Latency Analysis of UAV-Assisted Vehicular Communications Using Personalized Federated Learning with Attention Mechanism
Abstract
1. Introduction
1.1. Related Work
1.1.1. Personalized Federated Learning Approaches and Their Applications in UAV-Assisted Communications
1.1.2. Personalized Federated Learning Approaches for Performance Enhancement in Aerial–Ground Integrated Networks
1.2. Contributions
- For PFL model convergence, optimal policy evaluation, and improvement, we consider the multi-objective MDP as a sequence of parameterized optimization problems. The optimal solutions correspond to the optimal actions in the proposed bin-packing problem (BPP). This leads to an improvement of state evaluation and action evaluation in a reduced action space.
- We investigate the vehicle selection losses and communication errors in the PFL model convergence rate. We identify the factors that impact the global optimum and minimize training loss [77].
1.3. Organization
2. System Model
3. Problem Formulation
4. Solution Approach
4.1. Training Vehicles with Data
4.2. Action Set for Vehicles and UAV
4.3. Personalized Federated Learning with Attention Mechanism
5. Simulation Results and Discussion
5.1. Performance Comparison of PFL with Traditional FL Methods
5.2. Performance Comparison of Attention-Mechanism-Based PFL with Traditional FL Methods
5.3. Variation in UAV’s Transmit Power (dBm) with Number of Vehicles (V)
5.4. Variation in Average Mean Square Error (MSE) Losses with Personalization Parameter () Using PFL and PFL with Attention Mechanism
5.5. Discussion and Comparison of the Proposed PFL Approach with Existing Works
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
3GPP | 3rd Generation Partnership Project |
6G | Sixth-generation (communication networks) |
A3C | Asynchronous advantage actor-critic |
AoI | Age of information |
BCD | Block coordinate descent |
BPP | Bin-packing problem |
BS | Base station |
CSI | Channel state information |
DDPG | Deep deterministic policy gradient |
DRL | Deep reinforcement learning |
FedAvg | Federated averaging |
FedSGD | Federated stochastic gradient descent |
FGPR | Federated Gaussian process regression |
FL | Federated learning |
FRL | Federated reinforcement learning |
G-FML | Group-based federated meta-learning framework |
GMM | Gaussian mixture model |
HFL | Hierarchical federated learning |
HMM | Hidden Markov model |
i.i.d. | Independent and identically distributed |
ITS | Intelligent transportation system |
LoS | Line of sight |
MBS | Macro base station |
MCC | Mobile cloud computing |
MDP | Markov decision process |
MEC | Mobile edge computing |
Non-i.i.d. | Non-independent and identically distributed |
NLoS | Non-line-of-sight |
OFDM | Orthogonal frequency division multiplexing |
OTFS | Orthogonal time frequency space |
PFL | Personalized federated learning |
QoS | Quality of service |
RL | Reinforcement learning |
SINR | Signal-to-interference noise ratio |
TTI | Transmission time interval |
UAV | Unmanned aerial vehicle |
References
- Bazzi, A.; Cecchini, G.; Zanella, A.; Masini, B.M. Study of the Impact of PHY and MAC Parameters in 3GPP C-V2X Mode 4. IEEE Access 2018, 6, 71685–71698. [Google Scholar] [CrossRef]
- Zhu, J.; Song, Y.; Tang, Y.; Jin, T.; Liu, W. Performance Trade-off in Waveform Design for Dual-function Radar and Communication System. IEEE Wirel. Commun. Lett. 2024, 13, 74–78. [Google Scholar] [CrossRef]
- Wang, W.; Fei, Z.; Guo, J.; Durrani, S.; Yanikomeroglu, H. Outage Performance of Multi-Tier UAV Communication with Random Beam Misalignment. IEEE Internet Things J. 2023, 11, 4163–4178. [Google Scholar] [CrossRef]
- Wang, T.; Du, W.; Jiang, C.; Li, Y.; Zhang, H. Safety Constrained Trajectory Optimization for Completion Time Minimization for UAV Communications. IEEE Internet Things J. 2024, 11, 34482–34491. [Google Scholar] [CrossRef]
- Du, Y.; Liu, Y.; Han, K.; Jiang, J.; Wang, W.; Chen, L. Multi-User and Multi-Target Dual-Function Radar-Communication Waveform Design: Multi-Fold Performance Tradeoffs. IEEE Trans. Green Commun. Netw. 2023, 7, 483–496. [Google Scholar] [CrossRef]
- Duan, Q.; Huang, J.; Hu, S.; Deng, R.; Lu, Z.; Yu, S. Combining Federated Learning and Edge Computing Toward Ubiquitous Intelligence in 6G Network: Challenges, Recent Advances, and Future Directions. IEEE Commun. Surv. Tutor. 2023, 25, 2892–2950. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, G.; Wen, M.; Tafazolli, R.; Panayirci, E. Secure Transmission for THz-Empowered RIS-Assisted Non-Terrestrial Networks. IEEE Trans. Veh. Technol. 2023, 72, 5989–6000. [Google Scholar] [CrossRef]
- Wu, W.; Yang, Q.; Li, B.; Kwak, K.S. Adaptive Resource Allocation Algorithm of Lyapunov Optimization for Time-Varying Wireless Networks. IEEE Commun. Lett. 2016, 20, 934–937. [Google Scholar] [CrossRef]
- Al-Quraan, M.; Mohjazi, L.; Bariah, L.; Centeno, A.; Zoha, A.; Arshad, K.; Assaleh, K.; Muhaidat, S.; Debbah, M.; Imran, M.A. Edge-Native Intelligence for 6G Communications Driven by Federated Learning: A Survey of Trends and Challenges. IEEE Trans. Emerg. Top. Comput. Intell. 2023, 7, 957–979. [Google Scholar] [CrossRef]
- Noman, H.M.F.; Hanafi, E.; Noordin, K.A.; Dimyati, K.; Hindia, M.N.; Abdrabou, A.; Qamar, F. Machine Learning Empowered Emerging Wireless Networks in 6G: Recent Advancements, Challenges & Future Trends. IEEE Access 2023, 11, 83017–83051. [Google Scholar]
- Liu, S.; Yu, J.; Deng, X.; Wan, S. FedCPF: An Efficient Communication Federated Learning Approach for Vehicular Edge Computing in 6G Communication Networks. IEEE Trans. Intell. Transp. Syst. 2022, 23, 1616–1629. [Google Scholar] [CrossRef]
- Manias, D.M.; Shami, A. Making a Case for Federated Learning in the Internet of Vehicles and Intelligent Transportation Systems. IEEE Netw. 2021, 35, 88–94. [Google Scholar] [CrossRef]
- Li, X.; Cheng, L.; Sun, C.; Lam, K.Y.; Wang, X.; Li, F. Federated-Learning-Empowered Collaborative Data Sharing for Vehicular Edge Networks. IEEE Netw. 2021, 35, 116–124. [Google Scholar] [CrossRef]
- Sun, Z.; Yang, H.; Li, C.; Yao, Q.; Teng, Y.; Zhang, J.; Liu, S.; Li, Y.; Vasilakos, A.V. A Resource Allocation Scheme for Edge Computing Network in Smart City Based on Attention Mechanism. ACM Trans. Sens. Netw. 2024. [CrossRef]
- Shinde, S.S.; Tarchi, D. Joint Air-Ground Distributed Federated Learning for Intelligent Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2023, 24, 1–16. [Google Scholar] [CrossRef]
- Huang, Y.; Cui, M.; Zhang, G.; Chen, W. Bandwidth, Power and Trajectory Optimization for UAV Base Station Networks with Backhaul and User QoS Constraints. IEEE Access 2020, 8, 67625–67634. [Google Scholar] [CrossRef]
- Qiao, D.; Liu, G.; Guo, S.; He, J. Adaptive Federated Learning for Non-Convex Optimization Problems in Edge Computing Environment. IEEE Trans. Netw. Sci. Eng. 2022, 9, 3478–3491. [Google Scholar] [CrossRef]
- Ma, G.; Bian, Y.; Qin, H.; Yin, C.; Chen, C.; Li, S.E.; Li, K. Advance-FL: A3C-based Adaptive Asynchronous Online Federated Learning for Vehicular Edge Cloud Computing Networks. IEEE Trans. Intell. Veh. 2024, 9, 6971–6989. [Google Scholar] [CrossRef]
- Shen, S.; Shen, G.; Dai, Z.; Zhang, K.; Kong, X.; Li, J. Asynchronous Federated Deep-Reinforcement-Learning-Based Dependency Task Offloading for UAV-Assisted Vehicular Networks. IEEE Internet Things J. 2024, 11, 31561–31574. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, Q.; Luo, W.; Huang, Q.; Zou, L.; Wang, H.; Li, X.; Liu, C. GraphMM: Graph-Based Vehicular Map Matching by Leveraging Trajectory and Road Correlations. IEEE Trans. Knowl. Data Eng. 2024, 36, 184–198. [Google Scholar] [CrossRef]
- Wang, S.; Wang, W.; Huang, S.; Han, Y.; Wei, F.; Yin, B. Nowcasting the Vehicular Control Delay From Low-Ping Frequency Trajectories via Incremental Hypergraph Learning. IEEE Trans. Veh. Technol. 2024, 73, 185–199. [Google Scholar] [CrossRef]
- Xue, H.; Zhang, D.; Wu, C.; Ji, Y.; Long, S.; Wang, C.; Sato, T. Parameter Estimation-Aided Edge Server Selection Mechanism for Edge Task Offloading. IEEE Trans. Veh. Technol. 2024, 73, 2506–2519. [Google Scholar] [CrossRef]
- Park, S.; Park, C.; Jung, S.; Kim, J.H.; Kim, J. Workload-Aware Scheduling using Markov Decision Process for Infrastructure-Assisted Learning-Based Multi-UAV Surveillance Networks. IEEE Access 2023, 11, 1. [Google Scholar] [CrossRef]
- Luo, Q.; Luan, T.H.; Shi, W.; Fan, P. Deep Reinforcement Learning Based Computation Offloading and Trajectory Planning for Multi-UAV Cooperative Target Search. IEEE J. Sel. Areas Commun. 2023, 41, 504–520. [Google Scholar] [CrossRef]
- Chen, S.; Jin, T.; Xia, Y.; Li, X. Metadata and Image Features Co-Aware Semi-Supervised Vertical Federated Learning with Attention Mechanism. IEEE Trans. Veh. Technol. 2024, 73, 2520–2532. [Google Scholar] [CrossRef]
- Shaik, T.; Tao, X.; Li, L.; Xie, H.; Cai, T.; Zhu, X.; Li, Q. FRAMU: Attention-Based Machine Unlearning Using Federated Reinforcement Learning. IEEE Trans. Knowl. Data Eng. 2024, 36, 5153–5167. [Google Scholar] [CrossRef]
- Qureshi, K.I.; Wang, L.; Xiong, X.; Lodhi, M.A. Asynchronous Federated Learning for Resource Allocation in Software-Defined Internet of UAVs. IEEE Internet Things J. 2024, 11, 20899–20911. [Google Scholar] [CrossRef]
- Liu, R.; Liu, A.; Qu, Z.; Xiong, N.N. An UAV-Enabled Intelligent Connected Transportation System with 6G Communications for Internet of Vehicles. IEEE Trans. Intell. Transp. Syst. 2023, 24, 2045–2059. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Le, H.D.; Pham, A.T. On the Design of RIS-UAV Relay-Assisted Hybrid FSO/RF Satellite-Aerial-Ground Integrated Network. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 1–15. [Google Scholar] [CrossRef]
- Hosseini, M.; Ghazizadeh, R. Stackelberg Game-Based Deployment Design and Radio Resource Allocation in Coordinated UAVs-Assisted Vehicular Communication Networks. IEEE Trans. Veh. Technol. 2023, 72, 1196–1210. [Google Scholar] [CrossRef]
- A., G.P.W.N.B.; Samarasinghe, T.; Haapola, J. Performance Enhancement of C-V2X Mode 4 Utilizing Multiple Candidate Single-Subframe Resources. IEEE Trans. Intell. Transp. Syst. 2023, 24, 15328–15333. [Google Scholar]
- Song, R.; Zhou, L.; Lyu, L.; Festag, A.; Knoll, A. ResFed: Communication-Efficient Federated Learning With Deep Compressed Residuals. IEEE Internet Things J. 2024, 11, 9458–9472. [Google Scholar] [CrossRef]
- Hao, W.; Mehta, N.; Liang, K.J.; Cheng, P.; El-Khamy, M.; Carin, L. WAFFLe: Weight Anonymized Factorization for Federated Learning. IEEE Access 2022, 10, 49207–49218. [Google Scholar] [CrossRef]
- Li, Z.; Lu, J.; Luo, S.; Zhu, D.; Shao, Y.; Li, Y.; Zhang, Z.; Wang, Y.; Wu, C. Towards Effective Clustered Federated Learning: A Peer-to-peer Framework with Adaptive Neighbor Matching. IEEE Trans. Big Data 2024, 10, 812–826. [Google Scholar] [CrossRef]
- Yue, X.; Kontar, R. Federated Gaussian Process: Convergence, Automatic Personalization and Multi-Fidelity Modeling. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 4246–4261. [Google Scholar] [CrossRef]
- Chafii, M.; Bariah, L.; Muhaidat, S.; Debbah, M. Twelve Scientific Challenges for 6G: Rethinking the Foundations of Communications Theory. IEEE Commun. Surv. Tutor. 2023, 25, 868–904. [Google Scholar] [CrossRef]
- Li, H.; Cai, Z.; Wang, J.; Tang, J.; Ding, W.; Lin, C.T.; Shi, Y. FedTP: Federated Learning by Transformer Personalization. IEEE Trans. Neural Netw. Learn. Syst. 2023, PP, 1–15. [Google Scholar] [CrossRef]
- Xu, X.; Feng, G.; Qin, S.; Liu, Y.; Sun, Y. Joint UAV Deployment and Resource Allocation: A Personalized Federated Deep Reinforcement Learning Approach. IEEE Trans. Veh. Technol. 2024, 73, 1–14. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, C.; Qiao, J.; Li, K.; Cao, Y. Communication-Efficient Wireless Traffic Prediction with Federated Learning. Mathematics 2024, 12, 2539. [Google Scholar] [CrossRef]
- Ji, S.; Jiang, W.; Walid, A.; Li, X. Dynamic Sampling and Selective Masking for Communication-Efficient Federated Learning. IEEE Intell. Syst. 2022, 37, 27–34. [Google Scholar] [CrossRef]
- Gupta, V.; Luqman, A.; Chattopadhyay, N.; Chattopadhyay, A.; Niyato, D. TravellingFL: Communication Efficient Peer-to-Peer Federated Learning. IEEE Trans. Veh. Technol. 2024, 73, 5005–5019. [Google Scholar] [CrossRef]
- Yu, F.; Lin, H.; Wang, X.; Garg, S.; Kaddoum, G.; Singh, S.; Hassan, M.M. Communication-Efficient Personalized Federated Meta-Learning in Edge Networks. IEEE Trans. Netw. Serv. Manag. 2023, 20, 1558–1571. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, P.; Liu, L.; Zhang, C.; Ma, H. Configure Your Federation: Hierarchical Attention-enhanced Meta-Learning Network for Personalized Federated Learning. ACM Trans. Intell. Syst. Technol. 2023, 14, 1–24. [Google Scholar] [CrossRef]
- Liu, S.; Li, Q.; Pandharipande, A.; Ge, X. Personalized Collaborative Edge Caching with Federated Transfer Deep Reinforcement Learning. IEEE Commun. Lett. 2024, 28, 2096–2100. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, D.; Tang, X.; Song, T.; Hong, C.S.; Han, Z. Incentive Framework for Cross-Device Federated Learning and Analytics With Multiple Tasks Based on a Multi-Leader-Follower Game. IEEE Trans. Netw. Sci. Eng. 2022, 9, 3749–3761. [Google Scholar] [CrossRef]
- Vettoruzzo, A.; Bouguelia, M.R.; Vanschoren, J.; Rognvaldsson, T.; Santosh, K. Advances and Challenges in Meta-Learning: A Technical Review. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 4763–4779. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Cao, X.; Quek, T.Q.S.; Wu, D.O. Networking of Internet of UAVs: Challenges and Intelligent Approaches. IEEE Wirel. Commun. 2022, 31, 156–163. [Google Scholar] [CrossRef]
- Pan, W.; Wang, X.; Zhou, P.; Lin, W. Time-Sensitive Federated Learning with Heterogeneous Training Intensity: A Deep Reinforcement Learning Approach. IEEE Trans. Emerg. Top. Comput. Intell. 2024, 8, 1402–1415. [Google Scholar] [CrossRef]
- Xu, Z.; Qiao, H.; Liang, W.; Xu, Z.; Xia, Q.; Zhou, P.; Rana, O.F.; Xu, W. Flow-Time Minimization for Timely Data Stream Processing in UAV-Aided Mobile Edge Computing. ACM Trans. Sens. Netw. 2024, 20, 1–28. [Google Scholar] [CrossRef]
- Ali, W.; Ammad-ud din, M.; Zhou, X.; Zhang, Y.; Shao, J. Communication-Efficient Federated Neural Collaborative Filtering with Multi-Armed Bandits. ACM Trans. Recomm. Syst. 2024. [Google Scholar] [CrossRef]
- Wu, H.; Gu, A.; Liang, Y. Federated Reinforcement Learning-Empowered Task Offloading for Large Models in Vehicular Edge Computing. IEEE Trans. Veh. Technol. 2024, 74, 1979–1991. [Google Scholar] [CrossRef]
- Moreira, I.; Pimentel, C.; Barros, F.P.; Chaves, D.P.B. Modeling Fading Channels With Binary Erasure Finite-State Markov Channels. IEEE Trans. Veh. Technol. 2017, 66, 4429–4434. [Google Scholar] [CrossRef]
- Abou El Houda, Z.; Brik, B.; Ksentini, A.; Khoukhi, L.; Guizani, M. When Federated Learning Meets Game Theory: A Cooperative Framework to secure IIoT Applications on Edge Computing. IEEE Trans. Ind. Inform. 2022, 18, 7988–7997. [Google Scholar] [CrossRef]
- Oubbati, O.S.; Chaib, N.; Lakas, A.; Lorenz, P.; Rachedi, A. UAV-Assisted Supporting Services Connectivity in Urban VANETs. IEEE Trans. Veh. Technol. 2019, 68, 3944–3951. [Google Scholar] [CrossRef]
- Wang, K.; Ma, Y.; Mashhadi, M.B.; Foh, C.H.; Tafazolli, R.; Ding, Z. Convergence Acceleration in Wireless Federated Learning: A Stackelberg Game Approach. IEEE Trans. Veh. Technol. 2024, 74, 714–729. [Google Scholar] [CrossRef]
- Asad, A.; Fouda, M.M.; Fadlullah, Z.M.; Ibrahem, M.I.; Nasser, N. Moreau Envelopes-Based Personalized Asynchronous Federated Learning: Improving Practicality in Network Edge Intelligence. In Proceedings of the GLOBECOM 2023–2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 2033–2038. [Google Scholar]
- Li, H.; Zhang, J.; Zhao, H.; Ni, Y.; Xiong, J.; Wei, J. Joint Optimization on Trajectory, Computation and Communication Resources in Information Freshness Sensitive MEC System. IEEE Trans. Veh. Technol. 2024, 73, 4162–4177. [Google Scholar] [CrossRef]
- Karabulut Kurt, G.; Khoshkholgh, M.G.; Alfattani, S.; Ibrahim, A.; Darwish, T.S.J.; Alam, M.S.; Yanikomeroglu, H.; Yongacoglu, A. A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future. IEEE Commun. Surv. Tutor. 2021, 23, 729–779. [Google Scholar] [CrossRef]
- Qin, Y.; Xing, Z.; Li, X.; Zhang, Z.; Zhang, H. Primal-Dual Deep Reinforcement Learning for Periodic Coverage-Assisted UAV Secure Communications. IEEE Trans. Veh. Technol. 2024, 73, 19641–19652. [Google Scholar] [CrossRef]
- Xu, Y.H.; Li, J.H.; Zhou, W.; Chen, C. Learning-Empowered Resource Allocation for Air Slicing in UAV-Assisted Cellular V2X Communications. IEEE Syst. J. 2023, 17, 1008–1011. [Google Scholar] [CrossRef]
- Yan, M.; Xiong, R.; Wang, Y.; Li, C. Edge Computing Task Offloading Optimization for a UAV-assisted Internet of Vehicles via Deep Reinforcement Learning. IEEE Trans. Veh. Technol. 2024, 73, 1–12. [Google Scholar] [CrossRef]
- Mahajan, P.; Palanisamy, B.; Kumar, A.; Chalapathi, G.S.S.; Chamola, V.; Khabbaz, M. Multi-Objective MDP-Based Routing in UAV Networks for Search-Based Operations. IEEE Trans. Veh. Technol. 2024, 73, 13777–13789. [Google Scholar] [CrossRef]
- Zhang, L.; Yi, W.; Lin, H.; Peng, J.; Gao, P. An Efficient Reinforcement Learning-Based Cooperative Navigation Algorithm for Multiple UAVs in Complex Environments. IEEE Trans. Ind. Inform. 2024, 20, 12396–12406. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, W.; Ansari, N. Completion Time Minimization for Data Collection in a UAV-enabled IoT Network: A Deep Reinforcement Learning Approach. IEEE Trans. Veh. Technol. 2023, 72, 1–10. [Google Scholar] [CrossRef]
- Samarakoon, S.; Bennis, M.; Saad, W.; Debbah, M. Distributed Federated Learning for Ultra-Reliable Low-Latency Vehicular Communications. IEEE Trans. Commun. 2020, 68, 1146–1159. [Google Scholar] [CrossRef]
- Maale, G.T.; Sun, G.; Kuadey, N.A.E.; Kwantwi, T.; Ou, R.; Liu, G. DeepFESL: Deep Federated Echo State Learning-Based Proactive Content Caching in UAV-Assisted Networks. IEEE Trans. Veh. Technol. 2023, 72, 1–13. [Google Scholar] [CrossRef]
- Hao, J.; Naja, R.; Zeghlache, D. Adaptive federated reinforcement learning for critical realtime communications in UAV assisted vehicular networks. Comput. Netw. 2024, 247, 110456. [Google Scholar] [CrossRef]
- Li, F.; Zhang, K.; Wang, J.; Li, Y.; Xu, F.; Wang, Y.; Tong, N. Multi-UAV Hierarchical Intelligent Traffic Offloading Network Optimization Based on Deep Federated Learning. IEEE Internet Things J. 2024, 11, 21312–21324. [Google Scholar] [CrossRef]
- Yahya, M.; Maghsudi, S.; Stanczak, S. Federated Learning in UAV-Enhanced Networks: Joint Coverage and Convergence Time Optimization. IEEE Trans. Wirel. Commun. 2024, 23, 6077–6092. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, M.; Wan, J.; Chen, Y.; Zhang, N. Joint Data Caching and Computation Offloading in UAV-assisted Internet of Vehicles via Federated Deep Reinforcement Learning. IEEE Trans. Veh. Technol. 2024, 73, 17644–17656. [Google Scholar] [CrossRef]
- Ren, P.; Wang, J.; Tong, Z.; Chen, J.; Pan, P.; Jiang, C. Federated Learning Via Nonorthogonal Multiple Access for UAV-Assisted Internet of Things. IEEE Internet Things J. 2024, 11, 27994–28006. [Google Scholar] [CrossRef]
- Raja, K.; Kottursamy, K.; Ravichandran, V.; Balaganesh, S.; Dev, K.; Nkenyereye, L.; Raja, G. An Efficient 6G Federated Learning-enabled Energy-Efficient Scheme for UAV Deployment. IEEE Trans. Veh. Technol. 2024, 74, 2057–2066. [Google Scholar] [CrossRef]
- Li, J.; Liu, A.; Han, G.; Cao, S.; Wang, F.; Wang, X. FedRDR: Federated Reinforcement Distillation-Based Routing Algorithm in UAV-Assisted Networks for Communication Infrastructure Failures. Drones 2024, 8, 49. [Google Scholar] [CrossRef]
- Yang, B.; Shi, H.; Xia, X. Federated Imitation Learning for UAV Swarm Coordination in Urban Traffic Monitoring. IEEE Trans. Ind. Inform. 2023, 19, 6037–6046. [Google Scholar] [CrossRef]
- Li, X.C.; Song, S.; Li, Y.; Li, B.; Shao, Y.; Yang, Y.; Zhan, D.C. MAP: Model Aggregation and Personalization in Federated Learning With Incomplete Classes. IEEE Trans. Knowl. Data Eng. 2024, 36, 6560–6573. [Google Scholar] [CrossRef]
- Ma, X.; Ma, G.; Liu, Y.; Qi, S. APCSMA: Adaptive Personalized Client-Selection and Model-Aggregation Algorithm for Federated Learning in Edge Computing Scenarios. Entropy 2024, 26, 712. [Google Scholar] [CrossRef]
- Gupta, A.; Fernando, X. Latency Analysis of Drone-Assisted C-V2X Communications for Basic Safety and Co-Operative Perception Messages. Drones 2024, 8, 600. [Google Scholar] [CrossRef]
- Li, Y.; Ma, D.; An, Z.; Wang, Z.; Zhong, Y.; Chen, S.; Feng, C. V2X-Sim: Multi-Agent Collaborative Perception Dataset and Benchmark for Autonomous Driving. IEEE Robot. Autom. Lett. 2022, 7, 10914–10921. [Google Scholar] [CrossRef]
- Maeng, S.J.; Ozdemir, O.; Guvenc, I.; Sichitiu, M.L.; Mushi, M.; Dutta, R. LTE I/Q Data Set for UAV Propagation Modeling, Communication, and Navigation Research. IEEE Commun. Mag. 2023, 61, 90–96. [Google Scholar] [CrossRef]
- Gupta, A.; Fernando, X. Federated Reinforcement Learning for Collaborative Intelligence in UAV-assisted C-V2X Communications. Drones 2024, 8, 321. [Google Scholar] [CrossRef]
- Fernando, X.; Gupta, A. Analysis of Unmanned Aerial Vehicle-Assisted Cellular Vehicle-to-Everything Communication Using Markovian Game in a Federated Learning Environment. Drones 2024, 8, 238. [Google Scholar] [CrossRef]
- Fernando, X.; Gupta, A. UAV Trajectory Control and Power Optimization for Low-Latency C-V2X Communications in a Federated Learning Environment. Sensors 2024, 24, 8186. [Google Scholar] [CrossRef] [PubMed]
- Plaisted, D. Some Polynomial and Integer Divisibility Problems are NP-Hard. SIAM J. Comput. 1978, 7, 458–464. [Google Scholar] [CrossRef]
- Liao, Y.; Wu, Y.; Zhao, S.; Zhang, D. Unmanned Aerial Vehicle Obstacle Avoidance Based Custom Elliptic Domain. Drones 2024, 8, 397. [Google Scholar] [CrossRef]
- Xia, Y.; Shao, X.; Ding, T.; Liu, J. Prescribed intelligent elliptical pursuing by UAVs: A reinforcement learning policy. Expert Syst. Appl. 2024, 249, 123547. [Google Scholar] [CrossRef]
- Fu, J.; Yao, W.; Sun, G.; Tian, H.; Wu, L. An FTSA Trajectory Elliptical Homotopy for Unmanned Vehicles Path Planning with Multi-Objective Constraints. IEEE Trans. Intell. Veh. 2023, 8, 1–11. [Google Scholar] [CrossRef]
- Gupta, A.; Fernando, X. Automatic Modulation Classification for Cognitive Radio Systems using CNN with Probabilistic Attention Mechanism. In Proceedings of the IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–6. [Google Scholar]
- Gupta, A.; Fernando, X.; Illanko, K. Object Detection for Connected and Autonomous Vehicles using CNN with Attention Mechanism. In Proceedings of the IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–6. [Google Scholar]
- Chu, Y.W.; Han, D.J.; Brinton, C.G. Only Send What You Need: Learning to Communicate Efficiently in Federated Multilingual Machine Translation. IEEE Trans. Audio, Speech Lang. Process. 2025, 33, 1907–1921. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Wang, Z.; Zhu, X.; Liu, J.; Sun, P.; Tang, R.; Du, J.; Leung, V.C.M.; Song, L. CRCL: Causal Representation Consistency Learning for Anomaly Detection in Surveillance Videos. IEEE Trans. Image Process. 2025, 34, 2351–2366. [Google Scholar] [CrossRef]
- Pan, Z.; Yu, X.; Gao, Y. Session-Guided Attention in Continuous Learning With Few Samples. IEEE Trans. Image Process. 2025, 34, 2654–2666. [Google Scholar] [CrossRef]
- Amadeo, M.; Campolo, C.; Molinaro, A.; Harri, J.; Rothenberg, C.E.; Vinel, A. Enhancing the 3GPP V2X Architecture with Information-Centric Networking. Future Internet 2019, 11, 199. [Google Scholar] [CrossRef]
- Garcia-Roger, D.; Gonzalez, E.E.; Martin-Sacristan, D.; Monserrat, J.F. V2X Support in 3GPP Specifications: From 4G to 5G and Beyond. IEEE Access 2020, 8, 190946–190963. [Google Scholar] [CrossRef]
- Papadakis, A.; Mamatas, L.; Petridou, S. Investigating the Latency Dynamics in Vehicular Platooning Networks. In Proceedings of the 2024 IEEE International Mediterranean Conference on Communications and Networking (MeditCom), Madrid, Spain, 8–11 July 2024; pp. 371–376. [Google Scholar]
- Khamari, S.; Ahmed, T.; Mosbah, M. Efficient Edge Server Placement under Latency and Load Balancing Constraints for Vehicular Networks. In Proceedings of the GLOBECOM 2022–2022 IEEE Global Communications Conference, Piscataway, NJ, USA, 4–8 December 2022; pp. 4437–4442. [Google Scholar]
- Roshdi, M.; Bhadauria, S.; Hassan, K.; Fischer, G. Deep Reinforcement Learning based Congestion Control for V2X Communication. In Proceedings of the 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 13–16 September 2021; pp. 1–6. [Google Scholar]
- Kumar, A.S.; Zhao, L.; Fernando, X. Multi-Agent Deep Reinforcement Learning-Empowered Channel Allocation in Vehicular Networks. IEEE Trans. Veh. Technol. 2022, 71, 1726–1736. [Google Scholar] [CrossRef]
- Kumar, A.S.; Zhao, L.; Fernando, X. Task Offloading and Resource Allocation in Vehicular Networks: A Lyapunov-based Deep Reinforcement Learning Approach. IEEE Trans. Veh. Technol. 2023, 72, 1–14. [Google Scholar] [CrossRef]
- Chen, M.; Poor, H.V.; Saad, W.; Cui, S. Convergence Time Optimization for Federated Learning Over Wireless Networks. IEEE Trans. Wirel. Commun. 2021, 20, 2457–2471. [Google Scholar] [CrossRef]
- Arani, A.H.; Hu, P.; Zhu, Y. Re-envisioning Space-Air-Ground Integrated Networks: Reinforcement Learning for Link Optimization. In Proceedings of the ICC 2021 - IEEE International Conference on Communications, Virtual, 14–23 June 2021; pp. 1–7. [Google Scholar]
Symbol | Definition |
---|---|
UAV trajectory coordinates, denoted by | |
UAV’s altitude in meters (m) | |
Number of vehicles , …, | |
UAV trajectory; is a set of sequential coordinates | |
UAV’s flying time | |
Slot duration for communication between vehicles and UAV | |
Downlink channel gain from UAV to a vehicle | |
Channel coefficient | |
Large-scale fading component | |
Location of vehicle v at slot t | |
Standard deviation in log-normal shadowing | |
SINR at receiver at time slot t | |
Communication bandwidth available in a transmission window | |
UAV’s available power in a TTI | |
Power spectral density of noise | |
Downlink spectral efficiency of vehicle v at time t | |
Rician K-factor | |
Bin set capacity | |
Packet set transmitted from a vehicle | |
Size of each packet comprising PFL model hyper-parameters | |
Decision variable to denote if packet i is assigned to queue k | |
Decision variable to denote whether bin k is utilized | |
Total delay encountered by a packet | |
Delay experienced by a packet communicated from vehicle v | |
Binary variable to identify a vehicle scheduled for transmission or waiting state | |
Vector consisting of different packets comprising PFL model hyper-parameters | |
Delay experienced by a vehicle while downloading global model hyper-parameters | |
Delay experienced by a vehicle while uploading local model hyper-parameters | |
Time duration of the TTI under consideration | |
Power consumption of a UAV in a TTI | |
Major and minor axes of UAV’s elliptical path | |
Tuning factor to expand or contract the elliptical trajectory | |
Dataset with n samples | |
Trajectory storage vector | |
Set of available actions for UAV | |
State value | |
Action value that implies the expected cumulative reward | |
Accumulated reward for state–action pair | |
Policy learned by the UAV at height | |
Discount coefficient | |
Personalization parameter | |
Expectation over state s | |
Global model, collection of sequential data gathered during repeated transmissions | |
Probability of state transitions of UAV | |
Set of parameters of local models | |
Attention mechanism to capture dominant past states’ influence on future state transitions | |
Variational distribution that approximates the posterior |
Parameter | Value |
---|---|
Vehicle Mobility | Manhattan Mobility |
Number of vehicles (V) | 1–100 |
Number of in UAV | 1 |
UAV deployment altitude | 100 m–2 km |
Elliptical path’s major axis | 300 m–1000 m |
Elliptical path’s minor axis | 150 m–550 m |
Edge server location | In vehicle |
Communication frequency | 5.9 GHz |
Modulation technique | OTFS |
Distance between vehicles | 10–100 m |
Road length () | 1–4 km |
Vehicle speed | 0–100 kmph |
Mean speed of vehicles | 50 km/h |
Standard deviation in vehicle speed | 10 km/h |
Packet size for gross data offloading | 1 byte–3 megabytes |
Packet size of FL models | 1 byte–10 megabytes |
Dataset used | V2X-Sim, LTE I/Q |
Inter-arrival time for packets at UAV | 100 ms–1000 ms |
OTFS base station transmit power | 40 dBm (10 W) |
UAV transmission power | 20 dBm (100 mW) |
UAV receiving threshold | −80 dBm |
Vehicle transmission power | 25 dBm (316.2 mW) |
Noise power | −50 dBm ( W) |
Reference | Proposed Method | Objectives | Cost Function | Reported Results |
---|---|---|---|---|
[96] |
|
|
|
|
[97,98] |
|
|
|
|
[99] |
|
|
|
|
[65] |
|
|
|
|
[100] |
|
|
|
|
[80] |
|
|
|
|
Our Work |
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, A.; Fernando, X. Latency Analysis of UAV-Assisted Vehicular Communications Using Personalized Federated Learning with Attention Mechanism. Drones 2025, 9, 497. https://doi.org/10.3390/drones9070497
Gupta A, Fernando X. Latency Analysis of UAV-Assisted Vehicular Communications Using Personalized Federated Learning with Attention Mechanism. Drones. 2025; 9(7):497. https://doi.org/10.3390/drones9070497
Chicago/Turabian StyleGupta, Abhishek, and Xavier Fernando. 2025. "Latency Analysis of UAV-Assisted Vehicular Communications Using Personalized Federated Learning with Attention Mechanism" Drones 9, no. 7: 497. https://doi.org/10.3390/drones9070497
APA StyleGupta, A., & Fernando, X. (2025). Latency Analysis of UAV-Assisted Vehicular Communications Using Personalized Federated Learning with Attention Mechanism. Drones, 9(7), 497. https://doi.org/10.3390/drones9070497