Towards Comprehensive Newborn Hearing and Genetic Screening in Russia: Perspectives of Implementation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Audiological Evaluation
2.3. Genetic Investigation
2.4. Newborn Hearing Screening
2.5. Statistical Analysis
3. Results
3.1. Genetic Investigation
3.2. Audiological Evaluation
3.3. Results of Newborn Hearing Screening
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fitzpatrick, E. Neurocognitive development in congenitally deaf children. Handb. Clin. Neurol. 2015, 129, 335–356. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Report on Hearing; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Joint Committee on Infant Hearing. Year 2019 position statement: Principles and guidelines for early hearing detection and intervention programs. J. Early Hear. Detect. Interv. 2019, 4, 1–44. [Google Scholar] [CrossRef]
- Ching, T.Y.C.; Leigh, G. Considering the impact of universal newborn hearing screening and early intervention on language outcomes for children with congenital hearing loss. Hear. Balance Commun. 2020, 18, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Neumann, K.; Mathmann, P.; Chadha, S.; Euler, H.A.; White, K.R. Newborn hearing screening benefits children, but global disparities persist. J. Clin. Med. 2022, 11, 271. [Google Scholar] [CrossRef] [PubMed]
- Bussé, A.M.L.; Mackey, A.R.; Hoeve, H.L.J.; Goedegebure, A.; Carr, G.; Uhlén, I.M.; Simonsz, H.J.; EUS€REEN Foundation. Assessment of hearing screening programmes across 47 countries or regions I: Provision of newborn hearing screening. Int. J. Audiol. 2021, 60, 821–830. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Hearing Screening: Considerations for Implementation; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240032767 (accessed on 7 May 2024).
- Tavartkiladze, G.A.; Chibisova, S.S.; Markova, T.G.; Yasinskaya, A.A.; Tufatulin, G.S.; Volodin, N.N. Formation, development and enhancement of the system of audiological screening of newborns and children of the first year of life in Russia. J. Pediatr. Named After G.N. Speransky 2023, 102, 18–26. (In Russian) [Google Scholar] [CrossRef]
- Morton, C.C.; Nance, W.E. Newborn hearing screening—A silent revolution. N. Engl. J. Med. 2006, 354, 2151–2164. [Google Scholar] [CrossRef]
- Bliznetz, E.A.; Galkina, V.A.; Matyushchenko, G.N.; Kisina, A.G.; Markova, T.G.; Polyakov, A.V. Changes in the connexin 26 gene (GJB2) in Russian patients with hearing loss: Results of long-term molecular diagnostics of hereditary nonsyndromic hearing loss. Russ. J. Genet. 2012, 48, 101–112. [Google Scholar] [CrossRef]
- Lalayants, M.R.; Markova, T.G.; Bakhshinyan, V.V.; Bliznetz, E.A.; Polyakov, A.V.; Tavartkiladze, G.A. The audiological phenotype and the prevalence of GJB2-related sensorineural loss of hearing in the infants suffering acoustic disturbances. Vestn Otorinolaringol 2014, 79, 37–43. (In Russian) [Google Scholar]
- Abou Tayoun, A.N.; Al Turki, S.H.; Oza, A.M.; Bowser, M.J.; Hernandez, A.L.; Funke, B.H.; Rehm, H.L.; Amr, S.S. Improving hearing loss gene testing: A systematic review of gene evidence toward more efficient next-generation sequencing-based diagnostic testing and interpretation. Genet. Med. Off. J. Am. Coll. Med. Genet. 2016, 18, 545–553. [Google Scholar] [CrossRef]
- Bademci, G.; Foster, J., 2nd; Mahdieh, N.; Bonyadi, M.; Duman, D.; Cengiz, F.B.; Menendez, I.; Diaz-Horta, O.; Shirkavand, A.; Zeinali, S.; et al. Comprehensive analysis via exome sequencing uncovers genetic etiology in autosomal recessive nonsyndromic deafness in a large multiethnic cohort. Genet. Med. Off. J. Am. Coll. Med. Genet. 2016, 18, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, C.O.; Morton, C.C. Genetics of childhood hearing loss. Otolaryngol. Clin. N. Am. 2021, 54, 1081–1092. [Google Scholar] [CrossRef]
- Sloan-Heggen, C.M.; Bierer, A.O.; Shearer, A.E.; Kolbe, D.L.; Nishimura, C.J.; Frees, K.L.; Ephraim, S.S.; Shibata, S.B.; Booth, K.T.; Campbell, C.A.; et al. Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Hum. Genet. 2016, 135, 441–450. [Google Scholar] [CrossRef]
- Baux, D.; Vache, C.; Blanchet, C.; Willems, M.; Baudoin, C.; Moclyn, M.; Faugere, V.; Touraine, R.; Isidor, B.; Dupin-Deguine, D.; et al. Combined genetic approaches yield a 48% diagnostic rate in a large cohort of French hearing-impaired patients. Sci. Rep. 2017, 7, 16783. [Google Scholar] [CrossRef] [PubMed]
- Del Castillo, I.; Morín, M.; Domínguez-Ruiz, M.; Moreno-Pelayo, M.A. Genetic etiology of non-syndromic hearing loss in Europe. Hum. Genet. 2022, 141, 683–696. [Google Scholar] [CrossRef] [PubMed]
- Shearer, A.E.; Shen, J.; Amr, S.; Morton, C.C.; Smith, R.J.; Newborn Hearing Screening Working Group of the National Coordinating Center for the Regional Genetics Networks. A proposal for comprehensive newborn hearing screening to improve identification of deaf and hard-of-hearing children. Genet. Med. 2019, 21, 2614–2630. [Google Scholar] [CrossRef] [PubMed]
- Shatokhina, O.; Galeeva, N.; Stepanova, A.; Markova, T.; Lalayants, M.; Alekseeva, N.; Tavarkiladze, G.; Markova, T.; Bessonova, L.; Petukhova, M.; et al. Spectrum of genes for non-GJB2-related non-syndromic hearing loss in the Russian population revealed by a targeted deafness gene panel. Int. J. Mol. Sci. 2022, 23, 15748. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.W.; Arnos, K.S.; Hanks, W.D.; Xia, X.; Nance, W.E.; Pandya, A. Does universal newborn hearing screening identify all children with GJB2 (Connexin 26) deafness? Penetrance of GJB2 deafness. Ear Hear. 2006, 27, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Minami, S.B.; Mutai, H.; Nakano, A.; Arimoto, Y.; Taiji, H.; Morimoto, N.; Sakata, H.; Adachi, N.; Masuda, S.; Sakamoto, H.; et al. GJB2-associated hearing loss undetected by hearing screening of newborns. Gene 2013, 532, 41–45. [Google Scholar] [CrossRef]
- Wang, Q.; Xiang, J.; Sun, J.; Yang, Y.; Guan, J.; Wang, D.; Song, C.; Guo, L.; Wang, H.; Chen, Y.; et al. Nationwide population genetic screening improves outcomes of newborn screening for hearing loss in China. Genet. Med. 2019, 21, 2231–2238. [Google Scholar] [CrossRef]
- Luo, H.; Yang, Y.; Wang, X.; Xu, F.; Huang, C.; Liu, D.; Zhang, L.; Huang, T.; Ma, P.; Lu, Q.; et al. Concurrent newborn hearing and genetic screening of common hearing loss variants with bloodspot-based targeted next generation sequencing in Jiangxi province. Front. Pediatr. 2022, 10, 1020519. [Google Scholar] [CrossRef] [PubMed]
- Tavartkiladze, G.A.; Poliakov, A.V.; Markova, T.G.; Lalaiants, M.R.; Bliznets, E.A. Genetic screening for hearing disorders in newborn infants in combination with audiological screening. Vestn. Otorinolaringol. 2010, 75, 15–18. (In Russian) [Google Scholar]
- Posukh, O.L. Genetic etiology of hearing loss in Russia. Hum. Genet. 2022, 141, 649–663. [Google Scholar] [CrossRef] [PubMed]
- Snoeckx, R.L.; Huygen, P.L.; Feldmann, D.; Marlin, S.; Denoyelle, F.; Waligora, J.; Mueller-Malesinska, M.; Pollak, A.; Ploski, R.; Murgia, A.; et al. GJB2 mutations and degree of hearing loss: A multicenter study. Am. J. Hum. Genet. 2005, 77, 945–957. [Google Scholar] [CrossRef] [PubMed]
- Voronin, S.V.; Kutsev, S.I. Neonatal screening for hereditary diseases in Russia: Yesterday, today, and tomorrow. Neonatol. News Opin. Train. 2022, 10, 34–39. (In Russian) [Google Scholar] [CrossRef]
- Shubina, Y.; Pavlova, N.; Donikov, A.; Pomeranzeva, Y.A.; Trofimov, D. Perspectives and limitations of whole exome based neonatal screening. Neonatol. News Opin. Train. 2022, 10, 40–46. (In Russian) [Google Scholar] [CrossRef]
- Holm, I.A.; Agrawal, P.B.; Ceyhan-Birsoy, O.; Christensen, K.D.; Fayer, S.; Frankel, L.A.; Genetti, C.A.; Krier, J.B.; LaMay, R.C.; Levy, H.L.; et al. The BabySeq project: Implementing genomic sequencing in newborns. BMC Pediatr. 2018, 18, 225. [Google Scholar] [CrossRef] [PubMed]
- Downie, L.; Halliday, J.; Lewis, S.; Lunke, S.; Lynch, E.; Martyn, M.; Gaff, C.; Jarmolowicz, A.; Amor, D.J. Exome sequencing in newborns with congenital deafness as a model for genomic newborn screening: The Baby Beyond Hearing project. Genet. Med. Off. J. Am. Coll. Med. Genet. 2020, 22, 937–944. [Google Scholar] [CrossRef]
- Baranova, E.E.; Zobkova, G.Y.; Vorontsova, M.V.; Izhevskaya, V.L. Ethical issues of genome screening: Review. Med. Genet. 2021, 20, 3–14. (In Russian) [Google Scholar] [CrossRef]
- Mitchell, C.O.; Rivera-Cruz, G.; Chau, M.H.K.; Dong, Z.; Choy, K.W.; Shen, J.; Amr, S.; Giersch, A.B.S.; Morton, C.C. The burden and benefits of knowledge: Ethical considerations surrounding population-based newborn genome screening for hearing. Int. J. Neonatal Screen. 2022, 8, 36. [Google Scholar] [CrossRef]
Genotype | Number of Alleles | % (n = 1288) |
---|---|---|
c.35delG | 993 | 77.1 |
c.-23+1G>A | 66 | 5.1 |
c.313_326del14 | 64 | 5.0 |
c.235delC | 23 | 1.8 |
c.167delT | 18 | 1.4 |
c.101T>C (p.Met34Thr) | 35 | 2.7 |
c.109G>A (p.Val37Ile) | 15 | 1.2 |
c.269T>C (p.Leu90Pro) | 13 | 1.0 |
Total 8 most frequent variants | 1227 | 95.3 |
Other 20 GJB2 variants | 61 | 4.7 |
Genotype | Severity | |||||
---|---|---|---|---|---|---|
Mild | Moderate | Moderately Severe | Severe | Profound | Total | |
GJB2-positives % | 30 | 62 | 86 | 344 | 122 | 644 |
5 | 10 | 13 | 53 | 19 | 100 | |
T/T % | 6 | 47 | 70 | 331 | 115 | 569 |
1 | 9 | 12 | 58 | 20 | 100 | |
[35delG]×2 % | 6 | 31 | 50 | 231 | 88 | 406 |
1 | 8 | 12 | 57 | 22 | 100 | |
other T/T % | 0 | 16 | 20 | 100 | 27 | 163 |
0 | 10 | 12 | 61 | 17 | 100 | |
T/NT % | 14 | 11 | 14 | 11 | 6 | 56 |
25 | 20 | 25 | 20 | 10 | 100 | |
NT/NT % | 10 | 4 | 2 | 2 | 1 | 19 |
52 | 21 | 11 | 11 | 5 | 100 | |
Other genes-positives % | 14 | 20 | 26 | 25 | 2 | 87 |
16 | 23 | 30 | 29 | 2 | 100 | |
Gene-negatives % | 47 | 78 | 77 | 264 | 95 | 561 |
8 | 14 | 14 | 47 | 17 | 100 | |
Total cohort % | 91 | 160 | 189 | 633 | 219 | 1292 |
7 | 12 | 15 | 49 | 17 | 100 |
NHS Result | Gene-Positives | Gene-Negatives | Total |
---|---|---|---|
Refer | 269 | 167 | 436 |
Pass | 71 | 33 | 104 |
Total | 340 | 200 | 540 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chibisova, S.; Markova, T.; Tsigankova, E.; Tavartkiladze, G. Towards Comprehensive Newborn Hearing and Genetic Screening in Russia: Perspectives of Implementation. J. Otorhinolaryngol. Hear. Balance Med. 2024, 5, 6. https://doi.org/10.3390/ohbm5010006
Chibisova S, Markova T, Tsigankova E, Tavartkiladze G. Towards Comprehensive Newborn Hearing and Genetic Screening in Russia: Perspectives of Implementation. Journal of Otorhinolaryngology, Hearing and Balance Medicine. 2024; 5(1):6. https://doi.org/10.3390/ohbm5010006
Chicago/Turabian StyleChibisova, Svetlana, Tatiana Markova, Evgenia Tsigankova, and George Tavartkiladze. 2024. "Towards Comprehensive Newborn Hearing and Genetic Screening in Russia: Perspectives of Implementation" Journal of Otorhinolaryngology, Hearing and Balance Medicine 5, no. 1: 6. https://doi.org/10.3390/ohbm5010006
APA StyleChibisova, S., Markova, T., Tsigankova, E., & Tavartkiladze, G. (2024). Towards Comprehensive Newborn Hearing and Genetic Screening in Russia: Perspectives of Implementation. Journal of Otorhinolaryngology, Hearing and Balance Medicine, 5(1), 6. https://doi.org/10.3390/ohbm5010006