Electroosmosis and Electric Conduction of Electrolyte Solutions in Charge-Regulating Fibrous Media
Abstract
:1. Introduction
2. Analysis
2.1. Governing Equations
2.2. Boundary Conditions
2.3. Equilibrium Electric Potential
2.4. Perturbed Quantities and Electroosmotic Velocity
2.5. Electric Conductivity
3. Results and Discussion
3.1. Charge Regulation Characteristics
3.2. Electroosmotic Velocity
3.3. Electric Conductivity
4. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Rice, C.L.; Whitehead, R. Electrokinetic Flow in a Narrow Cylindrical Capillary. J. Phys. Chem. 1965, 69, 4017–4024. [Google Scholar] [CrossRef]
- Keh, H.J.; Liu, Y.C. Electrokinetic Flow in a Circular Capillary with a Surface Charge Layer. J. Colloid Interface Sci. 1995, 172, 222–229. [Google Scholar] [CrossRef]
- Keh, H.J.; Tseng, H.C. Transient Electrokinetic Flow in Fine Capillaries. J. Colloid Interface Sci. 2001, 242, 450–459. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Wang, C.-Y. Electro-osmotic flow in a sector microchannel. Phys. Fluids 2009, 21, 42002. [Google Scholar] [CrossRef]
- Luo, R.H.; Keh, H.J. Electrokinetic flow and electric conduction of salt-free solutions in a capillary. Electrophor. 2020, 41, 1503–1508. [Google Scholar] [CrossRef] [PubMed]
- Levine, S.; Neale, G.; Epstein, N. The prediction of electrokinetic phenomena within multiparticle systems. J. Colloid Interface Sci. 1976, 57, 424–437. [Google Scholar] [CrossRef]
- Zharkikh, N.I.; Shilov, V.N. Theory of collective electrophoresis of spherical particles in the Henry approximation. Colloid J. USSR Engl. Transl. 1982, 43, 865–870. [Google Scholar]
- Kozak, M.W.; Davis, E. Electrokinetics of concentrated suspensions and porous media. J. Colloid Interface Sci. 1989, 127, 497–510. [Google Scholar] [CrossRef]
- Ohshima, H. Electrical Conductivity of a Concentrated Suspension of Spherical Colloidal Particles. J. Colloid Interface Sci. 1999, 212, 443–448. [Google Scholar] [CrossRef]
- Ding, J.M.; Keh, H.J. The Electrophoretic Mobility and Electric Conductivity of a Concentrated Suspension of Colloidal Spheres with Arbitrary Double-Layer Thickness. J. Colloid Interface Sci. 2001, 236, 180–193. [Google Scholar] [CrossRef] [Green Version]
- Carrique, F.; Cuquejo, J.; Arroyo, F.J.; Jimenez, M.L.; Delgado, A.V. Influence of cell-model boundary conditions on the con-ductivity and electrophoretic mobility of concentrated suspensions. Adv. Colloid Interface Sci. 2005, 118, 43–50. [Google Scholar] [CrossRef]
- Zholkovskij, E.K.; Masliyah, J.H.; Shilov, V.N.; Bhattacharjee, S. Electrokinetic Phenomena in concentrated disperse systems: General problem formulation and Spherical Cell Approach. Adv. Colloid Interface Sci. 2007, 134-135, 279–321. [Google Scholar] [CrossRef]
- Liu, H.C.; Keh, H.J. Electrophoresis and electric conduction in a suspension of charged soft particles. Colloid Polym. Sci. 2016, 294, 1129–1141. [Google Scholar] [CrossRef]
- Lin, W.C.; Keh, H.J. Diffusiophoresis in Suspensions of Charged Soft Particles. Colloids Interfaces 2020, 4, 30. [Google Scholar] [CrossRef]
- Kozak, M.W.; Davis, E. Electrokinetic phenomena in fibrous porous media. J. Colloid Interface Sci. 1986, 112, 403–411. [Google Scholar] [CrossRef]
- Ohshima, H. Electroosmotic Velocity in Fibrous Porous Media. J. Colloid Interface Sci. 1999, 210, 397–399. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.T.; Keh, H.J. Electric conductivity in a fibrous porous medium with thin but polarized double layers. Colloid Polym. Sci. 2003, 282, 985–992. [Google Scholar] [CrossRef]
- Keh, H.J.; Wu, Y.Y. Electroosmotic Velocity and Electric Conductivity in a Fibrous Porous Medium in the Transverse Direction. J. Phys. Chem. B 2011, 115, 9168–9178. [Google Scholar] [CrossRef]
- Chiang, C.C.; Keh, H.J. Transient electroosmosis in the transverse direction of a fibrous porous medium. Colloids Surfaces A: Physicochem. Eng. Asp. 2015, 481, 577–582. [Google Scholar] [CrossRef]
- Su, Y.W.; Keh, H.J. Electrokinetic Flow of Salt-Free Solutions in a Fibrous Porous Medium. J. Phys. Chem. B 2019, 123, 9724–9730. [Google Scholar] [CrossRef] [PubMed]
- Ninham, B.W.; Parsegian, V. Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiologic saline solution. J. Theor. Biol. 1971, 31, 405–428. [Google Scholar] [CrossRef]
- Carnie, S.L.; Chan, D.Y. Interaction Free Energy between Plates with Charge Regulation: A Linearized Model. J. Colloid Interface Sci. 1993, 161, 260–264. [Google Scholar] [CrossRef]
- Ding, J.M.; Keh, H.-J. Electrophoretic Mobility and Electric Conductivity in Dilute Suspensions of Charge-Regulating Composite Spheres. Langmuir 2003, 19, 7226–7239. [Google Scholar] [CrossRef]
- Hill, R.J. On the electrophoretic mobility of succinoglycan modelled as a spherical polyelectrolyte: From Hermans-Fujita theory to charge regulation in multi-component electrolytes. J. Colloid Interface Sci. 2016, 482, 131–134. [Google Scholar] [CrossRef] [Green Version]
- Philipse, A.; Tuinier, R.; Kuipers, B.; Vrij, A.; Vis, M. On the Repulsive Interaction Between Strongly Overlapping Double Layers of Charge-regulated Surfaces. Colloid Interface Sci. Commun. 2017, 21, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.Y.; Keh, H.J. Sedimentation Velocity and Potential in Dilute Suspensions of Charge-Regulating Porous Spheres. J. Phys. Chem. B 2019, 123, 3002–3009. [Google Scholar] [CrossRef]
- Bharti; Gopmandal, P.P.; Sinha, R.K.; Ohshima, H. Electrophoresis of pH-regulated zwitterionic soft particle: A semi-analytical study. Colloid Polym. Sci. 2020, 298, 79–89. [Google Scholar] [CrossRef]
- Keh, H.J.; Ding, J.M. Electrokinetic flow in a capillary with a charge-regulating surface polymer layer. J. Colloid Interface Sci. 2003, 263, 645–660. [Google Scholar] [CrossRef]
- Sadeghi, M.; Saidi, M.H.; Moosavi, A.; Sadeghi, A. Geometry effect on electrokinetic flow and ionic conductance in pH-regulated nanochannels. Phys. Fluids 2017, 29, 122006. [Google Scholar] [CrossRef]
- Keh, H.-J.; Ding, J.M. Electrophoretic Mobility and Electric Conductivity of Suspensions of Charge-Regulating Colloidal Spheres. Langmuir 2002, 18, 4572–4583. [Google Scholar] [CrossRef]
- Berryman, J.G. Random close packing of hard spheres and disks. Phys. Rev. A 1983, 27, 1053–1061. [Google Scholar] [CrossRef]
- O’Brien, R. The electrical conductivity of a dilute suspension of charged particles. J. Colloid Interface Sci. 1981, 81, 234–248. [Google Scholar] [CrossRef]
- Wei, Y.K.; Keh, H.-J. Diffusiophoresis and Electrophoresis in Concentrated Suspensions of Charged Colloidal Spheres. Langmuir 2001, 17, 1437–1447. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.L.; Keh, H.J. Electroosmosis and Electric Conduction of Electrolyte Solutions in Charge-Regulating Fibrous Media. Colloids Interfaces 2021, 5, 19. https://doi.org/10.3390/colloids5010019
Chen WL, Keh HJ. Electroosmosis and Electric Conduction of Electrolyte Solutions in Charge-Regulating Fibrous Media. Colloids and Interfaces. 2021; 5(1):19. https://doi.org/10.3390/colloids5010019
Chicago/Turabian StyleChen, Wei L., and Huan J. Keh. 2021. "Electroosmosis and Electric Conduction of Electrolyte Solutions in Charge-Regulating Fibrous Media" Colloids and Interfaces 5, no. 1: 19. https://doi.org/10.3390/colloids5010019
APA StyleChen, W. L., & Keh, H. J. (2021). Electroosmosis and Electric Conduction of Electrolyte Solutions in Charge-Regulating Fibrous Media. Colloids and Interfaces, 5(1), 19. https://doi.org/10.3390/colloids5010019