Synthesis of Monoclinic Vanadium Dioxide via One-Pot Hydrothermal Route
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Synthesis
2.2. Preparation of VO2-Based Thermochromic Film
2.3. Characterization
3. Results and Discussion
3.1. Effect of the Amount of the Reduction
3.2. Effect of the Hydrothermal Duration
3.3. Effect of the Precursor Concentration
3.4. Thermochromic Performance of VO2(M) NPs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morin, F.J. Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature. Phys. Rev. Lett. 1959, 3, 34–36. [Google Scholar] [CrossRef]
- Ke, Y.; Wang, S.; Liu, G.; Li, M.; Hite, T.J.; Long, Y. Vanadium Dioxide: The Multistimuli Responsive Material and Its Appli-cations. Small 2018, 14, e1802025. [Google Scholar] [CrossRef] [PubMed]
- Gray, A.X.; Hoffmann, M.C.; Jeong, J.; Aetukuri, N.P.; Zhu, D.; Hwang, H.Y.; Brandt, N.C.; Wen, H.; Sternbach, A.J.; Bonetti, S.; et al. Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide. Phys. Rev. B 2018, 98, 045104. [Google Scholar] [CrossRef] [Green Version]
- Berglund, C.N.; Guggenheim, H.J. Electronic Properties of VO2near the Semiconductor-Metal Transition. Phys. Rev. 1969, 185, 1022–1033. [Google Scholar] [CrossRef]
- Ran, K.; Huang, W.; Shi, Q.; Tang, L.; Peng, B.; Liang, S.; Zhu, H.; Mao, Z. Freeze-drying induced nanocrystallization of VO2 (M) with improved mid-infrared switching properties. J. Alloy. Compd. 2017, 728, 1076–1082. [Google Scholar] [CrossRef]
- Lourembam, J.; Srivastava, A.; La-O-Vorakiat, C.; Rotella, H.; Venkatesan, T.; Chia, E.E. New insights into the diverse electronic phases of a novel vanadium dioxide polymorph: A terahertz spectroscopy study. Sci. Rep. 2015, 5, 9182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, W.; Huang, D.; Chen, Y.; Qiu, Q.; Luo, Z. Synthesis and characterization of Mo–W co-doped VO2(R) nano-powders by the microwave-assisted hydrothermal method. Ceram. Int. 2014, 40, 12661–12668. [Google Scholar] [CrossRef]
- Ke, Y.; Yin, Y.; Zhang, Q.; Tan, Y.; Hu, P.; Wang, S.; Tang, Y.; Zhou, Y.; Wen, X.; Wu, S.; et al. Adaptive Thermochromic Windows from Active Plasmonic Elastomers. Joule 2019, 3, 858–871. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Li, D.; Tan, Y.; Ke, Y.; Wang, S.; Zhou, Y.; Liu, G.; Wu, S.; Peng, J.; Li, A.; et al. 3D Printed Smart Windows for Adaptive Solar Modulations. Adv. Opt. Mater. 2020, 2000013. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, S.; Peng, J.; Tan, Y.; Li, C.; Boey, F.Y.C.; Long, Y. Liquid Thermo-Responsive Smart Window Derived from Hydrogel. Joule 2020, 4, 2458–2474. [Google Scholar] [CrossRef]
- Zhang, Y. VO2(B) conversion to VO2(A) and VO2(M) and their oxidation resistance and optical switching properties. Mater. Sci. 2016, 34, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Ke, Y.; Liu, C.; Chen, Z.; Wang, N.; Zhang, L.; Zhou, Y.; Wang, S.; Gao, Y.; Long, Y. Thermochromic VO2 for Energy-Efficient Smart Windows. Joule 2018, 2, 1707–1746. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Long, Y.; Magdassi, S.; Mandler, D. Ionic strength induced electrodeposition: A universal approach for nanomaterial deposition at selective areas. Nanoscale 2016, 9, 485–490. [Google Scholar] [CrossRef]
- Vu, T.D.; Liu, S.; Zeng, X.; Li, C.; Long, Y. High-power impulse magnetron sputtering deposition of high crystallinity vana-dium dioxide for thermochromic smart windows applications. Ceram. Int. 2020, 46, 8145–8153. [Google Scholar] [CrossRef]
- Macaluso, R.; Mosca, M.; Costanza, V.; d’Angelo, A.; Lullo, G.; Caruso, F.; Calì, C.; di Franco, F.; Santamaria, M.; di Quarto, F. Resistive switching behaviour in ZnO and VO 2 memristors grown by pulsed laser deposition. Electron. Lett. 2014, 50, 262–263. [Google Scholar] [CrossRef]
- Liu, C.; Wang, S.; Zhou, Y.; Yang, H.; Lu, Q.; Mandler, D.; Magdassi, S.; Tay, C.Y.; Long, Y. Index-tunable anti-reflection coatings: Maximizing solar modulation ability for vanadium dioxide-based smart thermochromic glazing. J. Alloys Compd. 2018, 731, 1197–1207. [Google Scholar] [CrossRef]
- Li, M.; Magdassi, S.; Gao, Y.; Long, Y. Hydrothermal Synthesis of VO 2 Polymorphs: Advantages, Challenges and Prospects for the Application of Energy Efficient Smart Windows. Small 2017, 13, 13–36. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, L.; Wu, T.-L.; Patridge, C.J.; Sambandamurthy, G.; Banerjee, S. Distinctive finite size effects on the phase diagram and metal–insulator transitions of tungsten-doped vanadium(iv) oxide. J. Mater. Chem. 2011, 21, 5580–5592. [Google Scholar] [CrossRef]
- Zhou, J.; Xie, M.; Cui, A.; Zhou, B.; Jiang, K.; Shang, L.; Hu, Z.; Chu, J. Manipulating Behaviors from Heavy Tungsten Doping on Interband Electronic Transition and Orbital Structure Variation of Vanadium Dioxide Films. ACS Appl. Mater. Interfaces 2018, 10, 30548–30557. [Google Scholar] [CrossRef]
- Son, J.-H.; Wei, J.; Cobden, D.; Cao, G.; Xia, Y. Hydrothermal Synthesis of Monoclinic VO2Micro- and Nanocrystals in One Step and Their Use in Fabricating Inverse Opals. Chem. Mater. 2010, 22, 3043–3050. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, Y.; Kang, L.; Cao, C.; Chen, S.; Luo, H. Fine crystalline VO2 nanoparticles: Synthesis, abnormal phase transition temperatures and excellent optical properties of a derived VO2 nanocomposite foil. J. Mater. Chem. A 2014, 2, 2718–2727. [Google Scholar] [CrossRef]
- Alie, D.; Gedvilas, L.; Wang, Z.; Tenent, R.; Engtrakul, C.; Yan, Y.; Shaheen, S.E.; Dillon, A.C.; Ban, C. Direct synthesis of thermochromic VO2 through hydrothermal reaction. J. Solid State Chem. 2014, 212, 237–241. [Google Scholar] [CrossRef]
- Li, W.; Ji, S.; Sun, G.; Ma, Y.; Guo, H.; Jin, P. Novel VO2(M)–ZnO heterostructured dandelions with combined thermochromic and photocatalytic properties for application in smart coatings. New J. Chem. 2016, 40, 2592–2600. [Google Scholar] [CrossRef]
- Li, D.; Li, M.; Pan, J.; Luo, Y.; Wu, H.; Zhang, Y.; Li, G. Hydrothermal Synthesis of Mo-Doped VO2/TiO2Composite Nanocrystals with Enhanced Thermochromic Performance. ACS Appl. Mater. Interfaces 2014, 6, 6555–6561. [Google Scholar] [CrossRef]
- Guo, D.; Ling, C.; Wang, C.; Wang, D.; Li, J.; Zhao, Z.; Wang, Z.; Zhao, Y.; Zhang, J.; Jin, H. Hydrothermal One-Step Synthesis of Highly Dispersed M-Phase VO2 Nanocrystals and Application to Flexible Thermochromic Film. ACS Appl. Mater. Interfaces 2018, 10, 28627–28634. [Google Scholar] [CrossRef] [PubMed]
- Malarde, D.; Johnson, I.D.; Godfrey, I.J.; Powell, M.J.; Cibin, G.; Cabrera, R.Q.; Darr, J.A.; Carmalt, C.J.; Sankar, G.; Parkin, I.P.; et al. Direct and continuous hydrothermal flow synthesis of thermochromic phase pure monoclinic VO2 nanoparticles. J. Mater. Chem. C 2018, 6, 11731–11739. [Google Scholar] [CrossRef] [Green Version]
- Powell, M.J.; Marchand, P.; Denis, C.J.; Bear, J.C.; Darr, J.A.; Parkin, I.P. Direct and continuous synthesis of VO2 nanoparticles. Nanoscale 2015, 7, 18686–18693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, T.; Cao, X.; Long, Y.; Luo, H.; Jin, P. How to properly evaluate and compare the thermochromic performance of VO2-based smart coatings. J. Mater. Chem. A 2019, 7, 24164–24172. [Google Scholar] [CrossRef]
- Ke, Y.; Zhang, Q.; Wang, T.; Wang, S.; Li, N.; Lin, G.; Liu, X.; Dai, Z.; Yan, J.; Yin, J.; et al. Cephalopod-inspired versatile design based on plasmonic VO2 nanoparticle for energy-efficient mechano-thermochromic windows. Nano Energy 2020, 73, 104785. [Google Scholar] [CrossRef]
- Wang, N.; Duchamp, M.; Xue, C.; Dunin-Borkowski, R.E.; Liu, G.; Long, Y. Single-Crystalline W-Doped VO2Nanobeams with Highly Reversible Electrical and Plasmonic Responses Near Room Temperature. Adv. Mater. Interfaces 2016, 3, 1600164. [Google Scholar] [CrossRef]
- Gui, Z.; Fan, R.; Chen, X.; Wu, Y. A New Metastable Phase of Needle-like Nanocrystalline VO2·H2O and Phase Transformation. J. Solid State Chem. 2001, 157, 250–254. [Google Scholar] [CrossRef]
- Ji, S.; Zhang, F.; Jin, P. Preparation of high performance pure single phase VO2 nanopowder by hydrothermally reducing the V2O5 gel. Sol. Energy Mater. Sol. Cells 2011, 95, 3520–3526. [Google Scholar] [CrossRef]
Obtained Sample | Space Group | Cell Parameters a, b, c (Å) | β(°) |
---|---|---|---|
V2O5 (30 μL) | Pmmn | 11.516, 3.565, 4.3727 | 90 |
V6O13 (50 μL) | C2/m | 11.960, 3.713, 10.070 | 100.9 |
VO2(M) 60 μL, 70 μL | P21/c | 5.752, 4.538, 5.383 | 122.64 |
V6O11 (80 μL) | P-1 | 5.440, 6.990, 23.660 | 120.9 |
V3O5 (90 μL) | P2/c | 9.835, 5.031, 6.9742 | 109.46 |
Obtained Sample | Space Group | Cell Parameters a, b, c (Å) | β(°) |
---|---|---|---|
VO2(M) | P21/c | 5.752, 4.538, 5.383 | 122.64 |
VO2(B) | C2/m | 12.152, 3.719, 6.347 | 107.58 |
V6O13 | C2/m | 11.960, 3.713, 10.070 | 100.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Du, Z.; Li, M.; Long, Y. Synthesis of Monoclinic Vanadium Dioxide via One-Pot Hydrothermal Route. Colloids Interfaces 2021, 5, 13. https://doi.org/10.3390/colloids5010013
Liu G, Du Z, Li M, Long Y. Synthesis of Monoclinic Vanadium Dioxide via One-Pot Hydrothermal Route. Colloids and Interfaces. 2021; 5(1):13. https://doi.org/10.3390/colloids5010013
Chicago/Turabian StyleLiu, Guowei, Zengyan Du, Ming Li, and Yi Long. 2021. "Synthesis of Monoclinic Vanadium Dioxide via One-Pot Hydrothermal Route" Colloids and Interfaces 5, no. 1: 13. https://doi.org/10.3390/colloids5010013
APA StyleLiu, G., Du, Z., Li, M., & Long, Y. (2021). Synthesis of Monoclinic Vanadium Dioxide via One-Pot Hydrothermal Route. Colloids and Interfaces, 5(1), 13. https://doi.org/10.3390/colloids5010013