Flybbit: Design and Control of a Novel Rabbit-like Flying Robot
Abstract
1. Introduction
- We design a novel underactuated flying robot named “Flybbit”, featuring a unique hybrid multirotor configuration that integrates both tiltable and fixed-angle propellers. This structure enables five controllable degrees of freedom (3D position, 2D pitch, and yaw attitude) and combines the maneuverability of tiltrotors with the stability of fixed-rotor systems.
- We develop a comprehensive dynamic model and propose a dynamic adaptive control allocation strategy to address actuator saturation during complex combined maneuvers. Specifically, the five-DOF system’s differential flatness is analyzed to facilitate trajectory planning and control.
- We implement a nonlinear inverse dynamics controller based on hybrid external wrench estimation, with explicit handling of attitude singularities. The full system is validated through hardware-in-the-loop and real-world experiments and supports both RC-based manual operation and fully autonomous flight.
2. System Design
2.1. Overall Design
2.2. Modeling of Flybbit
2.2.1. COM Calculation
2.2.2. Dynamics Model
2.2.3. Nonlinear Control Allocation
2.2.4. Dynamic Adaptive Strategy for Actuator Saturation
2.3. Differential Flatness
3. Controller Design
3.1. Hybrid External Wrench Estimation
3.1.1. Momentum-Based External Torque Estimation
3.1.2. Acceleration-Based External Force Estimation
3.2. Nonlinear Inverse Dynamics Control
3.2.1. Outer-Loop Position Control
3.2.2. Inner-Loop Attitude Control
3.2.3. Stability Analysis
4. Experiments
4.1. Platform Preparations
4.2. SITL and HITL Simulation Experiments
4.2.1. Five-DOF Manual Control Test
4.2.2. Circular Motion Trajectory Tracking Simulation
4.3. Tiltable “Ears” Performance Test
4.4. Real Flight Trajectory Tracking Task
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Korigodskii, A.A.; Kalachev, O.D.; Vasiunik, A.E.; Urvantsev, M.V.; Bondar, G.E. Flying Robotics Art: ROS-based Drone Draws the Record-Breaking Mural. In Proceedings of the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Abu Dhabi, United Arab Emirates, 14–18 October 2024; pp. 5964–5969. [Google Scholar]
- Susbielle, P.; Dumon, J.; Hably, A. Pointillism Wall Painting Drone Using Bouncing Frequency Control. IEEE Robot. Autom. Lett. 2025, 10, 4802–4809. [Google Scholar] [CrossRef]
- Mellinger, D.; Lindsey, Q.; Shomin, M.; Kumar, V. Design, modeling, estimation and control for aerial grasping and manipulation. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 2668–2673. [Google Scholar]
- Cao, H.; Shen, J.; Liu, C.; Zhu, B.; Zhao, S. Motion planning for aerial pick-and-place with geometric feasibility constraints. IEEE Trans. Autom. Sci. Eng. 2024, 22, 2577–2594. [Google Scholar] [CrossRef]
- Bodie, K.; Brunner, M.; Pantic, M.; Walser, S.; Pfändler, P.; Angst, U.; Siegwart, R.; Nieto, J. Active interaction force control for contact-based inspection with a fully actuated aerial vehicle. IEEE Trans. Robot. 2020, 37, 709–722. [Google Scholar] [CrossRef]
- D’Angelo, S.; Marcellini, S.; De Crescenzo, A.; Marolla, M.; Lippiello, V.; Siciliano, B. A Semi-Autonomous Aerial Platform Enhancing Non-Destructive Tests. Drones 2025, 9, 516. [Google Scholar] [CrossRef]
- Sehgal, A.; Mahammad, Z.; Sasank, P.; Badhwar, A.; Govindan, N. WireFlie: A Novel Obstacle-Overcoming Mechanism for Autonomous Transmission Line Inspection Drones. IEEE Robot. Autom. Lett. 2025, 10, 6528–6535. [Google Scholar] [CrossRef]
- Ollero, A.; Tognon, M.; Suarez, A.; Lee, D.; Franchi, A. Past, present, and future of aerial robotic manipulators. IEEE Trans. Robot. 2021, 38, 626–645. [Google Scholar] [CrossRef]
- Welde, J.; Paulos, J.; Kumar, V. Dynamically feasible task space planning for underactuated aerial manipulators. IEEE Robot. Autom. Lett. 2021, 6, 3232–3239. [Google Scholar] [CrossRef]
- Welde, J.; Kumar, V. Coordinate-free dynamics and differential flatness of a class of 6DOF aerial manipulators. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 4307–4313. [Google Scholar]
- Brescianini, D.; D’Andrea, R. Design, modeling and control of an omni-directional aerial vehicle. In Proceedings of the 2016 IEEE international conference on robotics and automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 3261–3266. [Google Scholar]
- Brescianini, D.; D’Andrea, R. Computationally efficient trajectory generation for fully actuated multirotor vehicles. IEEE Trans. Robot. 2018, 34, 555–571. [Google Scholar] [CrossRef]
- Bodie, K.; Brunner, M.; Pantic, M.; Walser, S.; Pfändler, P.; Angst, U.; Siegwart, R.; Nieto, J. An Omnidirectional Aerial Manipulation Platform for Contact-Based Inspection. Robot. Sci. Syst. XV 2019, 15. [Google Scholar] [CrossRef]
- Cuniato, E.; Geckeler, C.; Brunner, M.; Strübin, D.; Bähler, E.; Ospelt, F.; Tognon, M.; Mintchev, S.; Siegwart, R. Design and control of a micro overactuated aerial robot with an origami delta manipulator. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 5352–5358. [Google Scholar]
- Mellet, J.; Berra, A.; Marcellini, S.; Soto, M.Á.T.; Heredia, G.; Ruggiero, F.; Lippiello, V. Design and Control of an Omnidirectional Aerial Robot with a Miniaturized Haptic Joystick for Physical Interaction. In Proceedings of the 2025 International Conference on Unmanned Aircraft Systems (ICUAS), Charlotte, NC, USA, 14–17 May 2025; pp. 340–346. [Google Scholar]
- Guo, L.; Gongye, Z.; Xu, Z.; Wang, Y.; Zhou, X.; Zhou, J.; Gao, F. Preserving Relative Localization of FoV-Limited Drone Swarm via Active Mutual Observation. In Proceedings of the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Abu Dhabi, United Arab Emirates, 4–18 October 2024; pp. 10423–10430. [Google Scholar]
- Mellinger, D.; Kumar, V. Minimum snap trajectory generation and control for quadrotors. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2520–2525. [Google Scholar]
- Tomić, T.; Ott, C.; Haddadin, S. External wrench estimation, collision detection, and reflex reaction for flying robots. IEEE Trans. Robot. 2017, 33, 1467–1482. [Google Scholar] [CrossRef]
- Ruggiero, F.; Cacace, J.; Sadeghian, H.; Lippiello, V. Impedance control of VToL UAVs with a momentum-based external generalized forces estimator. In Proceedings of the 2014 IEEE international conference on robotics and automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 2093–2099. [Google Scholar]
- Ryll, M.; Muscio, G.; Pierri, F.; Cataldi, E.; Antonelli, G.; Caccavale, F.; Bicego, D.; Franchi, A. 6D interaction control with aerial robots: The flying end-effector paradigm. Int. J. Robot. Res. 2019, 38, 1045–1062. [Google Scholar] [CrossRef]
- Ryll, M.; Muscio, G.; Pierri, F.; Cataldi, E.; Antonelli, G.; Caccavale, F.; Franchi, A. 6D physical interaction with a fully actuated aerial robot. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 5190–5195. [Google Scholar]
- Kamel, M.; Verling, S.; Elkhatib, O.; Sprecher, C.; Wulkop, P.; Taylor, Z.; Siegwart, R.; Gilitschenski, I. The voliro omniorientational hexacopter: An agile and maneuverable tiltable-rotor aerial vehicle. IEEE Robot. Autom. Mag. 2018, 25, 34–44. [Google Scholar] [CrossRef]
- Allenspach, M.; Bodie, K.; Brunner, M.; Rinsoz, L.; Taylor, Z.; Kamel, M.; Siegwart, R.; Nieto, J. Design and optimal control of a tiltrotor micro-aerial vehicle for efficient omnidirectional flight. Int. J. Robot. Res. 2020, 39, 1305–1325. [Google Scholar] [CrossRef]
- D’Angelo, S.; Selvaggio, M.; Lippiello, V.; Ruggiero, F. Semi-autonomous unmanned aerial manipulator teleoperation for push-and-slide inspection using parallel force/vision control. Robot. Auton. Syst. 2025, 186, 104912. [Google Scholar] [CrossRef]
- Faessler, M.; Franchi, A.; Scaramuzza, D. Differential flatness of quadrotor dynamics subject to rotor drag for accurate tracking of high-speed trajectories. IEEE Robot. Autom. Lett. 2017, 3, 620–626. [Google Scholar] [CrossRef]
- He, X.; Wang, Y. Design and trajectory tracking control of a new bi-copter UAV. IEEE Robot. Autom. Lett. 2022, 7, 9191–9198. [Google Scholar] [CrossRef]
- Fliess, M.; Lévine, J.; Martin, P.; Rouchon, P. Flatness and defect of non-linear systems: Introductory theory and examples. Int. J. Control 1995, 61, 1327–1361. [Google Scholar] [CrossRef]
Design | DOFs | Controller | Configuration | Actuatability | Experiment |
---|---|---|---|---|---|
Generic Quadrotor | 4 | - | Planar Fixed | Underactuated | - |
Generic Bicopter | 4 | - | Fully Tiltable | Underactuated | - |
Fixed-Tilt Hexarotor (a) | 6 | AC | Angle Fixed | Fully Actuated | Real world only |
Tiltable Hexarotor (b) | 6 | PID | Fully Tiltable | Fully Actuated | SITL and real world |
Omnicopter (c) | 6 | PID | Angle Fixed | Overactuated | Real-world only |
Tiltable Hexarotor Coaxial (d) | 6 | IC | Fully Tiltable | Overactuated | Real world only |
Hybrid Tricopter (e) | 5 | PID | Hybrid | Overactuated | Real world only |
Tiltable Quadrotor (f) | 6 | PID | Fully Tiltable | Overactuated | SITL and real world |
Flybbit (Ours) | 5 | NIDC | Hybrid | Overactuated | SITL, HITL, and real world |
Component | Qty | Unit Weight (kg) | Total Weight (kg) |
---|---|---|---|
Pixhawk FCU | 1 | 0.04 | 0.04 |
Servo Motor | 2 | 0.04 | 0.08 |
Brushless Motor | 6 | 0.03/0.015 | 0.15 |
Basic ESC | 2 | 0.01 | 0.02 |
4-in-1 ESC | 1 | 0.02 | 0.02 |
5 V or 12 V UBEC | 1 | 0.02 | 0.02 |
Battery | 1 | 0.20 | 0.20 |
Overall Frame | 1 | 0.61 | 0.61 |
Assembled Vehicle | 1 | - | 0.89 |
Symbol | Meaning |
---|---|
World frame | |
Body frame fixed to the vehicle’s COM | |
Control forces generated by the vehicle’s actuators expressed in the body frame , | |
Control torques generated by the vehicle’s actuators expressed in the body frame , | |
External forces exerted on the vehicle and expressed in the body frame , | |
External torques exerted on the vehicle and expressed in the body frame , | |
Euler angles of the body frame relative to the world frame , | |
Rotation matrix of the body frame relative to the world frame | |
Rotation matrix of each rotor frame relative to the body frame , | |
Position of the vehicle’s COM expressed in the world frame , | |
Velocity of the vehicle expressed in the world frame , | |
Angular velocity of the vehicle expressed in the body frame , | |
Geometry position of each ith rotor relative to the vehicle’s COM expressed in the body frame , | |
Thrust generated by each ith rotor, | |
Tilt angle of two tiltable rotors in the vehicle’s “Ears”, | |
Torque coefficient of each ith rotor, indicating the proportionality between its aerodynamic drag torque and generated thrust , | |
Thurst coefficient of each ith rotor, relating its aerodynamic drag force to the square of the rotor speed, |
Mode | RMSEx (m) | RMSEy (m) | RMSEz (m) |
---|---|---|---|
Tiltable Ears Mode | 0.756 | 0.826 | 0.060 |
Fixed Ears Mode | 0.830 | 0.821 | 0.029 |
Controller | RMSE (m) | Max Yaw (Degree) | Max Pitch (Degree) |
---|---|---|---|
Ours | 0.2549 | 0.3129 | 1.0006 |
PD (Baseline) | 0.3369 | 0.2677 | 1.2855 |
P-PID | 0.3124 | 0.2032 | 1.5425 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Shen, R.; Liu, Y.; Zhang, J.; Guo, F.; Zhan, Q. Flybbit: Design and Control of a Novel Rabbit-like Flying Robot. Drones 2025, 9, 609. https://doi.org/10.3390/drones9090609
Sun C, Shen R, Liu Y, Zhang J, Guo F, Zhan Q. Flybbit: Design and Control of a Novel Rabbit-like Flying Robot. Drones. 2025; 9(9):609. https://doi.org/10.3390/drones9090609
Chicago/Turabian StyleSun, Chenyang, Runjie Shen, Yifan Liu, Junrui Zhang, Fenghe Guo, and Quanxi Zhan. 2025. "Flybbit: Design and Control of a Novel Rabbit-like Flying Robot" Drones 9, no. 9: 609. https://doi.org/10.3390/drones9090609
APA StyleSun, C., Shen, R., Liu, Y., Zhang, J., Guo, F., & Zhan, Q. (2025). Flybbit: Design and Control of a Novel Rabbit-like Flying Robot. Drones, 9(9), 609. https://doi.org/10.3390/drones9090609