FLEDNet: Enhancing the Drone Classification in the Radio Frequency Domain
Abstract
:1. Introduction
- −
- The improvement of the classification accuracy in CNN and CRNN models with fuzzy logic-based E/D;
- −
- A classification accuracy comparison between CNN and CRNN models for different SNRs;
- −
- A comparison of classification accuracy between traditional and DL-based E/D;
- −
- An examination of the classification accuracy in both ISM frequency bands;
- −
- The testing of the possibility of detecting multiple drones operating at the same time;
- −
- A time complexity analysis of the proposed approach performed on the embedded computer with real-world radio signals from drones.
2. Literature
2.1. Fuzzy Logic-Based Edge Detectors
2.2. Neural Networks for Drone Classification
3. Materials and Methods
3.1. Preprocessing Subsystem
3.1.1. VTI_DroneSET Dataset
3.1.2. Segmentation of Signals
3.1.3. Adding AWGN
3.1.4. Calculation of Spectrograms
3.2. Edge Detectors (E/D) Subsystem
3.2.1. Detection of Edges on Spectrograms
- −
- If the gradients of the input grey image in both directions, and , are equal to zero, then the given pixel belongs to a uniform area;
- −
- If one of the gradients of the input grey image differs from zero, the pixel is located on the edge.
3.2.2. Image Resizing, Normalization, Saving, and Labeling
3.2.3. Creation of Datastore Objects
3.3. Classification Subsystem
- −
- Drone detection. The first scenario’s model is intended for detecting the presence of a drone, so there are only two labels for two classes—“0” indicates that the drone does not exist, and “1” indicates that the drone is present in the corresponding spectrogram of the radio signal’s segment;
- −
- Detection of multiple drones. The second scenario’s model is intended for detecting multiple drones operating simultaneously, so there are four classes—“0” indicates that the drone does not exist, “1” specifies that there is only one drone, “2” specifies that there are two drones, and “3” specifies that there are three drones in the corresponding spectrogram of the radio signal’s segment;
- −
- Identification of the drone type. The third scenario’s model is intended to identify the type of drone, so there are three classes—“1” represents the DJI Phantom IV type of drone, “2” represents the DJI Mavic 2 Zoom type of drone, and “3” represents the DJI Mavic 2 Enterprise type of drone.
4. Results
4.1. The Drone Detection Results
4.2. The Number of Drone Detection Results
4.3. The Drone-Type Identification Results
5. Discussion
5.1. The Quantitative Analysis of the FLEDNet Improvement
5.2. The Comparative Analysis of the FLEDNet Improvement
- −
- The FLEDNet approach outperforms all previously researched approaches for SNRs below 0 dB;
- −
- In comparison, the FLEDNet approach consistently demonstrates equal or superior performance for all scenarios. Two studies reported better results at 0 dB in a drone-type identification scenario;
- −
- The FLEDNet approach exhibits a performance comparable with those of the AlexNet and CRNN models. However, the CRNN model is significantly less complex, making it the preferred choice for drone classification tasks;
- −
- The FLEDNet approach has demonstrated stable results across a range of SNR levels, specifically from −10 to 20 dB (Figure 7);
- −
- This approach has been tested in three scenarios within the 2.4 and 5.8 GHz ISM frequency bands. Unlike other studies in the literature, it evaluates both ISM bands and accounts for multiple-drone scenarios;
- −
- The FLEDNet approach effectively showcases its capabilities by utilizing the simplest CRNN model, which consists of only one convolutional layer. Furthermore, the CNN model used alongside FLEDNet has been proven effective.
5.3. The Statistical Significance Analysis
5.4. Comparative Analysis with DL-Based E/D
5.5. The Time Complexity Analysis
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
List of Abbreviations
AWGN | additive white Gaussian noise |
ADRO | anti-drone |
BiLSTM | Bidirectional Long Short-Term Memory |
E/D | edge detector |
CNN | convolutional neural network |
CRNN | convolutional recurrent neural network |
COD | centroid defuzzification |
conv | convolutional |
DL | deep learning |
GoF | Goodness-of-Fit |
FC-DNN | fully connected deep neural network |
FIS | fuzzy interference system |
FLEDNet | Fuzzy Logic Edge Detection Network |
FSMF | fuzzy set membership function |
HED | Holistically-NestedEdge Detection |
HHT | Hilbert–Huang transform |
ISM | Industrial, Scientific, and Medical |
kNN | k-nearest Neighbors |
LSTM | Long Short-Term Memory |
ML | machine learning |
MSE | Mean Square Error |
RandF | random forest |
RF | radio frequency |
SAR | search and rescue |
SDAE | stacked denoising autoencoder |
SGDM | Stochastic Gradient Descent with Momentum |
SNR | signal-to-noise ratio |
STFT | Short-Time Fourier Transform |
SVM | Support Vector Machine |
UAV | Unmanned aerial vehicle |
VGG | Visual Geometry Group |
YOLO | You Only Look Once |
w/o | without |
1D-CNN | one-dimensional convolutional neural network |
References
- Zhang, Z.; Zhu, L. A Review on Unmanned Aerial Vehicle Remote Sensing: Platforms, Sensors, Data Processing Methods, and Applications. Drones 2023, 7, 398. [Google Scholar] [CrossRef]
- Gupta, H.; Verma, O.P. Monitoring and Surveillance of Urban Road Traffic Using Low Altitude Drone Images: A Deep Learning Approach. Multimed. Tools Appl. 2022, 81, 19683–19703. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Ewertowski, M.W.; Creany, N.; Ancin-Murguzur, F.J.; Monz, C. The Application of Unmanned Aerial Vehicle (UAV) Surveys and GIS to the Analysis and Monitoring of Recreational Trail Conditions. Int. J. Appl. Earth Obs. Geoinf. 2023, 123, 103474. [Google Scholar] [CrossRef]
- Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in Agriculture: A Review and Bibliometric Analysis. Comput. Electron. Agric. 2022, 198, 107017. [Google Scholar] [CrossRef]
- Mammarella, M.; Comba, L.; Biglia, A.; Dabbene, F.; Gay, P. Cooperation of Unmanned Systems for Agricultural Applications: A Case Study in a Vineyard. Biosyst. Eng. 2022, 223, 81–102. [Google Scholar] [CrossRef]
- Choi, H.W.; Kim, H.J.; Kim, S.K.; Na, W.S. An Overview of Drone Applications in the Construction Industry. Drones 2023, 7, 515. [Google Scholar] [CrossRef]
- Betti Sorbelli, F.; Corò, F.; Das, S.K.; Palazzetti, L.; Pinotti, C.M. Greedy Algorithms for Scheduling Package Delivery with Multiple Drones. In Proceedings of the ACM International Conference Proceeding Series, Rome, Italy, 24 January 2022; pp. 31–39. [Google Scholar] [CrossRef]
- Dousai, N.M.K.; Lonearic, S. Detecting Humans in Search and Rescue Operations Based on Ensemble Learning. IEEE Access 2022, 10, 26481–26492. [Google Scholar] [CrossRef]
- Hoang, M.T.O.; Grøntved, K.A.R.; van Berkel, N.; Skov, M.B.; Christensen, A.L.; Merritt, T. Drone Swarms to Support Search and Rescue Operations: Opportunities and Challenges. In Cultural Robotics: Social Robots and Their Emergent Cultural Ecologies; Springer Series on Cultural Computing; Springer: Cham, Germany, 2023; pp. 163–176. ISBN 978-3-031-28138-9. [Google Scholar]
- Alzahrani, M.Y. Enhancing Drone Security Through Multi-Sensor Anomaly Detection and Machine Learning. SN Comput. Sci. 2024, 5, 651. [Google Scholar] [CrossRef]
- Warnakulasooriya, K.; Segev, A. Attacks, Detection, and Prevention on Commercial Drones: A Review. In Proceedings of the 3rd International Conference on Image Processing and Robotics, ICIPRoB, Colombo, Sri Lanka, 9–10 March 2024. [Google Scholar] [CrossRef]
- Mekdad, Y.; Aris, A.; Babun, L.; Fergougui, A.E.; Conti, M.; Lazzeretti, R.; Uluagac, A.S. A Survey on Security and Privacy Issues of UAVs. Comput. Netw. 2023, 224, 109626. [Google Scholar] [CrossRef]
- Hunter-Perkins, R.; Shiotani, H.; Rogers, J. Global Report on the Acquisition, Weaponization and Deployment of Unmanned Aircraft Systems by Non-State Armed Groups for Terrorism Purposes. Available online: https://www.un.org/counterterrorism (accessed on 4 November 2024).
- Haugstvedt, H. Still Aiming at the Harder Targets: An Update on Violent Non-State Actors’ Use of Armed UAVs. Perspect. Terror. 2024, 18, 132–143. [Google Scholar] [CrossRef]
- Tubis, A.A.; Poturaj, H.; Dereń, K.; Żurek, A. Risks of Drone Use in Light of Literature Studies. Sensors 2024, 24, 1205. [Google Scholar] [CrossRef] [PubMed]
- Yasmine, G.; Maha, G.; Hicham, M. Survey on Current Anti-Drone Systems: Process, Technologies, and Algorithms. Int. J. Syst. Syst. Eng. 2022, 12, 235. [Google Scholar] [CrossRef]
- Jurn, Y.N.; Mahmood, S.A.; Aldhaibani, J.A. Anti-Drone System Based Different Technologies: Architecture, 704 Threats and Challenges. In Proceedings of the 2021 11th IEEE International Conference on Control System, Computing and Engineering, ICCSCE, Penang, Malaysia, 27–28 August 2021; pp. 114–119. [Google Scholar] [CrossRef]
- Park, S.; Kim, H.T.; Lee, S.; Joo, H.; Kim, H. Survey on Anti-Drone Systems: Components, Designs, and Challenges. IEEE Access 2021, 9, 42635–42659. [Google Scholar] [CrossRef]
- Sazdić-Jotić, B.; Pokrajac, I.; Bajčetić, J.; Stefanović, N. Review of RF-Based Drone Classification: Techniques, Datasets, and Challenges. Vojnoteh. Glas. 2024, 72, 764–789. [Google Scholar] [CrossRef]
- Sazdić-Jotić, B. CUAS_Literature_DataSet. Available online: https://data.mendeley.com/datasets/6jc6w2v5nf/2 (accessed on 29 December 2024).
- Butterworth-Hayes, P. The Counter UAS Directory and Buyer’s Guide. Available online: https://www.unmannedairspace.info/counter-uas-industry-directory/ (accessed on 21 December 2024).
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Sazdić-Jotić, B.M.; Pokrajac, I.; Bajčetić, J.; Bondžulić, B.P.; Joksimović, V.; Šević, T.; Obradović, D.; Sazdic-Jotic, B.M.; Pokrajac, I.; Bajcetic, J.; et al. VTI_DroneSET. Available online: https://data.mendeley.com/datasets/s6tgnnp5n2/1 (accessed on 1 November 2020).
- Basak, S.; Rajendran, S.; Pollin, S.; Scheers, B. Combined RF-Based Drone Detection and Classification. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 111–120. [Google Scholar] [CrossRef]
- Basak, S.; Rajendran, S.; Pollin, S.; Scheers, B. Drone Classification from RF Fingerprints Using Deep Residual Nets. In Proceedings of the International Conference on COMmunication Systems & NETworkS (COMSNETS), Bangalore, India, 5–9 January 2021; pp. 548–555. [Google Scholar]
- Ezuma, M.; Erden, F.; Kumar Anjinappa, C.; Ozdemir, O.; Guvenc, I. Detection and Classification of UAVs Using RF Fingerprints in the Presence of Wi-Fi and Bluetooth Interference. IEEE Open J. Commun. Soc. 2020, 1, 60–76. [Google Scholar] [CrossRef]
- Ozturk, E.; Erden, F.; Guvenc, I. RF-Based Low-SNR Classification of UAVs Using Convolutional Neural Net-works. arXiv 2020, arXiv:2009.05519. [Google Scholar]
- Ezuma, M.; Erden, F.; Anjinappa, C.K.; Ozdemir, O.; Guvenc, I. Micro-UAV Detection and Classification from RF Fingerprints Using Machine Learning Techniques. In Proceedings of the 2019 IEEE Aerospace Conference, IEEE, Big Sky, MT, USA, 2–9 March 2019; pp. 1–13. [Google Scholar] [CrossRef]
- Noh, D., II; Jeong, S.G.; Hoang, H.T.; Pham, Q.V.; Huynh-The, T.; Hasegawa, M.; Sekiya, H.; Kwon, S.Y.; Chung, S.H.; Hwang, W.J. Signal Preprocessing Technique With Noise-Tolerant for RF-Based UAV Signal Classification. IEEE Access 2022, 10, 134785–134798. [Google Scholar] [CrossRef]
- Medaiyese, O.O.; Ezuma, M.; Lauf, A.P.; Adeniran, A.A. Hierarchical Learning Framework for UAV Detection and Identification. IEEE J. Radio Freq. Identif. 2022, 6, 176–188. [Google Scholar] [CrossRef]
- Glüge, S.; Nyfeler, M.; Aghaebrahimian, A.; Ramagnano, N.; Schüpbach, C. Robust Low-Cost Drone Detection and Classification Using Convolutional Neural Networks in Low SNR Environments. IEEE J. Radio Freq. Identif. 2024, 8, 821–830. [Google Scholar] [CrossRef]
- Muntarina, K.; Shorif, S.B.; Uddin, M.S. Notes on Edge Detection Approaches. Evol. Syst. 2022, 13, 169–182. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Azimirad, E. Design of an Optimized Fuzzy System for Edge Detection in Images. J. Intell. Fuzzy Syst. 2022, 43, 2363–2373. [Google Scholar] [CrossRef]
- Shrivastav, U.; Singh, S.K.; Khamparia, A. A Novel Approach to Detect Edge in Digital Image Using Fuzzy Logic. In First International Conference on Sustainable Technologies for Computational Intelligence; Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2020; Volume 1045, pp. 63–74. ISBN 9789811500282. [Google Scholar]
- Raheja, S.; Kumar, A. Edge Detection Based on Type-1 Fuzzy Logic and Guided Smoothening. Evol. Syst. 2021, 12, 447–462. [Google Scholar] [CrossRef]
- Sadjadi, E.N.; Sadrian Zadeh, D.; Moshiri, B.; García Herrero, J.; Molina López, J.M.; Fernández, R. Application of Smooth Fuzzy Model in Image Denoising and Edge Detection. Mathematics 2022, 10, 2421. [Google Scholar] [CrossRef]
- Orujov, F.; Maskeliūnas, R.; Damaševičius, R.; Wei, W. Fuzzy Based Image Edge Detection Algorithm for Blood Vessel Detection in Retinal Images. Appl. Soft Comput. 2020, 94, 106452. [Google Scholar] [CrossRef]
- Setiadi, D.R.I.M.; Rustad, S.; Andono, P.N.; Shidik, G.F. Graded Fuzzy Edge Detection for Imperceptibility Optimization of Image Steganography. Imaging Sci. J. 2024, 72, 693–705. [Google Scholar] [CrossRef]
- Kumawat, A.; Panda, S. A Robust Edge Detection Algorithm Based on Feature-Based Image Registration (FBIR) Using Improved Canny with Fuzzy Logic (ICWFL). Vis. Comput. 2022, 38, 3681–3702. [Google Scholar] [CrossRef]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-86, 679–698. [Google Scholar] [CrossRef]
- Kapur, J.N.; Sahoo, P.K.; Wong, A.K.C. A New Method for Gray-Level Picture Thresholding Using the Entropy of the Histogram. Comput. Vis. Graph. Image Process 1985, 29, 273–285. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Deng, R.; Liu, S. Deep Structural Contour Detection. In Proceedings of the 28th ACM International Conference on Multimedia, ACM, New York, NY, USA, 12 October 2020; pp. 304–312. [Google Scholar] [CrossRef]
- He, J.; Zhang, S.; Yang, M.; Shan, Y.; Huang, T. BDCN: Bi-Directional Cascade Network for Perceptual Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Kelm, A.P.; Rao, V.S.; Zölzer, U. Object Contour and Edge Detection with Refine ContourNet. In Computer Analysis of Images and Patterns; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Germany, 2019; Volume 11678 LNCS, pp. 246–258. ISBN 9783030298876. [Google Scholar]
- Pu, M.; Huang, Y.; Guan, Q.; Ling, H. RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth. arXiv 2021, arXiv:2108.00616. [Google Scholar]
- Soria, X.; Riba, E.; Sappa, A. Dense Extreme Inception Network: Towards a Robust CNN Model for Edge Detection. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass, CO, USA, 1–5 March 2020; pp. 1912–1921. [Google Scholar]
- Pu, M.; Huang, Y.; Liu, Y.; Guan, Q.; Ling, H. EDTER: Edge Detection with Transformer. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; Volume 2022, pp. 1392–1402. [Google Scholar]
- Sivapriya, M.S.; Suresh, S. ViT-DexiNet: A Vision Transformer-Based Edge Detection Operator for Small Object Detection in SAR Images. Int. J. Remote Sens. 2023, 44, 7057–7084. [Google Scholar] [CrossRef]
- Jie, J.; Guo, Y.; Wu, G.; Wu, J.; Hua, B. EdgeNAT: Transformer for Efficient Edge Detection. arXiv 2024, arXiv:2408.10527. [Google Scholar]
- Xia, B.; Mantegh, I.; Xie, W. UAV Multi-Dynamic Target Interception: A Hybrid Intelligent Method Using Deep Reinforcement Learning and Fuzzy Logic. Drones 2024, 8, 226. [Google Scholar] [CrossRef]
- Xia, B.; Mantegh, I.; Xie, W.F. Hybrid Framework for UAV Motion Planning and Obstacle Avoidance: Integrating Deep Reinforcement Learning with Fuzzy Logic. In Proceedings of the 10th 2024 International Conference on Control, Decision and Information Technologies, CoDIT, Vallette, Malta, 1–4 July 2024; pp. 2662–2669. [Google Scholar] [CrossRef]
- Munadi, M.; Radityo, B.; Ariyanto, M.; Taniai, Y. Automated Guided Vehicle (AGV) Lane-Keeping Assist Based on Computer Vision, and Fuzzy Logic Control under Varying Light Intensity. Results Eng. 2024, 21, 101678. [Google Scholar] [CrossRef]
- Al-Sa’d, M.F.; Al-Ali, A.; Mohamed, A.; Khattab, T.; Erbad, A. RF-Based Drone Detection and Identification Using Deep Learning Approaches: An Initiative towards a Large Open Source Drone Database. Future Gener. Comput. Syst. 2019, 100, 86–97. [Google Scholar] [CrossRef]
- Allahham, M.S.; Khattab, T.; Mohamed, A. Deep Learning for RF-Based Drone Detection and Identification: A Multi-Channel 1-D Convolutional Neural Networks Approach. In Proceedings of the IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), IEEE, Doha, Qatar, 2–5 February 2020; pp. 112–117. [Google Scholar]
- Yang, S.; Luo, Y.; Miao, W.; Ge, C.; Sun, W.; Luo, C. RF Signal-Based UAV Detection and Mode Classification: A Joint Feature Engineering Generator and Multi-Channel Deep Neural Network Approach. Entropy 2021, 23, 1678. [Google Scholar] [CrossRef]
- Sazdić-Jotić, B.; Pokrajac, I.; Bajčetić, J.; Bondžulić, B.; Obradović, D. Single and Multiple Drones Detection and Identification Using RF Based Deep Learning Algorithm. Expert Syst. Appl. 2022, 187, 115928. [Google Scholar] [CrossRef]
- Basak, S.; Rajendran, S.; Pollin, S.; Scheers, B. Autoencoder Based Framework for Drone RF Signal Classification and Novelty Detection. In Proceedings of the International Conference on Advanced Communication Technology, ICACT, Institute of Electrical and Electronics Engineers Inc., Pyeongchang, Republic of Korea, 19–22 February 2023; Volume 2023, pp. 218–225. [Google Scholar]
- Al-Emadi, S.; Al-Senaid, F. Drone Detection Approach Based on Radio-Frequency Using Convolutional Neural Network. In Proceedings of the IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), IEEE, Doha, Qatar, 2–5 February 2020; pp. 29–34. [Google Scholar]
- Mokhtari, M.; Bajčetić, J.; Sazdić-Jotić, B.; Pavlović, B. RF-Based Drone Detection and Classification System Using Convolutional Neural Network. In Proceedings of the 29th Telecommunications Forum (TELFOR), IEEE, Belgrade, Serbia, 23–24 November 2021; pp. 1–4. [Google Scholar]
- Alam, S.S.; Chakma, A.; Rahman, M.H.; Bin Mofidul, R.; Alam, M.M.; Utama, I.B.K.Y.; Jang, Y.M. RF-Enabled Deep-Learning-Assisted Drone Detection and Identification: An End-to-End Approach. Sensors 2023, 23, 4202. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Han, B.; Su, Z.; Hao, J. SignalFormer: Hybrid Transformer for Automatic Drone Identification Based on Drone RF Signals. Sensors 2023, 23, 9098. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Pedoeem, J.; Chen, C. YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers. In Proceedings of the 2018 IEEE International Conference on Big Data, Big Data, Seattle, WA, USA, 10–13 December 2018; pp. 2503–2510. [Google Scholar] [CrossRef]
- Sussillo, D.; Abbott, L.F. Random Walk Initialization for Training Very Deep Feedforward Networks. arXiv 2014, arXiv:1412.6558. [Google Scholar]
- Šević, T.; Joksimović, V.; Pokrajac, I.; Radiana, B.; Sazdić-Jotić, B.; Obradović, D. Interception and Detection of Drones Using RF-Based Dataset of Drones. Sci. Tech. Rev. 2020, 70, 29–34. [Google Scholar] [CrossRef]
- Bujaković, D.; Andrić, M.; Bondžulić, B.; Mitrović, S.; Simić, S. Time–Frequency Distribution Analyses of Ku-Band Radar Doppler Echo Signals. Frequenz 2015, 69, 119–128. [Google Scholar] [CrossRef]
- Van Leekwijck, W.; Kerre, E.E. Defuzzification: Criteria and Classification. Fuzzy Sets Syst. 1999, 108, 159–178. [Google Scholar] [CrossRef]
- Gao, J.; Li, L.; Ren, X.; Chen, Q.; Abdul-Abbass, Y.M. An Effective Method for Salt and Pepper Noise Removal Based on Algebra and Fuzzy Logic Function. Multimed. Tools Appl. 2024, 83, 9547–9576. [Google Scholar] [CrossRef]
- Kushwaha, S. An Effective Adaptive Fuzzy Filter for Speckle Noise Reduction. Multimed. Tools Appl. 2024, 83, 34963–34978. [Google Scholar] [CrossRef]
- Yin, X.X.; Hadjiloucas, S. Digital Filtering Techniques Using Fuzzy-Rules Based Logic Control. J. Imaging 2023, 9, 208. [Google Scholar] [CrossRef]
- Xie, S.; Tu, Z. Holistically-Nested Edge Detection. Int. J. Comput. Vis. 2017, 125, 3–18. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations, (ICLR 2015), San Diego, CA, USA, 7–9 May 2015; pp. 1–14. [Google Scholar]
Studies | Method (Preprocessing Method + DL Model) | Frequency Band | SNR (dB) | ACC (%) |
---|---|---|---|---|
[24] | Anderson–Darling GoF test + CNN (5 conv layers + residual mapping) | 2.4 GHz | −30 to 10 | 95 |
Anderson–Darling GoF test + YOLO Lite (9 conv layers) | −30 to 10 | 96 | ||
[25] | CNN (5 conv layers + residual mapping) | 2.4 GHz | −30 to 10 | 99 |
[26,28] | Multiresolution analysis + Naïve Bayesian Detector + ML | 2.4 GHz | 0 to 25 | 98.13 |
[27] | Denoising + CNN (3 conv layers) | 2.4 GHz | −10 to 30 | 100 |
[29] | Denoising + CNN (3 conv layers) | 2.4 GHz | −15 to 15 | 99.17 |
[30] | Stacked denoising autoencoder + Multiresolution analysis + ML | 2.4 GHz | 0 to 25 | 99.17 |
[31] | VGG (19 conv layers) | 2.4 GHz | −20 to 30 | 100 |
[62] | CNN (9 conv layers) | 2.4 GHz | 0 to 25 | 97.53 |
[63] | Hybrid visual transformer (ViT) + CNN-based tokenization method | 2.4 GHz | −15 to 30 | 98.80 |
Study-Model | Drone Detection (%) | Multiple Drone Detection (%) | Drone-Type Identification (%) | |||||
---|---|---|---|---|---|---|---|---|
SNR = −10 dB | SNR = 0 dB | SNR = −10 dB | SNR = 0 dB | SNR = −10 dB | SNR = 0 dB | |||
[24] | CNN | N/A | N/A | N/A | N/A | 80 | 99 | |
YOLO Lite | 30 | 99 | 95 | 99 | <40 | 97 | ||
[25] CNN | N/A | N/A | 97.3 | 99 | 87.6 | 99 | ||
[26,28] kNN | <10 | <70 | N/A | N/A | N/A | <40 | ||
[27] CNN | N/A | N/A | N/A | N/A | 92 | 99.50 | ||
[29] CNN | N/A | N/A | N/A | N/A | 98 | 99.17 | ||
[30] XGBoost | 50 | <90 | N/A | N/A | N/A | 90.23 | ||
[31] VGG | N/A | N/A | N/A | N/A | >85 | 100 | ||
[62] CNN | N/A | 93.81 | N/A | N/A | N/A | 57.7 | ||
[63] ViT | N/A | N/A | N/A | N/A | 97.1 | 98.07 | ||
FLEDNet | AlexNet | 99.80 | 99.93 | 99.12 | 99.48 | 98.15 | 98.47 | |
CNN | 99.63 | 99.82 | 97.90 | 98.54 | 95.82 | 96.14 | ||
CRNN | 99.89 | 99.89 | 97.97 | 98.73 | 98.69 | 99.25 |
Model | Drone Detection (%) | Multiple Drone Detection (%) | Drone-Type Identification (%) | Average CI for All Scenarios |
---|---|---|---|---|
W/O E/D + CRNN | 92.64 ± 5.34 | 93.27 ± 3.87 | 84.77 ± 11.24 | 90.23 ± 4.41 |
Canny E/D + CRNN | 72.02 ± 7.35 | 50.44 ± 14.39 | 59.00 ± 11.93 | 60.49 ± 7.13 |
Kapur E/D + CRNN | 87.69 ± 6.13 | 88.61 ± 4.78 | 81.25 ± 10.27 | 85.85 ± 4.31 |
Otsu E/D + CRNN | 92.15 ± 6.02 | 86.19 ± 3.86 | 85.32 ± 11.18 | 88.00 ± 4.42 |
Fuzzy logic E/D + CRNN | 95.42 ± 3.29 | 95.88 ± 1.96 | 88.63 ± 6.38 | 93.31 ± 2.53 |
Study | Method (E/D + DL Model) | Drone Detection (%) | Multiple Drone Detection (%) | Drone-Type Identification (%) | |||
---|---|---|---|---|---|---|---|
SNR = 20 dB | SNR = 0 dB | SNR = 20 dB | SNR = 0 dB | SNR = 20 dB | SNR = 0 dB | ||
[48] | DexiNed (DL) E/D + CNN | 94.98 | 91.75 | 97.23 | 93.83 | 92.57 | 85.20 |
FLEDNet | Fuzzy logic E/D + AlexNet | 99.95 | 99.93 | 99.58 | 99.48 | 98.87 | 98.47 |
Fuzzy logic E/D + CNN | 100 | 99.82 | 99.49 | 98.54 | 97.91 | 96.14 | |
Fuzzy logic E/D + CRNN | 100 | 99.89 | 100 | 98.73 | 99.75 | 99.25 |
Study | Method (Preprocessing Method + DL Model) | Input Data (Tensor Dimensions) | Average Simulation Time (s) | Total Parameters |
---|---|---|---|---|
[24] | Anderson–Darling GoF test + YOLO Lite (9 conv layers) | 256 × 256 × 3 | N/A | ~41.5 M |
[27] | Denoising + CNN (3 conv layers) | 90 × 385 × 3 | N/A | ~0.410 M |
[29] | Denoising + CNN (3 conv layers) | 356 × 452 × 3 | N/A | ~0.485 M |
[31] | VGG (19 conv layers) | 256 × 256 × 3 | N/A | ~20.1 M |
[62] | CNN (9 conv layers) | 1024 × 1 | N/A | ~2.5 M |
[63] | ViT + CNN-based tokenization method | 256 × 256 × 3 | N/A | ~1.6 M |
[48] | DexiNed DL-based E/D + CNN | 227 × 227 × 3 | 14.5839 | ~3.5 M (DexiNed) ~3.3 M (CNN) |
FLEDNet | Canny E/D + CRNN | 2 × 227 × 227 × 3 | 0.0492 | ~0.350 M |
Kapur E/D + CRNN | 0.1349 | |||
Otsu E/D + CRNN | 0.1412 | |||
Fuzzy logic E/D + CRNN | 0.7886 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sazdic-Jotic, B.; Andric, M.; Bondzulic, B.; Simic, S.; Pokrajac, I. FLEDNet: Enhancing the Drone Classification in the Radio Frequency Domain. Drones 2025, 9, 243. https://doi.org/10.3390/drones9040243
Sazdic-Jotic B, Andric M, Bondzulic B, Simic S, Pokrajac I. FLEDNet: Enhancing the Drone Classification in the Radio Frequency Domain. Drones. 2025; 9(4):243. https://doi.org/10.3390/drones9040243
Chicago/Turabian StyleSazdic-Jotic, Boban, Milenko Andric, Boban Bondzulic, Slobodan Simic, and Ivan Pokrajac. 2025. "FLEDNet: Enhancing the Drone Classification in the Radio Frequency Domain" Drones 9, no. 4: 243. https://doi.org/10.3390/drones9040243
APA StyleSazdic-Jotic, B., Andric, M., Bondzulic, B., Simic, S., & Pokrajac, I. (2025). FLEDNet: Enhancing the Drone Classification in the Radio Frequency Domain. Drones, 9(4), 243. https://doi.org/10.3390/drones9040243