Remote Wind Turbine Inspections: Exploring the Potential of Multimodal Drones
Abstract
:1. Introduction
2. Wind Turbine Installations and Challenges
2.1. The Transition to Renewable Energy
2.2. Types of Damage
3. Wind Turbine Inspection Techniques
3.1. Inspection Methods and Sensors
Imaging | ||
Sensor | Specifications | Compatible Drone |
Hyperspectral [44,45,46,47] |
|
|
Visual camera [48] |
|
|
IR camera [49,50] |
|
|
X-ray [51,52] |
|
|
3D laser scanning [53] |
|
|
Waves | ||
Sensor | Specifications | Drone |
Millimeter-wave radar [54,55] |
|
|
Acoustic [56,57,58] |
|
|
Vibration accelerometry [59] |
|
|
Ultrasonic [60,61,62] |
|
|
Mechanical | ||
Sensor | Specifications | Drone |
Strain measurements [63] |
|
|
Chemical | ||
Sensor | Specifications | Drone |
Electrochemical sensing [64,65] |
|
|
3.2. Drone-Based Inspections
Climbing | ||||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings | Inspection Sensors |
[37] |
|
|
| |
[90] |
|
|
| |
[91] |
|
|
| |
RIWEA [92,93] |
|
|
| |
Inchworm [94] |
|
|
| |
Aerial | ||||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings | Inspection Sensors |
[95] | - |
|
|
|
[96] |
|
|
| |
[97] |
|
|
| |
Aquatic | ||||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings | Inspection Sensors |
[98] | - |
|
|
|
[99] | - |
|
|
|
Seacat [100] |
|
|
| |
RoboFish [101] |
|
|
| |
Collaborative | ||||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings | Inspection Sensors |
[1] | - |
|
|
|
[102] | - |
|
|
|
Goliath and Blade-bug [88,89] | - |
|
|
|
[103] |
|
|
| |
Multimodal | ||||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings | Inspection Sensors |
[17] |
|
|
| |
[104,105,106] |
|
|
| |
[107] |
|
|
| |
[108] |
|
|
|
4. Multimodal Drone Designs
4.1. Overview
- Bi-Modal = Drone with two modes of locomotion.
- Tri-modal = Drone with three modes of locomotion.
- Quad-modal = Drones with four modes of locomotion.
- Terrestrial Aerial (TA) Drone = A drone that can operate both on land and in the air.
- Amphibious Drone = A drone that can operate on land and in water.
- Wall-Climbing Robot (WCR) = A drone that can operate on land and can climb.
- Aerial Aquatic (AA) Drone = A drone that can operate in the air and in water.
- Aerial Climbing (AC) Drone = A drone that can operate in the air and can attach to a surface without the ability to operate effectively on land.
- Aerial Wall-Climbing Robot (AWCR) = A drone that can operate in the air and on land, while having the ability to climb.
- Triphibian Drone = A drone that can operate on land, in the air and in water.
- Rotor-Based Drone = A drone that operates using only rotor kinematics.
- Bio-Inspired Drone = A drone that operates using only nature-inspired kinematics.
- Hybrid Drone = A drone that combines rotor and bio-inspired kinematics.
4.2. Rotor-Based Designs
4.3. Bio-Inspired Designs
4.4. Hybrid Designs
5. Locomotion Mechanisms and Selection Optimisation
5.1. Overview
5.2. Climbing Locomotion
5.3. Aerial Locomotion
5.4. Terrestrial Locomotion
5.5. Aquatic Locomotion
6. Control and Navigation Considerations
6.1. Overview
6.2. Control Platforms
- Off-the-shelf solutions (e.g., Pixhawk PX4).
- Microcontroller (e.g., Arduino Nano/Uno/Mega).
- Microprocessor (e.g., Raspberry Pi 5).
- Remote computation with (e.g., Host PC with Robot Operating System).
6.3. Controller Strategies
6.4. Navigation and Autonomy
6.5. Mode Transitions
- Bernoulli Pad and Gecko Gripper for Climbing.
- Quadrotor for Aerial.
- Wheels for Terrestrial.
- Reconfigurable Quadrotor for Aquatic.
7. Overall Discussions and Conclusions
7.1. Drone Features and Design Decisions
7.2. Collaborative and Multimodal Drone Designs
7.3. Final Comments
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nordin, M.H.; Sharma, S.; Khan, A.; Gianni, M.; Rajendran, S.; Sutton, R. Collaborative Unmanned Vehicles for Inspection, Maintenance, and Repairs of Offshore Wind Turbines. Drones 2022, 6, 137. [Google Scholar] [CrossRef]
- Liu, Y.; Hajj, M.; Bao, Y. Review of robot-based damage assessment for offshore wind turbines. Renew. Sustain. Energy Rev. 2022, 158, 112187. [Google Scholar] [CrossRef]
- Mitchell, D.; Blanche, J.; Zaki, O.; Roe, J.; Kong, L.; Harper, S.; Robu, V.; Lim, T.; Flynn, D. Symbiotic System of Systems Design for Safe and Resilient Autonomous Robotics in Offshore Wind Farms. IEEE Access 2021, 9, 141421–141452. [Google Scholar] [CrossRef]
- United Nations THE 17 GOALS|Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 22 September 2024).
- Iqbal, J.; Al-Zahrani, A.; Alharbi, S.A.; Hashmi, A. Robotics Inspired Renewable Energy Developments: Prospective Opportunities and Challenges. IEEE Access 2019, 7, 174898–174923. [Google Scholar] [CrossRef]
- Mitchell, D.; Blanche, J.; Harper, S.; Lim, T.; Gupta, R.; Zaki, O.; Tang, W.; Robu, V.; Watson, S.; Flynn, D. A review: Challenges and opportunities for artificial intelligence and robotics in the offshore wind sector. Energy AI 2022, 8, 100146. [Google Scholar] [CrossRef]
- Yang, C.; Zhou, H.; Liu, X.; Ke, Y.; Gao, B.; Grzegorzek, M.; Boukhers, Z.; Chen, T.; See, J. BladeView: Toward Automatic Wind Turbine Inspection With Unmanned Aerial Vehicle. IEEE Trans. Autom. Sci. Eng. 2024, 1–16. [Google Scholar] [CrossRef]
- Masita, K.; Hasan, A.; Shongwe, T. Defects Detection on 110 MW AC Wind Farm’s Turbine Generator Blades Using Drone-Based Laser and RGB Images with Res-CNN3 Detector. Appl. Sci. 2023, 13, 13046. [Google Scholar] [CrossRef]
- Taefi, T.T.; Roswag, M.; Peklar, G. Wingbeat Over Wind Turbines: Autonomous Drones for Acoustic Bat Detection in Operational Wind Farms. In Proceedings of the 2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA), Victoria, Seychelles, 1–2 February 2024; pp. 1–5. [Google Scholar]
- Yung, K.H.Y. A New Digital Twin Model of Floating Offshore Wind Turbine for Cost-Effective Structural Health Monitoring. In Proceedings of the All-Energy Exhibition and Conference 2024, Glasgow, UK, 14–15 June 2024; Xiao, Q., Incecik, A., Thompson, P., Eds.; University of Strathclyde: Glasgow, UK, 2024. [Google Scholar] [CrossRef]
- Okenyi, V.; Bodaghi, M.; Mansfield, N.; Afazov, S.; Siegkas, P. A review of challenges and framework development for corrosion fatigue life assessment of monopile-supported horizontal-axis offshore wind turbines. Ships Offshore Struct. 2024, 19, 1–15. [Google Scholar] [CrossRef]
- Rojas, S.; Michalaros, D.; Rincon, J.; Arrieta, A.F. Bioinspired Self-Stiffening Wing for Multimodal Locomotion. In Proceedings of the 2024 IEEE 7th International Conference on Soft Robotics (RoboSoft), San Diego, CA, USA, 14–17 April 2024; pp. 1004–1009. [Google Scholar]
- Chellapurath, M.; Stenius, I. Underwater Robot with Bioinspired Multimodal Locomotion Expands the Scope of Ocean Exploration. In Proceedings of the OCEANS 2024, Singapore, 15–18 April 2024; pp. 1–6. [Google Scholar]
- Wu, S.; Shao, M.; Wu, S.; He, Z.; Wang, H.; Zhang, J.; You, Y. Design and Demonstration of a Tandem Dual-Rotor Aerial–Aquatic Vehicle. Drones 2024, 8, 100. [Google Scholar] [CrossRef]
- Qin, G.; Xu, Y.; He, W.; Qi, Q.; Zheng, L.; Hu, H.; Cheng, Y.; Zuo, C.; Zhang, D.; Ji, A. Design and Development of an Air–Land Amphibious Inspection Drone for Fusion Reactor. Drones 2024, 8, 190. [Google Scholar] [CrossRef]
- Chen, G.; Yan, L.; Cao, A.; Zhu, X.; Ding, H.; Lin, Y. Novel Design and Computational Fluid Dynamic Analysis of a Foldable Hybrid Aerial Underwater Vehicle. Drones 2024, 8, 669. [Google Scholar] [CrossRef]
- Herraiz, Á.H.; Marugán, A.P.; Ramirez, I.S.; Papaelias, M.; Márquez, F.P.G. A novel walking robot based system for non-destructive testing in wind turbines. E-J. Nondestruct. Test. 2019, 24. [Google Scholar]
- Rinaldi, G.; Thies, P.; Johanning, L. Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review. Energies 2021, 14, 2484. [Google Scholar] [CrossRef]
- Alex. Global Wind Report 2024; Global Wind Energy Council: Lisbon, Portugal, 2024; Available online: https://gwec.net/global-wind-report-2024/ (accessed on 27 May 2024).
- Bath, A. Global Wind Report 2023; Global Wind Energy Council: Lisbon, Portugal, 2023; Available online: https://gwec.net/globalwindreport2023/ (accessed on 9 November 2023).
- FrazerNash. Review of Technical Assumptions and Generation Costs Floating Offshore Wind: Levelised Cost of Energy Review; FrazerNash Consultancy: Bristol, UK, 2023. [Google Scholar]
- Röckmann, C.; Lagerveld, S.; Stavenuiter, J. Operation and Maintenance Costs of Offshore Wind Farms and Potential Multi-use Platforms in the Dutch North Sea. In Aquaculture Perspective of Multi-Use Sites in the Open Ocean: The Untapped Potential for Marine Resources in the Anthropocene; Buck, B.H., Langan, R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 97–113. [Google Scholar] [CrossRef]
- Ritchie, H.; Rosado, P.; Roser, M. Energy Production and Consumption. Oxford Our World Data. 2024. Available online: https://ourworldindata.org/energy-production-consumption (accessed on 21 March 2024).
- IEA Renewables 2023—Analysis. 2024. Available online: https://www.iea.org/reports/renewables-2023 (accessed on 21 March 2024).
- Liu, Y.; Tao, T.; Zhao, X.; Zhang, C.; Ma, Y. Support vector regression-based fatigue damage assessment method for wind turbine nacelle chassis. Structures 2021, 33, 759–768. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Zhou, Q.; Bian, X.; Lyu, W. Lightning damage on GFRP materials of wind turbines under positive first return stroke. Electr. Power Syst. Res. 2023, 215, 108978. [Google Scholar] [CrossRef]
- Mishnaevsky, L.; Hasager, C.B.; Bak, C.; Tilg, A.-M.; Bech, J.I.; Doagou Rad, S.; Fæster, S. Leading edge erosion of wind turbine blades: Understanding, prevention and protection. Renew. Energy 2021, 169, 953–969. [Google Scholar] [CrossRef]
- Sareen, A.; Sapre, C.A.; Selig, M.S. Effects of leading edge erosion on wind turbine blade performance. Wind Energy 2014, 17, 1531–1542. [Google Scholar] [CrossRef]
- Keegan, M.H. Wind Turbine Blade Leading Edge Erosion: An Investigation of Rain Droplet and Hailstone Impact Induced Damage Mechanisms; University of Strathclyde: Glasgow, UK, 2014. [Google Scholar]
- Chuang, Z.; Li, C.; Liu, S.; Li, X.; Li, Z.; Zhou, L. Numerical analysis of blade icing influence on the dynamic response of an integrated offshore wind turbine. Ocean. Eng. 2022, 257, 111593. [Google Scholar] [CrossRef]
- Yirtici, O.; Tuncer, I.H.; Ozgen, S. Ice Accretion Prediction on Wind Turbines and Consequent Power Losses. J. Phys. Conf. Ser. 2016, 753, 022022. [Google Scholar] [CrossRef]
- Juhl, M.; Hauschild, M.Z.; Dam-Johansen, K. Sustainability of corrosion protection for offshore wind turbine towers. Prog. Org. Coat. 2024, 186, 107998. [Google Scholar] [CrossRef]
- Sun, K.; Xu, Z.; Li, S.; Jin, J.; Wang, P.; Yue, M.; Li, C. Dynamic response analysis of floating wind turbine platform in local fatigue of mooring. Renew. Energy 2023, 204, 733–749. [Google Scholar] [CrossRef]
- Pacheco, J.; Pimenta, F.; Pereira, S.; Cunha, Á.; Magalhães, F. Fatigue Assessment of Wind Turbine Towers: Review of Processing Strategies with Illustrative Case Study. Energies 2022, 15, 4782. [Google Scholar] [CrossRef]
- Yang, Y.; Bashir, M.; Li, C.; Wang, J. Investigation on mooring breakage effects of a 5 MW barge-type floating offshore wind turbine using F2A. Ocean. Eng. 2021, 233, 108887. [Google Scholar] [CrossRef]
- Dimitrova, M.; Aminzadeh, A.; Meiabadi, M.S.; Sattarpanah Karganroudi, S.; Taheri, H.; Ibrahim, H. A Survey on Non-Destructive Smart Inspection of Wind Turbine Blades Based on Industry 4.0 Strategy. Appl. Mech. 2022, 3, 1299–1326. [Google Scholar] [CrossRef]
- Leon Rodriguez, H.; Sattar, T.P.; Bridge, B. Climbing ring robot for inspection of offshore wind turbines. Ind. Robot. Int. J. 2009, 36, 326–330. [Google Scholar] [CrossRef]
- Katsaprakakis, D.A.; Papadakis, N.; Ntintakis, I. A Comprehensive Analysis of Wind Turbine Blade Damage. Energies 2021, 14, 5974. [Google Scholar] [CrossRef]
- Chen, X.; Eder, M.A. A Critical Review of Damage and Failure of Composite Wind Turbine Blade Structures. IOP Conf. Ser. Mater. Sci. Eng. 2020, 942, 012001. [Google Scholar] [CrossRef]
- Civera, M.; Surace, C. Non-Destructive Techniques for the Condition and Structural Health Monitoring of Wind Turbines: A Literature Review of the Last 20 Years. Sensors 2022, 22, 1627. [Google Scholar] [CrossRef]
- García Márquez, F.P.; Peco Chacón, A.M. A review of non-destructive testing on wind turbines blades. Renew. Energy 2020, 161, 998–1010. [Google Scholar] [CrossRef]
- SGS. In-Service Inspection Solution for Renewable Energy for Wind Power Turbines. Available online: https://www.sgs.com/en-lb/news/2023/08/in-service-inspection-solution-for-renewable-energy-for-wind-power-turbines (accessed on 8 December 2024).
- Prokopets, E. Guide to Wind Turbine Drone Inspection and Maintenance. Voliro. 2024. Available online: https://voliro.com/blog/wind-turbine-drone-inspection/ (accessed on 8 December 2024).
- Wieme, J.; Mollazade, K.; Malounas, I.; Zude-Sasse, M.; Zhao, M.; Gowen, A.; Argyropoulos, D.; Fountas, S.; Van Beek, J. Application of hyperspectral imaging systems and artificial intelligence for quality assessment of fruit, vegetables and mushrooms: A review. Biosyst. Eng. 2022, 222, 156–176. [Google Scholar] [CrossRef]
- Analytik. Nano HP VNIR Hyperspectral Imaging Sensor|Nano-Hyperspec. Analytik Ltd. 2024. Available online: https://analytik.co.uk/product/hyperspectral-imaging-nano-hyperspec-vnir-camera/ (accessed on 8 December 2024).
- Innoter. Hyperspectral Imaging. GEO Innoter. Available online: https://innoter.com/en/articles/hyperspectral-imaging/ (accessed on 8 December 2024).
- Nakatsuji, R. Headwall Hyperspectral Sensor System Launched Into Space. Headwall Photonics. Available online: https://headwallphotonics.com/headwall-hyperspectral-sensor-system-launched-into-space/ (accessed on 8 December 2024).
- DPREVIEW. Side-by-Side Camera Comparison: Digital Photography Review: Digital Photography Review. Available online: https://www.dpreview.com/products/compare/cameras (accessed on 9 December 2024).
- PASS. FLIR Thermal Cameras For Sale|Huge Range of Thermal Imagers. Available online: https://www.pass-thermal.co.uk/brands/flir-thermal-cameras?p=4 (accessed on 10 December 2024).
- Blackview. How Far That a FLIR Camera Can See?—Blackview Blog. Available online: https://www.blackview.hk/blog/guides/how-far-can-flir-camera-see (accessed on 8 December 2024).
- Anritsu. XR75 Dual X-Ray. Available online: https://www.anritsu.com/en-gb/product-inspection/products/x-ray/dual-x (accessed on 8 December 2024).
- Amadeo. Portable X-Ray Machines|Low-Weight, Flexible & High Performance. Available online: https://www.or-technology.com/en/products/human/amadeo-p-systems.html (accessed on 10 December 2024).
- RobotShop. LIDAR, Laser Scanners & Rangefinders. RobotShop UK. Available online: https://uk.robotshop.com/collections/lidar (accessed on 10 December 2024).
- RobotShop. Search: 11 Results Found for “mm-Wave Radar”. RobotShop UK. Available online: https://uk.robotshop.com/search?q=mm-wave+radar&type=product (accessed on 10 December 2024).
- Global Sources. Stonkam 1080p 24ghz Radar Detector System, Detection Range: 0.1~20m (0.33ft-65.6ft), Parking Radar, Radar Detection System, Parking Sensor—Buy China Wholesale Radar Detection $300|Globalsources.com. Global Sources. Available online: https://www.globalsources.com/Car-radar/Radar-Detection-1178649419p.htm (accessed on 8 December 2024).
- Sørensen, F.F.; Mai, C.; Olsen, O.M.; Liniger, J.; Pedersen, S. Commercial Optical and Acoustic Sensor Performances under Varying Turbidity, Illumination, and Target Distances. Sensors 2023, 23, 6575. [Google Scholar] [CrossRef] [PubMed]
- Instrotech. Acoustic/Sonic Inspection—Imaging & Inspection. Available online: https://instrotech.com/industrial-imaging/acoustic-sonic-imaging.html?product_list_order=price (accessed on 8 December 2024).
- Vallen Systeme. Acoustic Emission Sensors. 2017. Available online: https://www.vallen.de/wp-content/uploads/2019/03/sov.pdf (accessed on 8 December 2024).
- RS. Vibration Sensors|Piezoelectric Sensors|RS. Available online: https://uk.rs-online.com/web/c/automation-control-gear/sensors/vibration-sensors/?sortBy=price&sortType=DESC (accessed on 10 December 2024).
- Sonatest. Digital Ultrasonic Flaw Detector|Wave|Sonatest. Available online: https://sonatest.com/products/flaw-detectors/wave (accessed on 8 December 2024).
- PASS. Ultrasonic Detection. Available online: https://www.tester.co.uk/process-and-industrial/condition-monitoring/ultrasonic-detection (accessed on 8 December 2024).
- Baumer. Functionality of Ultrasonic Sensors. Available online: https://www.baumer.com/us/en/a/Know-how_Function_Ultrasonic-sensors (accessed on 8 December 2024).
- RS. 528 for “Strain Gauge”|RS. Available online: https://uk.rs-online.com/web/c/?searchTerm=strain+gauge&sortType=DESC&sortBy=price (accessed on 10 December 2024).
- BVT Technologies. AC2 Electrochemical Sensor. Available online: https://bvt.cz/produkt/ac2/ (accessed on 8 December 2024).
- Frontline Safety. Drager EC Electrochemical Sensor for Hydrogen (H2). Frontline Safety. Available online: https://www.frontline-safety.co.uk/drager-ec-electrochemical-sensor-for-hydrogen-h2 (accessed on 10 December 2024).
- Yang, B.; Sun, D. Testing, inspecting and monitoring technologies for wind turbine blades: A survey. Renew. Sustain. Energy Rev. 2013, 22, 515–526. [Google Scholar] [CrossRef]
- Du, Y.; Zhou, S.; Jing, X.; Peng, Y.; Wu, H.; Kwok, N. Damage detection techniques for wind turbine blades: A review. Mech. Syst. Signal Process. 2020, 141, 106445. [Google Scholar] [CrossRef]
- Kaewniam, P.; Cao, M.; Alkayem, N.F.; Li, D.; Manoach, E. Recent advances in damage detection of wind turbine blades: A state-of-the-art review. Renew. Sustain. Energy Rev. 2022, 167, 112723. [Google Scholar] [CrossRef]
- Xia, J.; Zou, G. Operation and maintenance optimization of offshore wind farms based on digital twin: A review. Ocean. Eng. 2023, 268, 113322. [Google Scholar] [CrossRef]
- Yue, Y.; Tian, J.; Bai, Y.; Jia, K.; He, J.; Luo, D.; Chen, T. Applicability Analysis of Inspection and Monitoring Technologies in Wind Turbine Towers. Shock. Vib. 2021, 2021, 5548727. [Google Scholar] [CrossRef]
- Kabbabe Poleo, K.; Crowther, W.J.; Barnes, M. Estimating the impact of drone-based inspection on the Levelised Cost of electricity for offshore wind farms. Results Eng. 2021, 9, 100201. [Google Scholar] [CrossRef]
- Netland, Ø.; Jenssen, G.D.; Skavhaug, A. The Capabilities and Effectiveness of Remote Inspection of Wind Turbines. Energy Procedia 2015, 80, 177–184. [Google Scholar] [CrossRef]
- Langåker, H.-A.; Kjerkreit, H.; Syversen, C.L.; Moore, R.J.; Holhjem, Ø.H.; Jensen, I.; Morrison, A.; Transeth, A.A.; Kvien, O.; Berg, G.; et al. An autonomous drone-based system for inspection of electrical substations. Int. J. Adv. Robot. Syst. 2021, 18, 17298814211002973. [Google Scholar] [CrossRef]
- Alsayed, A.; Nabawy, M.R.; Arvin, F. Autonomous Aerial Mapping Using a Swarm of Unmanned Aerial Vehicles. In AIAA AVIATION 2022 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2022. [Google Scholar]
- Besada, J.A.; Bergesio, L.; Campaña, I.; Vaquero-Melchor, D.; López-Araquistain, J.; Bernardos, A.M.; Casar, J.R. Drone Mission Definition and Implementation for Automated Infrastructure Inspection Using Airborne Sensors. Sensors 2018, 18, 1170. [Google Scholar] [CrossRef]
- Nooralishahi, P.; Ibarra-Castanedo, C.; Deane, S.; López, F.; Pant, S.; Genest, M.; Avdelidis, N.P.; Maldague, X.P.V. Drone-Based Non-Destructive Inspection of Industrial Sites: A Review and Case Studies. Drones 2021, 5, 106. [Google Scholar] [CrossRef]
- Ameli, Z.; Aremanda, Y.; Friess, W.A.; Landis, E.N. Impact of UAV Hardware Options on Bridge Inspection Mission Capabilities. Drones 2022, 6, 64. [Google Scholar] [CrossRef]
- Alsayed, A.; Nabawy, M.R.A. Indoor Stockpile Reconstruction Using Drone-Borne Actuated Single-Point LiDARs. Drones 2022, 6, 386. [Google Scholar] [CrossRef]
- Pinto, L.R.; Vale, A.; Brouwer, Y.; Borbinha, J.; Corisco, J.; Ventura, R.; Silva, A.M.; Mourato, A.; Marques, G.; Romanets, Y.; et al. Radiological Scouting, Monitoring and Inspection Using Drones. Sensors 2021, 21, 3143. [Google Scholar] [CrossRef]
- Ashour, R.; Taha, T.; Mohamed, F.; Hableel, E.; Kheil, Y.A.; Elsalamouny, M.; Kadadha, M.; Rangan, K.; Dias, J.; Seneviratne, L.; et al. Site Inspection Drone: A Solution for Inspecting and Regulating Construction Sites. In Proceedings of the 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), Abu Dhabi, United Arab Emirates, 16–19 October 2016; pp. 1–4. [Google Scholar]
- Alsayed, A.; Nabawy, M.R.A. Stockpile Volume Estimation in Open and Confined Environments: A Review. Drones 2023, 7, 537. [Google Scholar] [CrossRef]
- Kamran, M. Chapter 7—Microgrid and Hybrid Energy Systems. In Fundamentals of Smart Grid Systems; Kamran, M., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 299–363. [Google Scholar] [CrossRef]
- Khalid, O.; Hao, G.; Desmond, C.; Macdonald, H.; Devoy McAuliffe, F.; Dooly, G.; Hu, W. Applications of robotics in floating offshore wind farm operations and maintenance: Literature review and trends. Wind Energy 2022, 25, 1880–1899. [Google Scholar] [CrossRef]
- Shafiee, M.; Zhou, Z.; Mei, L.; Dinmohammadi, F.; Karama, J.; Flynn, D. Unmanned Aerial Drones for Inspection of Offshore Wind Turbines: A Mission-Critical Failure Analysis. Robotics 2021, 10, 26. [Google Scholar] [CrossRef]
- Lee, I. Service Robots: A Systematic Literature Review. Electronics 2021, 10, 2658. [Google Scholar] [CrossRef]
- Charron, N.; McLaughlin, E.; Phillips, S.; Goorts, K.; Narasimhan, S.; Waslander, S.L. Automated Bridge Inspection Using Mobile Ground Robotics. J. Struct. Eng. 2019, 145, 04019137. [Google Scholar] [CrossRef]
- Phillips, S.; Narasimhan, S. Automating Data Collection for Robotic Bridge Inspections. J. Bridge Eng. 2019, 24, 04019075. [Google Scholar] [CrossRef]
- Jiang, Z.; Jovan, F.; Moradi, P.; Richardson, T.; Bernardini, S.; Watson, S.; Weightman, A.; Hine, D. A multirobot system for autonomous deployment and recovery of a blade crawler for operations and maintenance of offshore wind turbine blades. J. Field Robot. 2022, 40, 73–93. [Google Scholar] [CrossRef]
- Bernardini, S.; Jovan, F.; Jiang, Z.; Watson, S.; Weightman, A.; Moradi, P.; Richardson, T.; Sadeghian, R.; Sareh, S. A Multi-Robot Platform for the Autonomous Operation and Maintenance of Offshore Wind Farms. Blue Sky Idea Pap. 2020, 1696–1700. Available online: https://dl.acm.org/doi/abs/10.5555/3398761.3398956 (accessed on 10 December 2024).
- Liu, J.-H.; Padrigalan, K. Design and Development of a Climbing Robot for Wind Turbine Maintenance. Appl. Sci. 2021, 11, 2328. [Google Scholar] [CrossRef]
- Lee, D.G.; Oh, S.; Son, H.I. Maintenance Robot for 5-MW Offshore Wind Turbines and its Control. IEEE/ASME Trans. Mechatron. 2016, 21, 2272–2283. [Google Scholar] [CrossRef]
- Jeon, M.; Kim, B.G.; Hong, D. Maintenance robot for wind power blade cleaning. In Proceedings of the International Symposium on Automation and Robotics in Construction, Eindhoven, The Netherlands, 26–29 June 2012; Volume 11, p. 377. [Google Scholar] [CrossRef]
- Elkmann, N.; Felsch, T.; Förster, T. Robot for Rotor Blade Inspection. In Proceedings of the 2010 1st International Conference on Applied Robotics for the Power Industry, Montreal, ON, Canada, 5–7 October 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Lim, S.; Park, C.-W.; Hwang, J.-H.; Kim, D.-Y.; Kim, T.-K. The Inchworm Type Blade Inspection Robot System. In Proceedings of the 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Daejeon, Republic of Korea, 26–28 November 2012; pp. 604–607. [Google Scholar] [CrossRef]
- Stokkeland, M.; Klausen, K.; Johansen, T.A. Autonomous Visual Navigation of Unmanned Aerial Vehicle for Wind Turbine Inspection. In Proceedings of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 9–12 June 2015; pp. 998–1007. [Google Scholar] [CrossRef]
- Schäfer, B.E.; Picchi, D.; Engelhardt, T.; Abel, D. Multicopter Unmanned Aerial Vehicle for Automated Inspection of Wind Turbines. In Proceedings of the 2016 24th Mediterranean Conference on Control and Automation (MED), Athens, Greece, 21–24 June 2016; pp. 244–249. [Google Scholar] [CrossRef]
- Car, M.; Markovic, L.; Ivanovic, A.; Orsag, M.; Bogdan, S. Autonomous Wind-Turbine Blade Inspection Using LiDAR-Equipped Unmanned Aerial Vehicle. IEEE Access 2020, 8, 131380–131387. [Google Scholar] [CrossRef]
- Zhao, C.; Thies, P.R.; Johanning, L. Offshore inspection mission modelling for an ASV/ROV system. Ocean. Eng. 2022, 259, 111899. [Google Scholar] [CrossRef]
- Sivčev, S.; Omerdić, E.; Dooly, G.; Coleman, J.; Toal, D. Towards Inspection of Marine Energy Devices Using ROVs: Floating Wind Turbine Motion Replication. In Proceedings of the ROBOT 2017: Third Iberian Robotics Conference, Sevilla, Spain, 22–24 November 2017; Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 196–211. [Google Scholar] [CrossRef]
- Jacobi, M. Autonomous inspection of underwater structures. Robot. Auton. Syst. 2015, 67, 80–86. [Google Scholar] [CrossRef]
- Gorma, W.; Post, M.A.; White, J.; Gardner, J.; Luo, Y.; Kim, J.; Mitchell, P.D.; Morozs, N.; Wright, M.; Xiao, Q. Development of Modular Bio-Inspired Autonomous Underwater Vehicle for Close Subsea Asset Inspection. Appl. Sci. 2021, 11, 5401. [Google Scholar] [CrossRef]
- Franko, J.; Du, S.; Kallweit, S.; Duelberg, E.; Engemann, H. Design of a Multi-Robot System for Wind Turbine Maintenance. Energies 2020, 13, 2552. [Google Scholar] [CrossRef]
- Song, Y.; Kim, T.; Lee, M.; Rho, S.; Kim, J.; Kang, J.; Yu, S.-C. Development of Safety-Inspection-Purpose Wall-Climbing Robot Utilizing Aerial Drone with Lifting Function. In Proceedings of the 2021 18th International Conference on Ubiquitous Robots (UR), Gangneung, Republic of Korea, 12–14 July 2021; pp. 411–416. [Google Scholar] [CrossRef]
- Myeong, W.C.; Jung, K.Y.; Jung, S.W.; Jung, Y.H.; Myung, H. Development of a Drone-Type Wall-Sticking and Climbing Robot. In Proceedings of the 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Goyang, Republic of Korea, 28–30 October 2015; pp. 386–389. [Google Scholar] [CrossRef]
- Myeong, W.; Jung, K.; Jung, S.; Jeong, Y.; Myung, H. Drone-Type Wall-Climbing Robot Platform For Structural Health Monitoring. 2015. Available online: https://www.semanticscholar.org/paper/Drone-Type-Wall-Climbing-Robot-Platform-For-Health-Myeong-Jung/e868f1a86c2ff1e6a83bb862e2c2b53c000de613 (accessed on 9 December 2024).
- Jung, S.; Shin, J.-U.; Myeong, W.; Myung, H. Mechanism and System Design of MAV(Micro Aerial Vehicle)-Type Wall-Climbing Robot for Inspection of Wind Blades and Non-Flat Surfaces. In Proceedings of the 2015 15th International Conference on Control, Automation and Systems (ICCAS), Busan, Republic of Korea, 13–16 October 2015; pp. 1757–1761. [Google Scholar] [CrossRef]
- Myeong, W.; Myung, H. Development of a Wall-Climbing Drone Capable of Vertical Soft Landing Using a Tilt-Rotor Mechanism. IEEE Access 2019, 7, 4868–4879. [Google Scholar] [CrossRef]
- Ottaviano, E.; Rea, P.; Cavacece, M.; Figliolini, G. Mechatronic Design of a Wall-Climbing Drone for the Inspection of Structures and Infrastructure. In Innovations in Mechatronics Engineering; Machado, J., Soares, F., Trojanowska, J., Yildirim, S., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 460–467. [Google Scholar] [CrossRef]
- Mintchev, S.; Floreano, D. Adaptive Morphology: A Design Principle for Multimodal and Multifunctional Robots. IEEE Robot. Autom. Mag. 2016, 23, 42–54. [Google Scholar] [CrossRef]
- Ramirez, J.P.; Hamaza, S. Multimodal Locomotion: Next Generation Aerial–Terrestrial Mobile Robotics. Adv. Intell. Syst. 2023, 2300327. [Google Scholar] [CrossRef]
- Kalantari, A.; Spenko, M. Modeling and Performance Assessment of the HyTAQ, a Hybrid Terrestrial/Aerial Quadrotor. IEEE Trans. Robot. 2014, 30, 1278–1285. [Google Scholar] [CrossRef]
- Mintchev, S.; Floreano, D. A Multi-Modal Hovering and Terrestrial Robot with Adaptive Morphology. In Proceedings of the 2nd International Symposium on Aerial Robotics, Philadelphia, PA, USA, 11–12 June 2018; Available online: https://infoscience.epfl.ch/handle/20.500.14299/146873 (accessed on 10 December 2024).
- Fabris, A.; Kirchgeorg, S.; Mintchev, S. A Soft Drone with Multi-modal Mobility for the Exploration of Confined Spaces. In Proceedings of the 2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Sevilla, Spain, 8–10 November 2022; pp. 48–54. [Google Scholar] [CrossRef]
- Kossett, A.; D’Sa, R.; Purvey, J.; Papanikolopoulos, N. Design of an Improved Land/Air Miniature Robot. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 632–637. [Google Scholar] [CrossRef]
- Tanaka, K.; Zhang, D.; Inoue, S.; Kasai, R.; Yokoyama, H.; Shindo, K.; Matsuhiro, K.; Marumoto, S.; Ishii, H.; Takanishi, A. A Design of a Small Mobile Robot with a Hybrid Locomotion Mechanism of Wheels and Multi-Rotors. In Proceedings of the 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 6–9 August 2017; pp. 1503–1508. [Google Scholar] [CrossRef]
- Fan, D.D.; Thakker, R.; Bartlett, T.; Miled, M.B.; Kim, L.; Theodorou, E.; Agha-mohammadi, A. Autonomous Hybrid Ground/Aerial Mobility in Unknown Environments. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Venetian Macao, Macau, 3–8 November 2019; pp. 3070–3077. [Google Scholar] [CrossRef]
- Hoji, R.; Maeyama, S.; Kono, T.; Takei, T.; Yuta, S. Position Control for Half-Drone Wheeled Inverted Pendulum Robot. In Proceedings of the 2021 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 8–11 August 2021; pp. 651–656. [Google Scholar] [CrossRef]
- Dias, T.; Basiri, M. BogieCopter: A Multi-Modal Aerial-Ground Vehicle for Long-Endurance Inspection Applications. arXiv 2023, arXiv:2303.01933. [Google Scholar] [CrossRef]
- Swamy, S.R.; Sasnur, S.S.; Sai, P.G.; Naga, S.B.; Kharvi, V.S. Design and Development of Unmanned Ground and Aerial Vehicle with The Concept of Integration of Drone and Rover. Available online: http://13.232.72.61:8080/jspui/handle/123456789/5248 (accessed on 29 January 2024).
- Li, Y.; Lu, H.; Nakayama, Y.; Kim, H.; Serikawa, S. Automatic road detection system for an air–land amphibious car drone. Future Gener. Comput. Syst. 2018, 85, 51–59. [Google Scholar] [CrossRef]
- Zhao, S.; Ruggiero, F.; Fontanelli, G.A.; Lippiello, V.; Zhu, Z.; Siciliano, B. Nonlinear Model Predictive Control for the Stabilization of a Wheeled Unmanned Aerial Vehicle on a Pipe. IEEE Robot. Autom. Lett. 2019, 4, 4314–4321. [Google Scholar] [CrossRef]
- Greco, M.; Leccese, F.; Giarnetti, S.; De Francesco, E. A Multiporpouse Amphibious Rover (MAR) as Platform in Archaeological Field. In Proceedings of the 2022 IMEKO TC4 International Conference on Metrology for Archaeology and Cultural Heritage, Calabria, Italy, 19–21 October 2022; IMEKO: Consenza, Italy, 2023; pp. 252–256. [Google Scholar] [CrossRef]
- Ge, Y.; Gao, F.; Chen, W. A transformable wheel-spoke-paddle hybrid amphibious robot. Robotica 2024, 42, 701–727. [Google Scholar] [CrossRef]
- Klein, M.A.; Boxerbaum, A.S.; Quinn, R.D.; Harkins, R.; Vaidyanathan, R. SeaDog: A Rugged Mobile Robot for Surf-Zone Applications. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 1335–1340. [Google Scholar] [CrossRef]
- Muthusamy, S.; Duraisamy, S.; Ramachandran, M.; Karthikeyan, J.; David, J.I.; Kumar Settu, H.; Rathinasamy, A. A Novel Method for Design and Development of Hybrid Land and Water Buoyancy Trash Collecting Robot. In Proceedings of the 2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), Bangalore, India, 24–25 January 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Nilas, P.; Ngo, T. A Multi-Terrain Spherical Amphibious Robot for On-Land, In-Water, and Underwater Operation. 2019. Available online: https://www.semanticscholar.org/paper/A-Multi-Terrain-Spherical-Amphibious-Robot-for-%2C-%2C-Nilas-Ngo/9338074270f7611466c872420342e780ac7b0520 (accessed on 11 June 2024).
- Li, L.; Guo, J.; Guo, S. Characteristic Evaluation on Land for a Novel Amphibious Spherical Robot. In Proceedings of the 2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China, 2–5 August 2015; pp. 1100–1105. [Google Scholar] [CrossRef]
- Wagner, M.; Chen, X.; Nayyerloo, M.; Wang, W.; Chase, J.G. A Novel Wall Climbing Robot Based on Bernoulli Effect. In Proceedings of the 2008 IEEE/ASME International Conference on Mechtronic and Embedded Systems and Applications, Beijing, China, 12–15 October 2008; pp. 210–215. [Google Scholar] [CrossRef]
- Navaprakash, N.; Ramachandraiah, U.; Muthukumaran, G.; Rakesh, V.; Singh, A.P. Modeling and Experimental Analysis of Suction Pressure Generated by Active Suction Chamber Based Wall Climbing Robot with a Novel Bottom Restrictor. Procedia Comput. Sci. 2018, 133, 847–854. [Google Scholar] [CrossRef]
- Muthugala, M.A.V.J.; Vega-Heredia, M.; Mohan, R.E.; Vishaal, S.R. Design and Control of a Wall Cleaning Robot with Adhesion-Awareness. Symmetry 2020, 12, 122. [Google Scholar] [CrossRef]
- Mahmood, S.K.; Bakhy, S.H.; Tawfik, M.A. Magnetic–type Climbing Wheeled Mobile Robot for Engineering Education. IOP Conf. Ser. Mater. Sci. Eng. 2020, 928, 022145. [Google Scholar] [CrossRef]
- Eto, H.; Asada, H.H. Development of a Wheeled Wall-Climbing Robot with a Shape-Adaptive Magnetic Adhesion Mechanism. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020. [Google Scholar] [CrossRef]
- Horn, A.C.; Pinheiro, P.M.; Grando, R.B.; da Silva, C.B.; Neto, A.A.; Drews, P.L.J. A Novel Concept for Hybrid Unmanned Aerial Underwater Vehicles Focused on Aquatic Performance. In Proceedings of the 2020 Latin American Robotics Symposium (LARS), 2020 Brazilian Symposium on Robotics (SBR) and 2020 Workshop on Robotics in Education (WRE), Natal, Brazil, 9–12 November 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Aoki, V.M.; Pinheiro, P.M.; Drews-Jr, P.L.J.; Cunha, M.A.B.; Tuchtenhagen, L.G. Analysis of a Hybrid Unmanned Aerial Underwater Vehicle Considering the Environment Transition. In Proceedings of the 2021 Latin American Robotics Symposium (LARS), 2021 Brazilian Symposium on Robotics (SBR), and 2021 Workshop on Robotics in Education (WRE), Natal, Brazil, 11–15 October 2021; pp. 90–95. [Google Scholar] [CrossRef]
- Debruyn, D.; Zufferey, R.; Armanini, S.F.; Winston, C.; Farinha, A.; Jin, Y.; Kovac, M. MEDUSA: A Multi-Environment Dual-Robot for Underwater Sample Acquisition. IEEE Robot. Autom. Lett. 2020, 5, 4564–4571. [Google Scholar] [CrossRef]
- Liu, X.; Dou, M.; Huang, D.; Gao, S.; Yan, R.; Wang, B.; Cui, J.; Ren, Q.; Dou, L.; Gao, Z.; et al. TJ-FlyingFish: Design and Implementation of an Aerial-Aquatic Quadrotor with Tiltable Propulsion Units. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 7324–7330. [Google Scholar] [CrossRef]
- Maia, M.M.; Soni, P.; Diez, F.J. Demonstration of an Aerial and Submersible Vehicle Capable of Flight and Underwater Navigation with Seamless Air-Water Transition. arXiv 2015, arXiv:1507.01932. [Google Scholar] [CrossRef]
- Le, P.H.; Wang, Z.; Hirai, S. Origami Structure Toward Floating Aerial Robot. In Proceedings of the 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Busan, Republic of Korea, 7–11 July 2015; pp. 1565–1569. [Google Scholar] [CrossRef]
- Albers, A.; Trautmann, S.; Howard, T.; Nguyen, T.A.; Frietsch, M.; Sauter, C. Semi-Autonomous Flying Robot for Physical Interaction with Environment. In Proceedings of the 2010 IEEE Conference on Robotics, Automation and Mechatronics, Singapore, 28–30 June 2010; pp. 441–446. [Google Scholar] [CrossRef]
- Ding, X.; Yu, Y. Motion Planning and Stabilization Control of a Multipropeller Multifunction Aerial Robot. IEEE/ASME Trans. Mechatron. 2013, 18, 645–656. [Google Scholar] [CrossRef]
- Myeong, W.; Song, S.; Myung, H. Development of a Wall-Climbing Drone with a Rotary Arm for Climbing Various-Shaped Surfaces. In Proceedings of the 2018 15th International Conference on Ubiquitous Robots (UR), Honolulu, HI, USA, 26–30 June 2018; pp. 687–692. [Google Scholar] [CrossRef]
- Myeong, W.; Jung, S.; Yu, B.-U.; Chris, T.; Song, S.; Myung, H. Development of Wall-climbing Unmanned Aerial Vehicle System for Micro-Inspection of Bridges. Presented at the IEEE International Conference on Robotics and Automation, Montreal, QC, Canada, 20–24 May 2019; Available online: https://www.semanticscholar.org/paper/Development-of-Wall-climbing-Unmanned-Aerial-System-Myeong-Jung/b12cce6d9509b6cc93ab5df1e0fa0f435b9b011d (accessed on 11 June 2024).
- Lee, H.; Yu, B.; Tirtawardhana, C.; Kim, C.; Jeong, M.; Hu, S.; Myung, H. CAROS-Q: Climbing Aerial RObot System Adopting Rotor Offset With a Quasi-Decoupling Controller. IEEE Robot. Autom. Lett. 2021, 6, 8490–8497. [Google Scholar] [CrossRef]
- Hsiao, Y.-H.; Bai, S.; Zhou, Y.; Jia, H.; Ding, R.; Chen, Y.; Wang, Z.; Chirarattananon, P. Energy efficient perching and takeoff of a miniature rotorcraft. Commun. Eng. 2023, 2, 1–14. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, G.; Chen, H. Impedance Control of a Bio-Inspired Flying and Adhesion Robot. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 3564–3569. [Google Scholar] [CrossRef]
- Liang, P.; Gao, X.; Gao, R.; Zhang, Q.; Li, M. Analysis of the aerodynamic performance of a twin-propelled wall-climbing robot based on computational fluid dynamics method. AIP Adv. 2022, 12, 015022. [Google Scholar] [CrossRef]
- Liang, P.; Gao, X.; Zhang, Q.; Gao, R.; Li, M.; Xu, Y.; Zhu, W. Design and Stability Analysis of a Wall-Climbing Robot Using Propulsive Force of Propeller. Symmetry 2021, 13, 37. [Google Scholar] [CrossRef]
- Liang, P.; Gao, X.; Zhang, Q.; Li, M.; Gao, R.; Xu, Y. Analysis and experimental research on motion stability of wall-climbing robot with double propellers. Adv. Mech. Eng. 2021, 13, 168781402110477. [Google Scholar] [CrossRef]
- David, N.B.; Zarrouk, D. Design and Analysis of FCSTAR, a Hybrid Flying and Climbing Sprawl Tuned Robot. IEEE Robot. Autom. Lett. 2021, 6, 6188–6195. [Google Scholar] [CrossRef]
- Huang, C.; Liu, Y.; Wang, K.; Bai, B. Land–Air–Wall Cross-Domain Robot Based on Gecko Landing Bionic Behavior: System Design, Modeling, and Experiment. Appl. Sci. 2022, 12, 3988. [Google Scholar] [CrossRef]
- Hossain, R.; Chisty, N. Design and Implementation of a Wall Climbing Robot. Int. J. Comput. Appl. 2018, 179, 1–5. [Google Scholar] [CrossRef]
- Kadar, F.; Tătar, M.O. A Review on Mobile Robots with Multimodal Locomotion. In Proceedings of the SYROM 2022 & ROBOTICS 2022, Iasi, Romania, 17–18 November 2022; Doroftei, I., Nitulescu, M., Pisla, D., Lovasz, E.-C., Eds.; Mechanisms and Machine Science. Springer International Publishing: Cham, Switzerland, 2023; pp. 337–349. [Google Scholar] [CrossRef]
- Canelon, D.; Westlake, S.; Wang, Y.; Papanikolopoulos, N. Design and Characterization of a Multi-Domain Unmanned Vehicle Operating in Aerial, Terrestrial, and Underwater Environments. In Proceedings of the 2021 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021; pp. 1466–1471. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, K.; Guo, S.; Li, C.; Yang, X. Design of a New Type of Tri-habitat Robot. In Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, 4–7 August 2019; pp. 1508–1513. [Google Scholar] [CrossRef]
- Evangeliou, N.; Chaikalis, D.; Giakoumidis, N.; Tzes, A. Mechatronic Design of an Amphibious Drone. In Proceedings of the 2023 9th International Conference on Automation, Robotics and Applications (ICARA), Abu Dhabi, United Arab Emirates, 10–12 February 2023; pp. 230–233. [Google Scholar] [CrossRef]
- Sharma, P.; Ab, A.S. Conceptual Design and Non-Linear Analysis of Triphibian Drone. Procedia Comput. Sci. 2018, 133, 448–455. [Google Scholar] [CrossRef]
- Zhong, G.; Cao, J.; Chai, X.; Bai, Y. Design and Performance Analysis of a Triphibious Robot With Tilting-Rotor Structure. IEEE Access 2021, 9, 10871–10879. [Google Scholar] [CrossRef]
- Kawasaki, K.; Zhao, M.; Okada, K.; Inaba, M. MUWA: Multi-field universal wheel for air-land vehicle with quad variable-pitch propellers. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 1880–1885. [Google Scholar] [CrossRef]
- Eswaran, P.; Tamilmani, B.; Karna, D.R.; Arif, A.M.; Susheel, R.N.; Kumar, B.S.; Raju, K.R. Triphibian—An urban future transportation system. IOP Conf. Ser. Mater. Sci. Eng. 2020, 764, 012035. [Google Scholar] [CrossRef]
- Shrestha, E.; Davis, B.; Hrishikeshavan, V.; Chopra, I. All-Terrain Cyclocopter Capable of Aerial, Terrestrial, and Aquatic Modes. J. Am. Helicopter Soc. 2021, 66, 1–10. [Google Scholar] [CrossRef]
- Lock, R.J.; Burgess, S.C.; Vaidyanathan, R. Multi-modal locomotion: From animal to application. Bioinspir. Biomim. 2013, 9, 011001. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Jimenez, V.M.; Jusufi, A.; Brown, C.E.; Zeng, Y.; Kumar, S.; Siddall, R.; Kim, B.; Challita, E.J.; Pavlik, Z.; Priess, M.; et al. Air-to-land transitions: From wingless animals and plant seeds to shuttlecocks and bio-inspired robots. Bioinspir. Biomim. 2023, 18, 051001. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.D.; Park, J.; Park, H.-W. Bio-Inspired Design of a Gliding-Walking Multi-Modal Robot. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 8158–8164. [Google Scholar] [CrossRef]
- Shin, W.D.; Park, J.; Park, H.-W. Development and experiments of a bio-inspired robot with multi-mode in aerial and terrestrial locomotion. Bioinspir. Biomim. 2019, 14, 056009. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, R.J.; Boria, F.J.; Vaidyanathan, R.; Ifju, P.G.; Quinn, R.D. A biologically inspired micro-vehicle capable of aerial and terrestrial locomotion. Mech. Mach. Theory 2009, 44, 513–526. [Google Scholar] [CrossRef]
- Paulson, L.D. Biomimetic robots. Computer 2004, 37, 48–53. [Google Scholar] [CrossRef]
- Peterson, K.; Fearing, R.S. Experimental Dynamics of Wing Assisted Running for a Bipedal Ornithopter. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 5080–5086. [Google Scholar] [CrossRef]
- Peterson, K.; Birkmeyer, P.; Dudley, R.; Fearing, R.S. A wing-assisted running robot and implications for avian flight evolution. Bioinspir. Biomim. 2011, 6, 046008. [Google Scholar] [CrossRef]
- Kashem, S.; Sufyan, H. A novel design of an aquatic walking robot having webbed feet. Int. J. Autom. Comput. 2017, 14, 576–588. [Google Scholar] [CrossRef]
- Kashem, S.B.A.; Tabassum, M.; Chai, M. A Novel Design of an Amphibious Robot Having Webbed Feet as Duck. In Proceedings of the 2017 International Conference on Computer and Drone Applications (IConDA), Kuching, Malaysia, 9–11 November 2017; pp. 17–21. [Google Scholar] [CrossRef]
- Kashem, S.B.A.; Jawed, S.; Ahmed, J.; Qidwai, U. Design and Implementation of a Quadruped Amphibious Robot Using Duck Feet. Robotics 2019, 8, 77. [Google Scholar] [CrossRef]
- Baines, R.; Patiballa, S.K.; Booth, J.; Ramirez, L.; Sipple, T.; Garcia, A.; Fish, F.; Kramer-Bottiglio, R. Multi-environment robotic transitions through adaptive morphogenesis. Nature 2022, 610, 283–289. [Google Scholar] [CrossRef]
- Dudek, G.; Giguere, P.; Prahacs, C.; Saunderson, S.; Sattar, J.; Torres-Mendez, L.; Jenkin, M.; German, A.; Hogue, A.; Ripsman, A.; et al. AQUA: An Amphibious Autonomous Robot. Computer 2007, 40, 46–53. [Google Scholar] [CrossRef]
- Georgiades, C.; German, A.; Hogue, A.; Liu, H.; Prahacs, C.; Ripsman, A.; Sim, R.; Torres, L.-A.; Zhang, P.; Buehler, M.; et al. AQUA: An Aquatic Walking Robot. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sendai, Japan, 28 September–2 October 2004; Volume 4, pp. 3525–3531. [Google Scholar] [CrossRef]
- Chen, Y.; Doshi, N.; Goldberg, B.; Wang, H.; Wood, R.J. Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot. Nat. Commun. 2018, 9, 2495. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, Q.; Chen, Y.; Wei, C.; Yin, S. Water Surface Stability Prediction of Amphibious Bio-Inspired Undulatory Fin Robot. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 7365–7371. [Google Scholar] [CrossRef]
- Crespi, A.; Badertscher, A.; Guignard, A.; Ijspeert, A.J. AmphiBot I: An amphibious snake-like robot. Robot. Auton. Syst. 2005, 50, 163–175. [Google Scholar] [CrossRef]
- Yang, Q.; Yu, J.; Tan, M.; Wang, W. Preliminary Development of a Biomimetic Amphibious Robot Capable of Multi-Mode Motion. In Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO), Sanya, China, 15–18 December 2007; pp. 769–774. [Google Scholar] [CrossRef]
- Yu, J.; Yang, Q.; Ding, R.; Tan, M.; Yu, J.; Yang, Q.; Ding, R.; Tan, M. Terrestrial and Underwater Locomotion Control for a Biomimetic Amphibious Robot Capable of Multimode Motion. In Motion Control; IntechOpen: London, UK, 2010. [Google Scholar] [CrossRef]
- Yue, T.; Bloomfield-Gadêlha, H.; Rossiter, J. Friction-driven Three-Foot Robot Inspired by Snail Movement. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 9820–9825. [Google Scholar] [CrossRef]
- Goldman, D.I.; Chen, T.S.; Dudek, D.M.; Full, R.J. Dynamics of rapid vertical climbing in cockroaches reveals a template. J. Exp. Biol. 2006, 209, 2990–3000. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Liu, Y.; Wang, X.; Wu, X.; Mei, T. Design and Experiment of a Bioinspired Wall-Climbing Robot Using Spiny Grippers. In Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, 7–10 August 2016; pp. 665–670. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, W.; Gonzalez-Gomez, J.; Zhang, J.; Zhang, H.; Wang, W.; Gonzalez-Gomez, J.; Zhang, J. A Bio-Inspired Small-Sized Wall-Climbing Caterpillar Robot. In Mechatronic Systems Applications; IntechOpen: London, UK, 2010. [Google Scholar] [CrossRef]
- Lin, T.-H.; Chiang, P.-C.; Putranto, A. Multispecies hybrid bioinspired climbing robot for wall tile inspection. Autom. Constr. 2024, 164, 105446. [Google Scholar] [CrossRef]
- Siddall, R.; Kovač, M. Launching the AquaMAV: Bioinspired design for aerial-aquatic robotic platforms. Bioinspir. Biomim. 2014, 9, 031001. [Google Scholar] [CrossRef]
- Armanini, S.F.; Siddall, R.; Kovac, M. Modelling and Simulation of a Bioinspired Aquatic Micro Aerial Vehicle. In AIAA Aviation 2019 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2019. [Google Scholar] [CrossRef]
- Qin, K.; Tang, W.; Zhong, Y.; Liu, Y.; Xu, H.; Zhu, P.; Yan, D.; Yang, H.; Zou, J. An Aerial–Aquatic Robot with Tunable Tilting Motors Capable of Multimode Motion. Adv. Intell. Syst. 2023, 5, 2300193. [Google Scholar] [CrossRef]
- Hou, T.; Yang, X.; Su, H.; Jiang, B.; Chen, L.; Wang, T.; Liang, J. Design and Experiments of a Squid-Like Aquatic-Aerial Vehicle with Soft Morphing Fins and Arms. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 4681–4687. [Google Scholar] [CrossRef]
- Gu, L.; Xiang, Y.; Gong, Z.; Tao, B. Bio-Inspired Wing with Bistable Morphing Airfoils for Aquatic-Aerial Robots. IEEE Robot. Autom. Lett. 2024, 9, 6704–6711. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Liu, T.; Li, H.; Qu, S.; Yang, W. Design and analysis of an untethered micro flapping robot which can glide on the water. Sci. China Technol. Sci. 2022, 65, 1749–1759. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Helbling, E.F.; Jafferis, N.T.; Zufferey, R.; Ong, A.; Ma, K.; Gravish, N.; Chirarattananon, P.; Kovac, M.; et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Sci. Robot. 2017, 2, eaao5619. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Helbling, E.F.; Gravish, N.; Ma, K.; Wood, R.J. Hybrid Aerial and Aquatic Locomotion in an at-Scale Robotic Insect. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October 2015; pp. 331–338. [Google Scholar] [CrossRef]
- Dickson, J.D.; Clark, J.E. Design of a Multimodal Climbing and Gliding Robotic Platform. IEEE/ASME Trans. Mechatron. 2013, 18, 494–505. [Google Scholar] [CrossRef]
- Lussier Desbiens, A.; Cutkosky, M.R. Landing and Perching on Vertical Surfaces with Microspines for Small Unmanned Air Vehicles. J. Intell. Robot Syst. 2010, 57, 313–327. [Google Scholar] [CrossRef]
- Mehanovic, D.; Rancourt, D.; Desbiens, A.L. Fast and Efficient Aerial Climbing of Vertical Surfaces Using Fixed-Wing UAVs. IEEE Robot. Autom. Lett. 2019, 4, 97–104. [Google Scholar] [CrossRef]
- Zufferey, R.; Tormo-Barbero, J.; Feliu-Talegón, D.; Nekoo, S.R.; Acosta, J.Á.; Ollero, A. How ornithopters can perch autonomously on a branch. Nat. Commun. 2022, 13, 7713. [Google Scholar] [CrossRef]
- Chatterjee, S.; Roberts, B.; Lind, R. Pterodrone: A Pterodactyl-Inspired Unmanned Air Vehicle That Flies, Walks, Climbs, and Sails. In WIT Transactions on Ecology and the Environment 2010; University of Pisa: Pisa, Italy, 2010; pp. 301–316. [Google Scholar] [CrossRef]
- Pérez-Sánchez, V.; Gómez-Tamm, A.E.; García-Rubiales, F.J.; Arrue, B.; Ollero, A. Analysis of Forces Involved in the Perching Maneuver of Flapping-Wing Aerial Systems and Development of an Ultra-Lightweight Perching System. In Proceedings of the 2021 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021; pp. 1284–1290. [Google Scholar] [CrossRef]
- Lau, G.-K.; Wu, C.-C.; Ren, Z.-X.; Wakler, S.; Lin, S.-C.; Tseng, K.-Y.; Lu, C.-C. Lightweight Perching Mechanisms for Flapping-wing Drones. In Proceedings of the 2023 International Conference on Advanced Robotics and Intelligent Systems (ARIS), Taipei, Taiwan, 30 August–1 September 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Pan, Y.; Göktogan, A. Quasi-Static Balance of a Bioinspired Robotic-Seagull Ornithopter Perching on a Wire. Environmental Science. 2017. Available online: https://www.semanticscholar.org/paper/Quasi-Static-Balance-of-a-Bioinspired-Ornithopter-a-Pan-G%C3%B6ktogan/aa29d322840f3bbdc563180d0af6f443805006ba (accessed on 11 June 2024).
- Chukewad, Y.M.; James, J.; Singh, A.; Fuller, S. RoboFly: An Insect-Sized Robot With Simplified Fabrication That Is Capable of Flight, Ground, and Water Surface Locomotion. IEEE Trans. Robot. 2021, 37, 2025–2040. [Google Scholar] [CrossRef]
- Russo, M.; Ceccarelli, M. A Survey on Mechanical Solutions for Hybrid Mobile Robots. Robotics 2020, 9, 32. [Google Scholar] [CrossRef]
- Dinelli, C.; Racette, J.; Escarcega, M.; Lotero, S.; Gordon, J.; Montoya, J.; Dunaway, C.; Androulakis, V.; Khaniani, H.; Shao, S.; et al. Configurations and Applications of Multi-Agent Hybrid Drone/Unmanned Ground Vehicle for Underground Environments: A Review. Drones 2023, 7, 136. [Google Scholar] [CrossRef]
- Sihite, E.; Kalantari, A.; Nemovi, R.; Ramezani, A.; Gharib, M. Multi-Modal Mobility Morphobot (M4) with appendage repurposing for locomotion plasticity enhancement. Nat. Commun. 2023, 14, 3323. [Google Scholar] [CrossRef] [PubMed]
- Daler, L.; Lecoeur, J.; Hählen, P.B.; Floreano, D. A Flying Robot with Adaptive Morphology for Multi-Modal Locomotion. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Detroit, MI, USA, 1–5 October 2013; pp. 1361–1366. [Google Scholar] [CrossRef]
- Ceccarelli, M.; Cafolla, D.; Russo, M.; Carbone, G. Design Issues for a Walking-Flying Robot. In Mechanism and Machine Science; Sen, D., Mohan, S., Ananthasuresh, G.K., Eds.; Springer: Singapore, 2021; pp. 267–277. [Google Scholar] [CrossRef]
- Kim, K.; Spieler, P.; Lupu, E.-S.; Ramezani, A.; Chung, S.-J. A bipedal walking robot that can fly, slackline, and skateboard. Sci. Robot. 2021, 6, eabf8136. [Google Scholar] [CrossRef]
- Li, M.; Guo, S.; Hirata, H.; Ishihara, H. A roller-skating/walking mode-based amphibious robot. Robot. Comput. Integr. Manuf. 2017, 44, 17–29. [Google Scholar] [CrossRef]
- Xing, H.; Shi, L.; Hou, X.; Liu, Y.; Hu, Y.; Xia, D.; Li, Z.; Guo, S. Design, modeling and control of a miniature bio-inspired amphibious spherical robot. Mechatronics 2021, 77, 102574. [Google Scholar] [CrossRef]
- Xing, H.; Guo, S.; Shi, L.; Hou, X.; Liu, Y.; Liu, H. Design, modeling and experimental evaluation of a legged, multi-vectored water-jet composite driving mechanism for an amphibious spherical robot. Microsyst. Technol. 2020, 26, 475–487. [Google Scholar] [CrossRef]
- Christensen, D.L.; Hawkes, E.W.; Suresh, S.A.; Ladenheim, K.; Cutkosky, M.R. μTugs: Enabling microrobots to deliver macro forces with controllable adhesives. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 4048–4055. [Google Scholar] [CrossRef]
- Christensen, D.L.; Suresh, S.A.; Hahm, K.; Cutkosky, M.R. Let’s All Pull Together: Principles for Sharing Large Loads in Microrobot Teams. IEEE Robot. Autom. Lett. 2016, 1, 1089–1096. [Google Scholar] [CrossRef]
- Li, H.; Sun, X.; Chen, Z.; Zhang, L.; Wang, H.; Wu, X. Design of a wheeled wall climbing robot based on the performance of bio-inspired dry adhesive material. Robotica 2022, 40, 611–624. [Google Scholar] [CrossRef]
- Liu, J.; Xu, L.; Chen, S.; Xu, H.; Cheng, G.; Li, T.; Yang, Q. Design and Realization of a Bio-inspired Wall Climbing Robot for Rough Wall Surfaces. In Intelligent Robotics and Applications; Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 47–59. [Google Scholar] [CrossRef]
- Li, L.; Wang, S.; Zhang, Y.; Song, S.; Wang, C.; Tan, S.; Zhao, W.; Wang, G.; Sun, W.; Yang, F.; et al. Aerial-aquatic robots capable of crossing the air-water boundary and hitchhiking on surfaces. Sci. Robot. 2022, 7, eabm6695. [Google Scholar] [CrossRef] [PubMed]
- Vyas, A.; Puppala, R.; Sivadasan, N.; Molawade, A.; Ranganathan, T.; Thondiyath, A. Modelling and Dynamic Analysis of a Novel Hybrid Aerial—Underwater Robot—Acutus. In Proceedings of the OCEANS 2019, Marseille, France, 17–20 June 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Zufferey, R.; Ancel, A.O.; Raposo, C.; Armanini, S.F.; Farinha, A.; Siddall, R.; Berasaluce, I.; Zhu, H.; Kovac, M. SailMAV: Design and Implementation of a Novel Multi-Modal Flying Sailing Robot. IEEE Robot. Autom. Lett. 2019, 4, 2894–2901. [Google Scholar] [CrossRef]
- Zheng, P.; Xiao, F.; Nguyen, P.H.; Farinha, A.; Kovac, M. Metamorphic aerial robot capable of mid-air shape morphing for rapid perching. Sci. Rep. 2023, 13, 1297. [Google Scholar] [CrossRef] [PubMed]
- Kirchgeorg, S.; Mintchev, S. HEDGEHOG: Drone Perching on Tree Branches with High-Friction Origami Spines. IEEE Robot. Autom. Lett. 2022, 7, 602–609. [Google Scholar] [CrossRef]
- Pope, M.T.; Kimes, C.W.; Jiang, H.; Hawkes, E.W.; Estrada, M.A.; Kerst, C.F.; Roderick, W.R.T.; Han, A.K.; Christensen, D.L.; Cutkosky, M.R. A Multimodal Robot for Perching and Climbing on Vertical Outdoor Surfaces. IEEE Trans. Robot. 2017, 33, 38–48. [Google Scholar] [CrossRef]
- Roderick, W.R.T.; Cutkosky, M.R.; Lentink, D. Bird-inspired dynamic grasping and perching in arboreal environments. Sci. Robot. 2021, 6, eabj7562. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, H.; Shen, H.; Yu, Y.; He, H.; Feng, X.; Sun, Y.; Mao, Z.; Chen, G.; Tian, Z.; et al. An Aerial–Wall Robotic Insect That Can Land, Climb, and Take Off from Vertical Surfaces. Research 2022, 6, 0144. [Google Scholar] [CrossRef]
- Askari, M.; Shin, W.D.; Lenherr, D.; Stewart, W.; Floreano, D. Avian-Inspired Claws Enable Robot Perching or Walking. IEEE/ASME Trans. Mechatron. 2023, 29, 1856–1866. [Google Scholar] [CrossRef]
- Kong, J.; Niu, S.; Lu, P.; Li, A.; Xiang, X.; Zhao, W.; Zhou, Z. Design of a Bio-inspired Water-Ground-Air Amphibious and Cross Domain Robot Platform. In Proceedings of the 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO), Jinghong, China, 5–9 December 2022; pp. 2177–2182. [Google Scholar] [CrossRef]
- Cohen, A.; Zarrouk, D. Design, Analysis and Experiments of a High-Speed Water Hovering Amphibious Robot: AmphiSTAR. IEEE Access 2023, 11, 80874–80885. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, S.; Yin, H.; Li, A.; Liu, M. Design of Clutch Units of the Propulsion System for the Three-Dimension Triphibian Robot. In Proceedings of the 2023 IEEE International Conference on Mechatronics and Automation (ICMA), Harbin, China, 6–9 August 2023; pp. 1947–1952. [Google Scholar] [CrossRef]
- Mykhailyshyn, R.; Savkiv, V.; Maruschak, P.; Xiao, J. A systematic review on pneumatic gripping devices for industrial robots. Transport 2022, 37, 201–231. [Google Scholar] [CrossRef]
- Savkiv, V.; Mykhailyshyn, R.; Duchon, F. Gasdynamic analysis of the Bernoulli grippers interaction with the surface of flat objects with displacement of the center of mass. Vacuum 2019, 159, 524–533. [Google Scholar] [CrossRef]
- Savkiv, V.; Mykhailyshyn, R.; Duchon, F.; Fendo, O. Justification of design and parameters of Bernoulli–vacuum gripping device. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417741740. [Google Scholar] [CrossRef]
- Tomar, A.S.; Kamensky, K.M.; Mejia-Alvarez, R.; Hellum, A.M.; Mukherjee, R. A scaling relationship between power and shear for Bernoulli pads at equilibrium. Flow 2022, 2, E29. [Google Scholar] [CrossRef]
- Weston-Dawkes, W.P.; Adibnazari, I.; Hu, Y.-W.; Everman, M.; Gravish, N.; Tolley, M.T. Gas-Lubricated Vibration-Based Adhesion for Robotics. Adv. Intell. Syst. 2021, 3, 2100001. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kim, J.H.; Sung, J. Enhanced Non-Contact Grip Force and Swirl Stability by a Combined Venturi–Vortex Air Head. Materials 2021, 14, 7123. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, Q.; Gao, X.; Liang, P.; Li, M.; Li, K. Aerodynamic Analysis of a Wall-Climbing Robot with Dual-propeller. In Proceedings of the 2022 IEEE International Conference on Mechatronics and Automation (ICMA), Guilin, China, 7–10 August 2022; pp. 1537–1542. [Google Scholar] [CrossRef]
- Vlasova, N.S.; Bykov, N.V. The Problem of Adhesion Methods and Locomotion Mechanism Development for Wall-Climbing Robots. AIP Conf. Proc. 2023, 2549, 210015. [Google Scholar] [CrossRef]
- Watanabe, M.; Wiltsie, N.; Hosoi, A.E.; Iagnemma, K. Characteristics of controllable adhesion using magneto-rheological fluid and its application to climbing robotics. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 2315–2320. [Google Scholar] [CrossRef]
- Scarselli, G.; Quan, D.; Murphy, N.; Deegan, B.; Dowling, D.; Ivankovic, A. Adhesion Improvement of Thermoplastics-Based Composites by Atmospheric Plasma and UV Treatments. Appl. Compos. Mater. 2021, 28, 71–89. [Google Scholar] [CrossRef]
- Relation between friction and adhesion. Proc. R. Soc. Lond. A 1950, 202, 244–253. [CrossRef]
- Zhu, Y.; He, X.; Zhang, P.; Guo, G.; Zhang, X. Perching and Grasping Mechanism Inspired by a Bird’s Claw. Machines 2022, 10, 656. [Google Scholar] [CrossRef]
- Fang, G.; Cheng, J. Design and Implementation of a Wire Rope Climbing Robot for Sluices. Machines 2022, 10, 1000. [Google Scholar] [CrossRef]
- Festo. TentacleGripper|Festo GB. Available online: https://www.festo.com/gb/en/e/about-festo/research-and-development/bionic-learning-network/highlights-from-2015-to-2017/tentaclegripper-id_33321/ (accessed on 26 February 2024).
- Wang, J.; Ji, C.; Wang, W.; Zou, J.; Yang, H.; Pan, M. An adhesive locomotion model for the rock-climbing fish, Beaufortia kweichowensis. Sci. Rep. 2019, 9, 16571. [Google Scholar] [CrossRef]
- Okamoto, S.; Akitsu, Y.; Shigemune, H. Electrostatic Adhesion Technology Based on a Folded Paper. In Proceedings of the 2023 IEEE 12th Global Conference on Consumer Electronics (GCCE), Nara, Japan, 10–13 October 2023; pp. 1038–1039. [Google Scholar] [CrossRef]
- Louati, H.; Zouzou, N.; Tilmatine, A.; Zouaghi, A.; Ouiddir, R. Experimental investigation of an electrostatic adhesion device used for metal/polymer granular mixture sorting. Powder Technol. 2021, 391, 301–310. [Google Scholar] [CrossRef]
- Liu, R.; Chen, R.; Shen, H.; Zhang, R. Wall Climbing Robot Using Electrostatic Adhesion Force Generated by Flexible Interdigital Electrodes. Int. J. Adv. Robot. Syst. 2013, 10, 36. [Google Scholar] [CrossRef]
- Ruffatto, D.; Parness, A.; Spenko, M. Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive. J. R. Soc. Interface 2014, 11, 20131089. [Google Scholar] [CrossRef] [PubMed]
- Heepe, L.; Kovalev, A.E.; Varenberg, M.; Tuma, J.; Gorb, S.N. First mushroom-shaped adhesive microstructure: A review. Theor. Appl. Mech. Lett. 2012, 2, 014008. [Google Scholar] [CrossRef]
- Lakkannavar, V.; Yogesha, K.B.; Prasad, C.D.; Srinivasa, G.; Mathapati, M. Assessment of the Microstructure, Adhesion and Elevated Temperature Erosion Resistance of Plasma-Sprayed NiCrAlY/cr3C2/h-Bn Composite Coating. Results Surf. Interfaces 2024, 17, 100289. [Google Scholar] [CrossRef]
- García Márquez, F.P.; Bernalte Sánchez, P.J.; Segovia Ramírez, I. Acoustic inspection system with unmanned aerial vehicles for wind turbines structure health monitoring. Struct. Health Monit. 2022, 21, 485–500. [Google Scholar] [CrossRef]
- Abdelrahman, M.; ElNomrossy, M.; Nabawy, M. Development of Mini Unmanned Air Vehicles. In Proceedings of the 13th International Conference on Aerospace Sciences and Aviation Technology, Cairo, Egypt, 26–28 May 2009. [Google Scholar]
- McNeal, G.S. Drones and the Future of Aerial Surveillance; Social Science Research Network: Rochester, NY, USA, 2015; p. 2498116. Available online: https://papers.ssrn.com/abstract=2498116 (accessed on 31 October 2024).
- Gundlach, J. Designing Unmanned Aircraft Systems; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2014. [Google Scholar] [CrossRef]
- Yayli, U.; Kimet, C.; Duru, A.; Cetir, O.; Torun, U.; Aydogan, A.; Padmanaban, S.; Ertas, A. Design optimization of a fixed wing aircraft. Adv. Aircr. Spacecr. Sci. 2017, 4, 65–80. [Google Scholar] [CrossRef]
- Masood, K.; Wei, Z. Detailed Flight Performance Analysis of a Fixed Wing UAV. In Proceedings of the Infotech, Garden Grove, CA, USA, 19–21 June 2012. [Google Scholar] [CrossRef]
- Qiao, N.; Ma, T.; Wang, X.; Wang, J.; Fu, J.; Xue, P. An approach for formation design and flight performance prediction based on aerodynamic formation unit: Energy-saving considerations. Chin. J. Aeronaut. 2024, 37, 77–91. [Google Scholar] [CrossRef]
- Liang, O. Quadcopter VS Helicopter—Why Not Scale Up, Full Size Drone. Available online: https://oscarliang.com/quadcopter-helicopter-compare-cons-pro/ (accessed on 11 July 2024).
- Katiar, A.; Rashdi, R.; Ali, Z.; Baig, U. Control and Stability Analysis of Quadcopter. In Proceedings of the 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 3–4 March 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Ali, M.Z.; Ahmed, A.; Afridi, H.K. Control System Analysis and Design of Quadcopter in the Presence of Unmodelled Dynamics and Disturbances. IFAC-Pap. 2020, 53, 8840–8846. [Google Scholar] [CrossRef]
- Chamberlain, B.; Sheikh, W. Design and Implementation of a Quadcopter Drone Control System for Photography Applications. In Proceedings of the 2022 Intermountain Engineering, Technology and Computing (IETC), Orem, UT, USA, 14–15 May 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Thu, K.M.; Gavrilov, A.I. Designing and Modeling of Quadcopter Control System Using L1 Adaptive Control. Procedia Comput. Sci. 2017, 103, 528–535. [Google Scholar] [CrossRef]
- Tatale, O.; Anekar, N.; Phatak, S.; Sarkale, S. Quadcopter: Design, Construction and Testing. Int. J. Res. Eng. Appl. Manag. 2019, 4, 1–7. [Google Scholar] [CrossRef]
- Balayan, A.; Mallick, R.; Dwivedi, S.; Saxena, S.; Haorongbam, B.; Sharma, A. Optimal Design of Quadcopter Chassis Using Generative Design and Lightweight Materials to Advance Precision Agriculture. Machines 2024, 12, 187. [Google Scholar] [CrossRef]
- Tanaka, S.; Asignacion, A.; Nakata, T.; Suzuki, S.; Liu, H. Review of Biomimetic Approaches for Drones. Drones 2022, 6, 320. [Google Scholar] [CrossRef]
- Shyy, W.; Aono, H.; Chimakurthi, S.K.; Trizila, P.; Kang, C.-K.; Cesnik, C.E.S.; Liu, H. Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 2010, 46, 284–327. [Google Scholar] [CrossRef]
- Xuan, H.; Hu, J.; Yu, Y.; Zhang, J. Recent progress in aerodynamic modeling methods for flapping flight. AIP Adv. 2020, 10, 020701. [Google Scholar] [CrossRef]
- Sane, S.P. The aerodynamics of insect flight. J. Exp. Biol. 2003, 206, 4191–4208. [Google Scholar] [CrossRef] [PubMed]
- Chin, D.D.; Lentink, D. Flapping wing aerodynamics: From insects to vertebrates. J. Exp. Biol. 2016, 219, 920–932. [Google Scholar] [CrossRef] [PubMed]
- Broadley, P.; Nabawy, M.R.A.; Quinn, M.K.; Crowther, W.J. Dynamic experimental rigs for investigation of insect wing aerodynamics. J. R. Soc. Interface 2022, 19, 20210909. [Google Scholar] [CrossRef] [PubMed]
- Harvey, C.; Gamble, L.L.; Bolander, C.R.; Hunsaker, D.F.; Joo, J.J.; Inman, D.J. A review of avian-inspired morphing for UAV flight control. Prog. Aerosp. Sci. 2022, 132, 100825. [Google Scholar] [CrossRef]
- Phan, H.V.; Park, H.C. Insect-inspired, tailless, hover-capable flapping-wing robots: Recent progress, challenges, and future directions. Prog. Aerosp. Sci. 2019, 111, 100573. [Google Scholar] [CrossRef]
- Nabawy, M.R.A.; Marcinkeviciute, R. Scalability of resonant motor-driven flapping wing propulsion systems. R. Soc. Open Sci. 2021, 8, 210452. [Google Scholar] [CrossRef]
- Nabawy, M.R.A.; Crowther, W.J. Aero-optimum hovering kinematics. Bioinspir. Biomim. 2015, 10, 044002. [Google Scholar] [CrossRef]
- Nabawy, M.R.A.; Crowther, W.J. Optimum hovering wing planform. J. Theor. Biol. 2016, 406, 187–191. [Google Scholar] [CrossRef]
- Nabawy, M.; Crowther, W. Is Flapping Flight Aerodynamically Efficient? In Proceedings of the 32nd AIAA Applied Aerodynamics Conference, Atlanta, GA, USA, 16–20 June 2014. [Google Scholar] [CrossRef]
- Li, H.; Nabawy, M.R.A. Wing Planform Effect on the Aerodynamics of Insect Wings. Insects 2022, 13, 459. [Google Scholar] [CrossRef] [PubMed]
- Nabawy, M.R.A. A simple model of wake capture aerodynamics. J. R. Soc. Interface 2023, 20, 20230282. [Google Scholar] [CrossRef]
- Li, H.; Nabawy, M.R.A. Detachment of leading-edge vortex enhances wake capture force production. J. Fluid Mech. 2024, 995, A6. [Google Scholar] [CrossRef]
- Korendiy, V.; Kachur, O. Locomotion characteristics of a wheeled vibration-driven robot with an enhanced pantograph-type suspension. Front. Robot. AI 2023, 10, 1239137. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, T.; Song, S.; Wang, J.; Meng, M.Q.-H. Dynamic wheeled motion control of wheel-biped transformable robots. Biomim. Intell. Robot. 2022, 2, 100027. [Google Scholar] [CrossRef]
- Thueer, T.; Siegwart, R. Kinematic Analysis and Comparison of Wheeled Locomotion Performance. In Proceedings of the 10th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA); ETH Zurich: Zürich, Switzerland, 2008; 8p. [Google Scholar]
- Amar, F.; Grand, C.; Besseron, G.; Plumet, F. Performance Evaluation of Locomotion Modes of an Hybrid Wheel-Legged Robot for Self-Adaptation to Ground Conditions. In Proceedings of the ASTRA’04, 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation, Noordwijk, The Netherlands, 2–4 November 2004. [Google Scholar]
- Shafaei, S.M.; Mousazadeh, H. Experimental comparison of locomotion system performance of ground mobile robots in agricultural drawbar works. Smart Agric. Technol. 2023, 3, 100131. [Google Scholar] [CrossRef]
- Bruzzone, L.; Nodehi, S.E.; Fanghella, P. Tracked Locomotion Systems for Ground Mobile Robots: A Review. Machines 2022, 10, 648. [Google Scholar] [CrossRef]
- Morales, J.; Martinez, J.L.; Mandow, A.; Garcia-cerezo, A.J.; Gomez-gabriel, J.M.; Pedraza, S. Power Analysis for a Skid-Steered Tracked Mobile Robot. In Proceedings of the 2006 IEEE International Conference on Mechatronics, Budapest, Hungary, 3–5 July 2006; pp. 420–425. [Google Scholar] [CrossRef]
- Zamanov, V.; Dimitrov, A. Tracked Locomotion and Manipulation Robots. Probl. Eng. Cybern. Robot. 2012, 65, 75–84. [Google Scholar]
- Ben-Tzvi, P.; Saab, W. A Hybrid Tracked-Wheeled Multi-Directional Mobile Robot. J. Mech. Robot. 2019, 11, 041008. [Google Scholar] [CrossRef]
- Nagatani, K.; Kinoshita, H.; Yoshida, K.; Tadakuma, K.; Koyanagi, E. Development of leg-track hybrid locomotion to traverse loose slopes and irregular terrain. J. Field Robot. 2011, 28, 950–960. [Google Scholar] [CrossRef]
- Torres-Pardo, A.; Pinto-Fernández, D.; Garabini, M.; Angelini, F.; Rodriguez-Cianca, D.; Massardi, S.; Tornero, J.; Moreno, J.C.; Torricelli, D. Legged locomotion over irregular terrains: State of the art of human and robot performance. Bioinspir. Biomim. 2022, 17, 061002. [Google Scholar] [CrossRef]
- Souza, L.; Mohr, F.; Alencar, B. Analysis, Prototyping and Locomotion Control of a Quadruped Robot. In Proceedings of the 2023 Latin American Robotics Symposium (LARS), 2023 Brazilian Symposium on Robotics (SBR), and 2023 Workshop on Robotics in Education (WRE), Salvador, Brazil, 9–11 October 2023; pp. 129–134. [Google Scholar] [CrossRef]
- Garcia Bermudez, F.L.; Julian, R.C.; Haldane, D.W.; Abbeel, P.; Fearing, R.S. Performance Analysis and Terrain Classification for a Legged Robot over Rough Terrain. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 513–519. [Google Scholar] [CrossRef]
- Čížek, P.; Zoula, M.; Faigl, J. Design, Construction, and Rough-Terrain Locomotion Control of Novel Hexapod Walking Robot With Four Degrees of Freedom Per Leg. IEEE Access 2021, 9, 17866–17881. [Google Scholar] [CrossRef]
- Ha, S.; Lee, J.; van de Panne, M.; Xie, Z.; Yu, W.; Khadiv, M. Learning-based legged locomotion; state of the art and future perspectives. arXiv 2024, arXiv:2406.01152. [Google Scholar] [CrossRef]
- Smith, L.; Kew, J.C.; Peng, X.B.; Ha, S.; Tan, J.; Levine, S. Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World. arXiv 2021, arXiv:2110.05457. [Google Scholar] [CrossRef]
- Park, T.; Cha, Y. Soft mobile robot inspired by animal-like running motion. Sci. Rep. 2019, 9, 14700. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Yuan, Z.; Guo, J.; Bai, L.; Zhu, X.; Liu, F.; Pu, H.; Xin, L.; Peng, Y.; Luo, J.; et al. Legless soft robots capable of rapid, continuous, and steered jumping. Nat. Commun. 2021, 12, 7028. [Google Scholar] [CrossRef]
- Shah, D.S.; Powers, J.P.; Tilton, L.G.; Kriegman, S.; Bongard, J.; Kramer-Bottiglio, R. A soft robot that adapts to environments through shape change. Nat. Mach. Intell. 2020, 3, 51–59. [Google Scholar] [CrossRef]
- Das, R.; Babu, S.P.M.; Visentin, F.; Palagi, S.; Mazzolai, B. An earthworm-like modular soft robot for locomotion in multi-terrain environments. Sci. Rep. 2023, 13, 1571. [Google Scholar] [CrossRef]
- Zhang, X.; Naughton, N.; Parthasarathy, T.; Gazzola, M. Friction modulation in limbless, three-dimensional gaits and heterogeneous terrains. Nat. Commun. 2021, 12, 6076. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, Y.; Qiu, Z.; Shan, Z.; Cai, S.; Bao, G. Locomotion control of a rigid-soft coupled snake robot in multiple environments. Biomim. Intell. Robot. 2024, 4, 100148. [Google Scholar] [CrossRef]
- He, Y.; Wang, D.B.; Ali, Z.A. A review of different designs and control models of remotely operated underwater vehicle. Meas. Control. 2020, 53, 1561–1570. [Google Scholar] [CrossRef]
- Ray, S.; Bhowal, R.; Patel, P.; Panaiyappan K, A. An Overview of the Design and Development of a 6 DOF Remotely Operated Vehicle for Underwater Structural Inspection. In Proceedings of the 2021 International Conference on Communication, Control and Information Sciences (ICCISc), Idukki, India, 16–18 June 2021; Volume 1, pp. 1–6. [Google Scholar] [CrossRef]
- Aguirre-Castro, O.A.; Inzunza-González, E.; García-Guerrero, E.E.; Tlelo-Cuautle, E.; López-Bonilla, O.R.; Olguín-Tiznado, J.E.; Cárdenas-Valdez, J.R. Design and Construction of an ROV for Underwater Exploration. Sensors 2019, 19, 5387. [Google Scholar] [CrossRef] [PubMed]
- Zulkarnain, O.W.; Redhwan, A.A.M.; Baba, N.B.; Fadhil, M.N.; Rosni, S. Design and Development of SelamDrone Underwater ROV Manoeuvring Control. J. Phys. Conf. Ser. 2021, 1874, 012081. [Google Scholar] [CrossRef]
- Cadena, A. Design and construction of an Autonomous Underwater Vehicle for the launch of a small UAV. In Proceedings of the 2009 IEEE International Conference on Technologies for Practical Robot Applications, Woburn, MA, USA, 9–10 November 2009; pp. 78–83. [Google Scholar] [CrossRef]
- MacLeod, M.; Bryant, M. Variable Buoyancy System for Unmanned Multi-Domain Vehicles. In Active and Passive Smart Structures and Integrated Systems; SPIE: Bellingham, WA, USA, 2016; Volume 9799, pp. 607–615. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, Y.; Xu, M.; Liang, X.; Liu, J.; Yang, J. AmphiHex-I: Locomotory Performance in Amphibious Environments with Specially Designed Transformable Flipper Legs. IEEE/ASME Trans. Mechatron. 2016, 21, 1720–1731. [Google Scholar] [CrossRef]
- Zhu, J.; Fang, T.; Xu, M.; Zhou, Y.; Huang, W.; Zhang, S. Initial Development of an Amphibious Robot with Flexible Straight Flipper-Legs. In Proceedings of the 2018 IEEE International Conference on Real-time Computing and Robotics (RCAR), Kandima, Maldives, 1–5 August 2018; pp. 417–420. [Google Scholar] [CrossRef]
- Guo, N.; Bai, Z.; Gao, W.; Chen, H.; Zhang, S. Passively Deformable Flipper Legs for An Amphibious Quadruped. In Proceedings of the 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR), Xining, China, 15–19 July 2021; pp. 738–743. [Google Scholar] [CrossRef]
- Wang, S.; Fan, J.; Pan, Y.; Liu, G.; Liu, Y. Design and Analysis of Adaptive Flipper With Origami Structure for Frog-Inspired Swimming Robot. IEEE Robot. Autom. Lett. 2024, 9, 1262–1269. [Google Scholar] [CrossRef]
- Chikere, N.; McElroy, J.; Ozkan-Aydin, Y. Embodied Design for Enhanced Flipper-Based Locomotion in Complex Terrains. arXiv 2024, arXiv:2405.13948. [Google Scholar] [CrossRef]
- Low, K.H.; Zhou, C.; Ong, T.W.; Yu, J. Modular Design and Initial Gait Study of an Amphibian Robotic Turtle. In Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO), Sanya, China, 15–18 December 2007; pp. 535–540. [Google Scholar] [CrossRef]
- Yao, G.; Liang, J.; Wang, T.; Yang, X.; Shen, Q.; Zhang, Y.; Wu, H.; Tian, W. Development of A Turtle-Like Underwater Vehicle Using Central Pattern Generator. In Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 12–14 December 2013; pp. 44–49. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Y.; Wu, Z.; Ma, L.; Guo, M.; Li, Z.; Li, Y. A comprehensive review on fish-inspired robots. Int. J. Adv. Robot. Syst. 2022, 19, 17298806221103707. [Google Scholar] [CrossRef]
- Raj, A.; Thakur, A. Fish-inspired robots: Design, sensing, actuation, and autonomy—A review of research. Bioinspir. Biomim. 2016, 11, 031001. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Ahmad, S.; Amrr, S.M.; Khan, S.A.; Islam, N.; Gari, A.A.; Algethami, A.A. Modeling and Control Design for an Autonomous Underwater Vehicle Based on Atlantic Salmon Fish. IEEE Access 2022, 10, 97586–97599. [Google Scholar] [CrossRef]
- Papadopoulos, E.; Apostolopoulos, E.; Tsigkourakos, P. Design, Control, and Experimental Performance of a Teleoperated Robotic Fish. In Proceedings of the 2009 17th Mediterranean Conference on Control and Automation, Thessaloniki, Greece, 24–26 June 2009; pp. 766–771. [Google Scholar] [CrossRef]
- Peter, B.; Ratnaweera, R.; Fischer, W.; Pradalier, C.; Siegwart, R.Y. Design and Evaluation of a Fin-Based Underwater Propulsion System. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 3751–3756. [Google Scholar] [CrossRef]
- Ardupilot. Pixhawk Wiring Quick Start|PX4 Guide (Main). Available online: https://docs.px4.io/main/en/assembly/quick_start_pixhawk.html (accessed on 4 November 2024).
- Ardupilot. Standard Configuration|PX4 Guide (Main). Available online: https://docs.px4.io/main/en/config/ (accessed on 4 November 2024).
- Wang, S.; Dai, X.; Ke, C.; Quan, Q. RflySim: A Rapid Multicopter Development Platform for Education and Research Based on Pixhawk and MATLAB. In Proceedings of the 2021 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021; pp. 1587–1594. [Google Scholar]
- Jothikrishna, K.; Rithika, S.M.; Swetha, S.V.; Kavitha, K. Remotely Operated Underwater Vehicle (ROV). In Proceedings of the 2023 2nd International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), Coimbatore, India, 16–17 June 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Nowakowski, M.; Berger, G.S.; Braun, J.; Mendes, J.A.; Bonzatto Junior, L.; Lima, J. Advance Reconnaissance of UGV Path Planning Using Unmanned Aerial Vehicle to Carry Our Mission in Unknown Environment. In Proceedings of the Robot 2023: Sixth Iberian Robotics Conference, University of Coimbra, Coimbra, Portugal, 22–24 November 2023; Marques, L., Santos, C., Lima, J.L., Tardioli, D., Ferre, M., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 50–61. [Google Scholar] [CrossRef]
- Тoлoк, I.; Myasischev, O.O.; Lienkov, S.V.; Overchuk, V.V.; Lytvynenko, N.I.; Zinchuk, A.G. Large-Capacity Quadcopter’s Designing on the Controllers of the Pixhawk Cube Family. 2022. Available online: http://repositsc.nuczu.edu.ua/handle/123456789/20829 (accessed on 4 November 2024).
- Gunturu, R.; Durgaa, K.N.; Harshaa, T.S.; Ahamed, S.F. Development of Drone Based Delivery System Using Pixhawk Flight Controller. In Proceedings of the 2nd International Conference on IoT, Social, Mobile, Analytics & Cloud in Computational Vision & Bio-Engineering (ISMAC-CVB 2020), Tiruchengodu, India, 29–30 October 2020; p. 3734801. [Google Scholar] [CrossRef]
- Kusmirek, S.; Socha, V.; Malich, T.; Socha, L.; Hylmar, K.; Hanakova, L. Dynamic Flight Tracking: Designing System for Multirotor UAVs With Pixhawk Autopilot Data Verification. IEEE Access 2024, 12, 109806–109821. [Google Scholar] [CrossRef]
- Arduino. Arduino Uno Rev3. Available online: https://store.arduino.cc/products/arduino-uno-rev3 (accessed on 4 November 2024).
- Farnell. DFR0478 DFROBOT, IoT Microcontroller Board, FireBeetle, ESP32, Arduino Development Boards|Farnell UK. Available online: https://uk.farnell.com/dfrobot/dfr0478/firebeetle-esp32-iot-mcu-arduino/dp/3517881 (accessed on 4 November 2024).
- Farnell. STM32 Embedded Development Kits—ARM|Farnell UK. Available online: https://uk.farnell.com/c/embedded-computers-education-maker-boards/arm/embedded-development-kits-arm?silicon-family-name=stm32 (accessed on 4 November 2024).
- RS. Microchip PIC18F4520-I/P, 8bit PIC Microcontroller, PIC18F, 40MHz, 32 kB, 256 B Flash, 40-Pin PDIP|RS. Available online: https://uk.rs-online.com/web/p/microcontrollers/6230819 (accessed on 4 November 2024).
- Murtaza, Z.; Mehmood, N.; Jamil, M.; Ayaz, Y. Design and implementation of low cost remote-operated unmanned ground vehicle (UGV). In Proceedings of the 2014 International Conference on Robotics and Emerging Allied Technologies in Engineering (iCREATE), Islamabad, Pakistan, 22–24 April 2014; pp. 37–41. [Google Scholar] [CrossRef]
- Krucsó, L.; Erdei, T.I.; Kapusi, T.P.; Husi, G. Designing an ATmega328 Microcontroller Based Gesture-controlled IoT UGV Unit and Creating a Camera System Using Linux Distribution. Recent Innov. Mechatron. 2019, 6, 1–7. [Google Scholar]
- Marzbanrad, A.; Sharafi, J.; Eghtesad, M.; Kamali, R. Design, Construction and Control of a Remotely Operated Vehicle (ROV). In Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, Denver, CO, USA, 11–17 November 2011; American Society of Mechanical Engineers Digital Collection. ASME: New York, NY, USA, 2012; pp. 1295–1304. [Google Scholar] [CrossRef]
- Syukron, M.; Mardiyah, N.; Wahono; Rosikhin, A.; Sari, Z. The application of ROV (remotely operated vehicle) of the microcontroller submarine as a tool to take sample of water and soil contaminated by waste. AIP Conf. Proc. 2019, 2088, 020016. [Google Scholar] [CrossRef]
- Lee, D.; Moon, S. Implementation of a drone using the PID control of an 8-bit microcontroller. Asia-Pac. J. Multimed. Serv. Converg. Art Humanit. Sociol. 2016, 6, 81–90. [Google Scholar] [CrossRef]
- Spoorthi, S.; Shadaksharappa, B.; Suraj, S.; Manasa, V.K. Freyr drone: Pesticide/fertilizers spraying drone—An agricultural approach. In Proceedings of the 2017 2nd International Conference on Computing and Communications Technologies (ICCCT), Allahabad, India, 23–24 February 2017; pp. 252–255. [Google Scholar] [CrossRef]
- Ghosh, A.; Roy, H.; Dhar, S. Arduino Quadcopter. In Proceedings of the 2018 Fourth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), Kolkata, India, 22–23 November 2018; pp. 280–283. [Google Scholar] [CrossRef]
- Raspberry Pi. Buy a Raspberry Pi 5. Available online: https://www.raspberrypi.com/products/raspberry-pi-5/ (accessed on 4 November 2024).
- Raspberry Pi. Getting started—Raspberry Pi Documentation. Available online: https://www.raspberrypi.com/documentation/computers/getting-started.html (accessed on 4 November 2024).
- Brand, I.; Roy, J.; Ray, A.; Oberlin, J.; Oberlix, S. PiDrone: An Autonomous Educational Drone Using Raspberry Pi and Python. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Benhadhria, S.; Mansouri, M.; Benkhlifa, A.; Gharbi, I.; Jlili, N. VAGADRONE: Intelligent and Fully Automatic Drone Based on Raspberry Pi and Android. Appl. Sci. 2021, 11, 3153. [Google Scholar] [CrossRef]
- Westerlund, O.; Asif, R. Drone Hacking with Raspberry-Pi 3 and WiFi Pineapple: Security and Privacy Threats for the Internet-of-Things. In Proceedings of the 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS), Muscat, Oman, 5–7 February 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Osen, O.L.; Sandvik, R.-I.; Berge Trygstad, J.; Rogne, V.; Zhang, H. A novel low cost ROV for aquaculture application. In Proceedings of the OCEANS 2017—Anchorage, Anchorage, AK, USA, 18–21 September 2017; pp. 1–7. Available online: https://ieeexplore.ieee.org/abstract/document/8232180 (accessed on 4 November 2024).
- Tutunji, T.A.; Salah-Eddin, M.; Abdalqader, H. Unmanned Ground Vehicle Control using IoT. In Proceedings of the 2020 21st International Conference on Research and Education in Mechatronics (REM), Cracow, Poland, 9–11 December 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Chaurasia, V.; Mishra, V.; Jain, L. Brain-Bot: An Unmanned Ground Vehicle (UGV) Using Raspberry Pi and Brain Computer Interface (BCI) Technology. In Advances in Computing and Data Sciences; Singh, M., Gupta, P.K., Tyagi, V., Sharma, A., Ören, T., Grosky, W., Eds.; Springer: Singapore, 2017; pp. 252–261. [Google Scholar] [CrossRef]
- Open Robotics. ROS: Home. Available online: https://www.ros.org/ (accessed on 4 November 2024).
- Open Robotics. ROS/Tutorials/InstallingandConfiguringROSEnvironment—ROS Wiki. Available online: https://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment (accessed on 4 November 2024).
- Mo, S.M. Development of a Simulation Platform for ROV Systems. Master’s Thesis, NTNU, Trondheim, Norway, 2015. Available online: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2350740 (accessed on 4 November 2024).
- Hatta, M.I.F.; Widodo, N.S. Robot Operating System (ROS) in Quadcopter Flying Robot Using Telemetry System. Int. J. Robot. Control. Syst. 2021, 1, 54–65. [Google Scholar] [CrossRef]
- Pandey, A.; Prasad, K.; Zade, S.; Babbar, A.; Singh, G.K.; Sharma, N. Implementation of simultaneous localization and mapping for TurtleBot under the ROS design framework. Int. J. Interact. Des. Manuf. 2024, 18, 3799–3812. [Google Scholar] [CrossRef]
- Raveendran, R.; Ariram, S.; Tikanmäki, A.; Röning, J. Development of task-oriented ROS-based Autonomous UGV with 3D Object Detection. In Proceedings of the 2020 IEEE International Conference on Real-time Computing and Robotics (RCAR), Asahikawa, Japan, 28–29 September 2020; pp. 427–432. [Google Scholar] [CrossRef]
- Conte, G.; Scaradozzi, D.; Sorbi, L.; Panebianco, L.; Mannocchi, D. ROS multi-agent structure for autonomous surface vehicles. In Proceedings of the OCEANS 2015—Genova, Genova, Italy, 18–21 May 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Ghasemi, H.; Mirfakhar, A.; Masouleh, M.T.; Kalhor, A. Control a Drone Using Hand Movement in ROS Based on Single Shot Detector Approach. In Proceedings of the 2020 28th Iranian Conference on Electrical Engineering (ICEE), Tabriz, Iran, 4–6 August 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Jain, N.; Gupta, A.K.; Mathur, P. Autonomous Drone Using ROS for Surveillance and 3D Mapping Using Satellite Map. In Proceedings of the Second International Conference on Information Management and Machine Intelligence; Goyal, D., Gupta, A.K., Piuri, V., Ganzha, M., Paprzycki, M., Eds.; Springer: Singapore, 2021; pp. 255–266. [Google Scholar] [CrossRef]
- Airikka, P. Advanced control methods for industrial process control. Comput. Control. Eng. 2004, 15, 18–23. [Google Scholar] [CrossRef]
- Stancu, A.; Mostafa, M.; Codres, E.; Martinez, M.; Madin, Z.; Deng, S.; Aldesouky, A. Autonomous Mobile Robots; The University of Manchester: Manchester, UK, 2021. [Google Scholar]
- MATLAB. What Is SLAM (Simultaneous Localization and Mapping)—MATLAB & Simulink. Available online: https://uk.mathworks.com/discovery/slam.html (accessed on 13 March 2023).
- Kudan. Understanding how Direct Visual SLAM works. Kudan Global. 2020. Available online: https://www.kudan.io/blog/direct-visual-slam/ (accessed on 13 March 2023).
- Sickle, J.V. The Navigation Solution|GEOG 862: GPS and GNSS for Geospatial Professionals. Available online: https://www.e-education.psu.edu/geog862/node/1724 (accessed on 13 March 2023).
- Choset, H. Robotic Motion Planning: Bug Algorithms. 2023. Available online: http://www.cs.columbia.edu/~allen/F15/NOTES/Chap2-Bug.pdf (accessed on 13 March 2023).
Drone Type | Definition and Application | Advantages | Disadvantages |
---|---|---|---|
Climbing | Close-range drone that operates on the surface of the structure |
|
|
Aerial | Long-range drone that flies around the structure and scans for defects |
|
|
Terrestrial | Long-range drone that drives on land, and can be used for transportation and ground inspections |
|
|
Aquatic | Long-range drone that operates underwater for offshore environments, scanning underwater components |
|
|
Collaborative | A multitude of single-mode drones that communicate accordingly to conduct inspections alongside each other |
|
|
Multimodal | A combination of two or more modes of operation to conduct multiple inspections on a single platform |
|
|
Terrestrial Aerial Drones | |||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings |
HyTAQ [111] |
|
| |
[112] |
|
| |
[113] |
|
| |
[114] |
|
| |
WAMORN [115] |
|
| |
Rollocopter [116] |
|
| |
[117] |
|
| |
BogieCopter [118] |
|
| |
[119] |
|
| |
[120] |
|
| |
[121] |
|
| |
Amphibious Drones | |||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings |
MAR [122] |
|
| |
WSP-Bot [123] |
|
| |
SeaDog [124] |
|
| |
[125] |
|
| |
[126] |
|
| |
[127] |
|
| |
Wall-Climbing Robots | |||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings |
[128] |
|
| |
[129] |
|
| |
Wall-C [130] |
|
| |
UOTWCR [131] |
|
| |
[132] |
|
| |
Aerial Aquatic Drones | |||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings |
Hydrone [133,134] |
|
| |
MEDUSA [135] |
|
| |
TJ-FlyingFish [136] |
|
| |
Naviator2 [137] |
|
| |
[138] |
|
| |
Aerial Climbing Drones | |||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings |
[139] |
|
| |
MMAR [140] |
|
| |
CAROS [141,142] |
|
| |
CAROS-Q [143] |
|
| |
[144] |
|
| |
[145] |
|
| |
Aerial Wall-Climbing Robot | |||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings |
Vertigo [146,147,148] |
|
| |
FCSTAR [149] |
|
| |
LAWCDR [150] |
|
| |
[151] |
|
| |
Triphibian Drones | |||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings |
[152] |
|
| |
OmnibotV2 [153] |
|
| |
[154] |
|
| |
[155] |
|
| |
[156] |
|
| |
TR-TRS [157] |
|
| |
MUWA [158] |
|
| |
[159] |
|
| |
[160] |
|
|
Terrestrial Aerial Drones | |||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings |
[162] |
|
| |
[163,164] |
|
| |
MALV [165] |
|
| |
[166] |
|
| |
BOLT [167] |
|
| |
DASH+ [168] |
|
| |
Amphibious Drones | |||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings |
[169,170,171] |
|
| |
ART [172] |
|
| |
AQUA [173,174] |
|
| |
HAMR [175] |
|
| |
[176] |
|
| |
AmphiBot I [177] |
|
| |
AmphiRobot [178,179] |
|
| |
Wall-Climbing Robots | |||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings |
[180] |
|
| |
[181] |
|
| |
[182] |
|
| |
[183] |
|
| |
GLEWBOT [184] |
|
| |
Aerial Aquatic Drones | |||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings |
AquaMAV [185,186] |
|
| |
[187] |
|
| |
[188] |
|
| |
[189] |
|
| |
Robomoth [190] |
|
| |
[191,192] |
|
| |
Aerial Climbing Drones | |||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings |
ICAROS [193] |
|
| |
S-MAD [194,195] |
|
| |
[196] |
|
| |
Aerial Wall-Climbing Robot | |||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings |
[197] |
|
| |
[198] |
|
| |
[199] |
|
| |
RoSeGu [200] |
|
| |
Triphibian Drones | |||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings |
RoboFly [201] |
|
|
Terrestrial Aerial Drones | |||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings |
M4 [204] |
|
| |
DALER [205] |
|
| |
[206] |
|
| |
Leonardo [207] |
|
| |
Amphibious Drones | |||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings |
[208] |
|
| |
ASRobot [209,210] |
|
| |
Wall-Climbing Robots | |||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings |
µTugs [211,212] |
|
| |
[213] |
|
| |
[214] |
|
| |
Aerial Aquatic Drones | |||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings |
[215] |
|
| |
Acutus [216] |
|
| |
SailMAV [217] |
|
| |
Aerial Climbing Drones | |||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings |
[218] |
|
| |
HEDGEHOG [219] |
|
| |
SCAMP [220] |
|
| |
Aerial Wall-Climbing Robot | |||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings |
SNAG [221] |
|
| |
[222] |
|
| |
[223] |
|
| |
Triphibian Drones | |||
Drone [Ref] | Schematic | Design Purpose and Configuration | Performance and Findings |
[224] |
|
| |
AmphiSTAR [225] |
|
| |
3DTR [226] |
|
|
Type | Strength | Manoeuvrability | Surface | Repeatability | Energy/Cost |
---|---|---|---|---|---|
Friction | High | Very High | Flexible | Average | High |
Ring | High | Average | Limited | High | High |
Claw | High | Low | Limited | High | Average |
Rope | High | Average | Limited | High | High |
Permanent Magnets | Very High | Low | Limited | Very High | Very Low |
Electromagnets | Average | High | Limited | Very High | Very High |
Rheological Liquids | Average | Average | Flexible | High | Very High |
Glues | Average | Very Low | Flexible | Very Low | Very Low |
Thermoplastics | Very High | Average | Flexible | Very Low | Low |
Active Vacuum | High | Very High | Flexible | High | Very High |
Passive Vacuum | Very Low | High | Flexible | High | Very Low |
Vortex Effect | High | Very High | Flexible | High | Very High |
Bernoulli Principle | High | Very High | Flexible | High | Very High |
Aerodynamic Pressure | High | Low | Flexible | High | Very High |
Microstructures | High | High | Flexible | High | Average |
Electrostatic | High | High | Flexible | High | High |
Controller | Block Diagram | Advantages | Disadvantages |
---|---|---|---|
Basic | |||
Open Loop | Low complexity and remarkably simple | Sensitive to disturbances | |
Bang-Bang | Simple to implement with fast response time | Not suitable for fine control | |
PID | Stable and accurate with a wide range of uses | Parameter tuning is more complex | |
Advanced | |||
Adaptive | Real time parameter adjustments | More complex and requires detailed data | |
Multivariable | Can control systems with multiple inputs and outputs | Complex to design and computationally intensive | |
Fuzzy | Non-linear and complex systems, and robust to noise | Tuning subjective and time consuming | |
Model Predictive | Optimises over future horizon and has excellent performance for complex systems | Requires accurate model of system and is computationally intensive | |
Robust | Maintains performance despite uncertainties | Requires extensive training and validation | |
Neural Network | Models’ complex systems while improving with training | Requires large amount of training data | |
Optimal | Minimises cost-function for better performance | Requires accurate system model and overly complex |
Method | Sensors and Method | Advantages | Disadvantages |
LIDAR SLAM [355] |
|
|
|
Visual SLAM [356] |
|
|
|
GPS [357] |
|
|
|
Bug Algorithm [358] |
|
|
|
Involved Modes | A to B | B to A | |
---|---|---|---|
A | B | ||
Land | Air | Lift off from ground using propellers | Land carefully on ground landing on wheels |
Land | Water | Drive carefully into water and deploy Variable Buoyancy System (VBS) system to go underwater | Use propellers and VBS to reach water surface then use wheels to reach land |
Land | Climbing | Change orientation then attach to surface | Touch Ground, detach from surface and change orientation safely |
Air | Water | Land in water using propellers and then use VBS to go underwater | Use propellers to generate enough lift to exit the water–air barrier |
Air | Climbing | Land on target, while using propellers for stability until adhesion mechanism deployed | Deploy propellers for safety, de-attach adhesion and then fly off |
Water | Climbing | Swim to correct orientation and then attach accordingly to surface | De-attach from surface and then deploy underwater locomotion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omara, A.; Nasser, A.; Alsayed, A.; Nabawy, M.R.A. Remote Wind Turbine Inspections: Exploring the Potential of Multimodal Drones. Drones 2025, 9, 4. https://doi.org/10.3390/drones9010004
Omara A, Nasser A, Alsayed A, Nabawy MRA. Remote Wind Turbine Inspections: Exploring the Potential of Multimodal Drones. Drones. 2025; 9(1):4. https://doi.org/10.3390/drones9010004
Chicago/Turabian StyleOmara, Ahmed, Adel Nasser, Ahmad Alsayed, and Mostafa R. A. Nabawy. 2025. "Remote Wind Turbine Inspections: Exploring the Potential of Multimodal Drones" Drones 9, no. 1: 4. https://doi.org/10.3390/drones9010004
APA StyleOmara, A., Nasser, A., Alsayed, A., & Nabawy, M. R. A. (2025). Remote Wind Turbine Inspections: Exploring the Potential of Multimodal Drones. Drones, 9(1), 4. https://doi.org/10.3390/drones9010004