies Using Airborne Lidar. Photogramm. Eng. Remote Sens. 2004, 70, 323–330. [Google Scholar] [CrossRef]
- Deems, J.S.; Fassnacht, S.R.; Elder, K.J. Fractal distribution of snow depth from lidar data. J. Hydrometeorol. 2006, 7, 285–297. [Google Scholar] [CrossRef]
- Deems, J.S.; Painter, T.H.; Finnegan, D.C. Lidar measurement of snow depth: A review. J. Glaciol. 2013, 59, 467–479. [Google Scholar] [CrossRef]
- Kirchner, P.B.; Bales, R.C.; Molotch, N.P.; Flanagan, J.; Guo, Q. LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California. Hydrol. Earth Syst. Sci. 2014, 18, 4261–4275. [Google Scholar] [CrossRef]
- Wainwright, H.M.; Liljedahl, A.K.; Dafflon, B.; Ulrich, C.; Peterson, J.E.; Gusmeroli, A.; Hubbard, S.S. Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods. Cryosphere 2017, 11, 857–875. [Google Scholar] [CrossRef]
- Kerkez, B.; Glaser, S.D.; Bales, R.C.; Meadows, M.W. Design and performance of a wireless sensor network for catchment-scale snow and soil moisture measurements. Water Resour. Res. 2012, 48, W09515. [Google Scholar] [CrossRef]
- Gao, Y.; Lian, X.; Ge, L. Inversion model of surface bare soil temperature and water content based on UAV thermal infrared remote sensing. Infrared Phys. Technol. 2022, 125, 104289. [Google Scholar] [CrossRef]
- Feng, L.; Tian, H.; Qiao, Z.; Zhao, M.; Liu, Y. Detailed variations in urban surface temperatures exploration based on unmanned aerial vehicle thermography. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 13, 204–216. [Google Scholar] [CrossRef]
- Luo, L.; Zhuang, Y.; Zhang, M.; Zhang, Z.; Ma, W.; Zhao, W.; Zhao, L.; Wang, L.; Shi, Y.; Zhang, Z.; et al. An integrated observation dataset of the hydrological-thermal-deformation dynamics in the permafrost slopes and engineering infrastructure in the Qinghai-Tibet Engineering Corridor. Earth Syst. Sci. Data 2021, 13, 4035–4052. [Google Scholar] [CrossRef]
- Adams, M.S.; Bühler, Y.; Fromm, R. Multitemporal accuracy and precision assessment of unmanned aerial system photogrammetry for slope-scale snow depth maps in Alpine terrain. Pure Appl. Geophys. 2018, 175, 3303–3324. [Google Scholar] [CrossRef]
- Van der Sluijs, J.; Kokelj, S.V.; Fraser, R.H.; Tunnicliffe, J.; Lacelle, D. Permafrost terrain dynamics and infrastructure impacts revealed by UAV photogrammetry and thermal imaging. Remote Sens. 2018, 10, 1734. [Google Scholar] [CrossRef]
- Chasmer, L.; Quinton, W.; Hopkinson, C.; Petrone, R.; Whittington, P. Vegetation canopy and radiation controls on permafrost plateau evolution within the discontinuous permafrost zone, Northwest Territories, Canada. Permafr. Periglac. Process. 2011, 22, 199–213. [Google Scholar] [CrossRef]
- Gaffey, C.; Bhardwaj, A. Applications of unmanned aerial vehicles in cryosphere: Latest advances and prospects. Remote Sens. 2020, 12, 948. [Google Scholar] [CrossRef]
- Lamare, M.; Domine, F.; Revuelto, J.; Pelletier, M.; Arnaud, L.; Picard, G. Investigating the role of shrub height and topography in snow accumulation on low-Arctic tundra using UAV-borne lidar. J. Hydrometeorol. 2023, 24, 853–871. [Google Scholar] [CrossRef]
Equipment | Parameter | Value |
---|---|---|
DJI Matrice 300 RTK | Weight (including batteries) | 6.3 kg |
Max. flight time | 55 min | |
Max. flight speed | 82 km/h | |
Satellite positioning systems | GPS + GLONASS + BeiDou + Galileo | |
GNSS positioning accuracy (RTK Fixed) | 1 cm + 1 ppm (H) 1.5 cm + 1 ppm (V) | |
DJI Zenmuse L1 | Weight | 930 ± 10 g |
Point rate | Single return: max. 240,000 pts/s | |
Multiple return: max. 480,000 pts/s | ||
Return number | 1~3 | |
System accuracy (RMS 1) | Vertical: 5 cm per 50 m | |
Horizontal: 10 cm per 50 m | ||
Distance measurement accuracy (1) | 3 cm per 100 m | |
Field of View (Repetitive) | 70.4° (H) × 4.5° (V) | |
Field of View (Non-Repetitive) | 70.4° (H) × 77.2° (V) | |
IMU update frequency | 200 HZ | |
RGB camera effective pixels | 20 Mpix |
Points | UAV Measurement Results | Ground Measurement Results | ||||
---|---|---|---|---|---|---|
X/m | Y/m | DEM/m | N/m | E/m | H/m | |
GMP-1 | 586449.4467 | 5591661.7710 | 431.120 | 5591661.7871 | 586449.5035 | 431.162 |
GMP-2 | 586521.8039 | 5591620.1844 | 427.482 | 5591620.2161 | 586521.8523 | 427.530 |
GMP-3 | 586600.8975 | 5591581.1776 | 427.274 | 5591581.2222 | 586600.8958 | 427.313 |
GMP-4 | 586393.2438 | 5591544.3120 | 430.422 | 5591544.3426 | 586393.261 | 430.483 |
GMP-5 | 586462.6533 | 5591493.4846 | 427.010 | 5591493.5142 | 586462.6863 | 427.064 |
GMP-6 | 586563.5692 | 5591465.0525 | 426.858 | 5591465.0728 | 586563.6345 | 426.876 |
GMP-7 | 586339.9731 | 5591433.0862 | 429.823 | 5591433.1361 | 586339.9763 | 429.885 |
GMP-8 | 586414.226 | 5591392.2576 | 426.845 | 5591392.2874 | 586414.2726 | 426.867 |
GMP-9 | 586511.398 | 5591350.8587 | 426.531 | 5591350.9268 | 586511.3661 | 426.580 |
GMP-10 | 586482.6986 | 5591537.1151 | 427.216 | 5591537.1720 | 586482.7053 | 427.243 |
Flight Altitude | RMSEx/m | RMSEy/m | RMSEz/m | RMSExy/m | RMSE/m |
---|---|---|---|---|---|
100 m | 0.0380 | 0.0409 | 0.0447 | 0.0395 | 0.0413 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, K.; Li, G.; Wang, F.; Cao, Y.; Chen, D.; Du, Q.; Chai, M.; Fedorov, A.; Lin, J.; Shang, Y.; et al. Evolution of Secondary Periglacial Environment Induced by Thawing Permafrost near China–Russia Crude Oil Pipeline Based on Airborne LiDAR, Geophysics, and Field Observation. Drones 2024, 8, 360. https://doi.org/10.3390/drones8080360
Gao K, Li G, Wang F, Cao Y, Chen D, Du Q, Chai M, Fedorov A, Lin J, Shang Y, et al. Evolution of Secondary Periglacial Environment Induced by Thawing Permafrost near China–Russia Crude Oil Pipeline Based on Airborne LiDAR, Geophysics, and Field Observation. Drones. 2024; 8(8):360. https://doi.org/10.3390/drones8080360
Chicago/Turabian StyleGao, Kai, Guoyu Li, Fei Wang, Yapeng Cao, Dun Chen, Qingsong Du, Mingtang Chai, Alexander Fedorov, Juncen Lin, Yunhu Shang, and et al. 2024. "Evolution of Secondary Periglacial Environment Induced by Thawing Permafrost near China–Russia Crude Oil Pipeline Based on Airborne LiDAR, Geophysics, and Field Observation" Drones 8, no. 8: 360. https://doi.org/10.3390/drones8080360
APA StyleGao, K., Li, G., Wang, F., Cao, Y., Chen, D., Du, Q., Chai, M., Fedorov, A., Lin, J., Shang, Y., Huang, S., Wu, X., Bai, L., Zhang, Y., Tang, L., Jia, H., Wang, M., & Wang, X. (2024). Evolution of Secondary Periglacial Environment Induced by Thawing Permafrost near China–Russia Crude Oil Pipeline Based on Airborne LiDAR, Geophysics, and Field Observation. Drones, 8(8), 360. https://doi.org/10.3390/drones8080360