Ion-Specific and Solvent Effects on PDADMA–PSS Complexation and Multilayer Formation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Dynamic Light Scattering
2.2.2. Ellipsometry
2.2.3. Atomic Force Microscopy
3. Results and Discussion
3.1. PDADMA–PSS Complexation in A Mixed Solvent
3.1.1. PDADMA–PSS Complexation in Water/Ethanol Mixture at xE = 0.10
3.1.2. PDADMA–PSS Complexation in Water/Ethanol Mixture at xE = 0.20
3.2. PDADMA–PSS Multilayer Formation in A Mixed Solvent
3.3. PDADMA–PSS Multilayer Formation in Water
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Müller, S.; Koenig, G.; Charpiot, A.; Debry, C.; Voegel, J.-C.; Lavalle, P.; Vautier, D. VEGF-Functionalized Polyelectrolyte Multilayers as Proangiogenic Prosthetic Coatings. Adv. Funct. Mater. 2008, 18, 1767–1775. [Google Scholar] [CrossRef]
- Zhu, Y.; Xuan, H.; Ren, J.; Ge, L. Self-Healing Multilayer Polyelectrolyte Composite Film with Chitosan and Poly(Acrylic Acid). Soft Matter 2015, 11, 8452–8459. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Schlenoff, J.B. Tough Strained Fibers of a Polyelectrolyte Complex: Pretensioned Polymers. RSC Adv. 2014, 4, 46675–46679. [Google Scholar] [CrossRef]
- Bungenberg de Jong, H.G.; Kruyt, H.R. Coacervation (Partial Miscibility in Collid Systems). Proc. K. Ned. Akad. Wet. 1929, 32, 849–856. [Google Scholar]
- Spruijt, E.; Leermakers, F.A.M.; Fokkink, R.; Schweins, R.; Van Well, A.A.; Cohen Stuart, M.A.; Van Der Gucht, J. Structure and Dynamics of Polyelectrolyte Complex Coacervates Studied by Scattering of Neutrons, X-Rays, and Light. Macromolecules 2013, 46, 4596–4605. [Google Scholar] [CrossRef]
- Michaels, A.S. Polyelectrolyte Complexes. Ind. Eng. Chem. 1965, 57, 32–40. [Google Scholar] [CrossRef]
- Fuoss, R.M.; Sadek, H. Mutual Interaction of Polyelectrolytes. Science 1949, 110, 552–554. [Google Scholar] [CrossRef]
- Kremer, T.; Kovačević, D.; Salopek, J.; Požar, J. Conditions Leading to Polyelectrolyte Complex Overcharging in Solution: Complexation of Poly(Acrylate) Anion with Poly(Allylammonium) Cation. Macromolecules 2016, 49, 8672–8685. [Google Scholar] [CrossRef]
- Decher, G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science 1997, 277, 1232–1237. [Google Scholar] [CrossRef]
- Dubas, S.T.; Schlenoff, J.B. Factors Controlling the Growth of Polyelectrolyte Multilayers. Macromolecules 1999, 32, 8153–8160. [Google Scholar] [CrossRef]
- Schaaf, P.; Voegel, J.C.; Jierry, L.; Boulmedais, F. Spray-Assisted Polyelectrolyte Multilayer Buildup: From Step-by-Step to Single-Step Polyelectrolyte Film Constructions. Adv. Mater. 2012, 24, 1001–1016. [Google Scholar] [CrossRef] [PubMed]
- Kovacevic, D.; Van der Burgh, S.; De Keizer, A.; Cohen Stuart, M.A. Kinetics of Formation and Dissolution of Weak Polyelectrolyte Multilayers: Role of Salt and Free Polyions. Langmuir 2002, 18, 5607–5612. [Google Scholar] [CrossRef]
- Liu, X.; Tang, C.; Han, W.; Xuan, H.; Ren, J.; Zhang, J.; Ge, L. Characterization and Preservation Effect of Polyelectrolyte Multilayer Coating Fabricated by Carboxymethyl Cellulose and Chitosan. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 1016–1023. [Google Scholar] [CrossRef]
- Guzmán, E.; Rubio, R.G.; Ortega, F. A Closer Physico-Chemical Look to the Layer-by-Layer Electrostatic Self-Assembly of Polyelectrolyte Multilayers. Adv. Colloid Interface Sci. 2020, 282, 102197. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Gu, Y.; Zacharia, N.S. Tuning Wet Adhesion of Weak Polyelectrolyte Multilayers. ACS Appl. Mater. Interfaces 2018, 10, 7401–7412. [Google Scholar] [CrossRef]
- Virga, E.; Žvab, K.; de Vos, W.M. Fouling of Nanofiltration Membranes Based on Polyelectrolyte Multilayers: The Effect of a Zwitterionic Final Layer. J. Membr. Sci. 2021, 620, 118793. [Google Scholar] [CrossRef]
- Kovačević, D.; Pratnekar, R.; Godič Torkar, K.; Salopek, J.; Dražić, G.; Abram, A.; Bohinc, K. Influence of Polyelectrolyte Multilayer Properties on Bacterial Adhesion Capacity. Polymers 2016, 8, 345. [Google Scholar] [CrossRef]
- Bohinc, K.; Bajuk, J.; Jukić, J.; Abram, A.; Oder, M.; Godič Torkar, K.; Raspor, P.; Kovačević, D. Bacterial Adhesion Capacity of Protein-Terminating Polyelectrolyte Multilayers. Int. J. Adhes. Adhes. 2020, 103, 102687. [Google Scholar] [CrossRef]
- Tan, S.Y.; Lee, S.C.; Okazaki, T.; Kuramitz, H.; Abd-Rahman, F. Detection of Mercury (II) Ions in Water by Polyelectrolyte–Gold Nanoparticles Coated Long Period Fiber Grating Sensor. Opt. Commun. 2018, 419, 18–24. [Google Scholar] [CrossRef]
- Habibi, N.; Pastorino, L.; Babolmorad, G.; Ruggiero, C.; Guda, T.; Ong, J.L. Polyelectrolyte Multilayers and Capsules: S-Layer Functionalization for Improving Stability and Biocompatibility. J. Drug Deliv. Sci. Technol. 2017, 38, 1–8. [Google Scholar] [CrossRef]
- Meng, S.; Liu, Y.; Yeo, J.; Ting, J.M.; Tirrell, M.V. Effect of Mixed Solvents on Polyelectrolyte Complexes with Salt. Colloid Polym. Sci. 2020, 298, 887–894. [Google Scholar] [CrossRef]
- Hofmeister, F. Zur Lehre von Der Wirkung Der Salze. Arch. Exp. Pathol. Pharmakol. 1888, 24, 247–260. [Google Scholar] [CrossRef]
- Jungwirth, P.; Cremer, P.S. Beyond Hofmeister. Nat. Chem. 2014, 6, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cremer, P.S. Interactions between Macromolecules and Ions: The Hofmeister Series. Curr. Opin. Chem. Biol. 2006, 10, 658–663. [Google Scholar] [CrossRef]
- Zhang, Y.; Cremer, P.S. Chemistry of Hofmeister Anions and Osmolytes. Annu. Rev. Phys. Chem. 2010, 61, 63–83. [Google Scholar] [CrossRef] [PubMed]
- Heyda, J.; Dzubiella, J. Ion-Specific Counterion Condensation on Charged Peptides: Poisson-Boltzmann vs. Atomistic Simulations. Soft Matter 2012, 8, 9338–9344. [Google Scholar] [CrossRef]
- Smiatek, J. Theoretical and Computational Insight into Solvent and Specific Ion Effects for Polyelectrolytes: The Importance of Local Molecular Interactions. Molecules 2020, 25, 1661. [Google Scholar] [CrossRef]
- Smiatek, J. Specific Ion Effects and the Law of Matching Solvent Affinities: A Conceptual Density Functional Theory Approach. J. Phys. Chem. B 2020, 124, 2191–2197. [Google Scholar] [CrossRef]
- Mazzini, V.; Craig, V.S.J. Specific-Ion Effects in Non-Aqueous Systems. Curr. Opin. Colloid Interface Sci. 2016, 23, 82–93. [Google Scholar] [CrossRef]
- Mazzini, V.; Craig, V.S.J. Volcano Plots Emerge from a Sea of Nonaqueous Solvents: The Law of Matching Water Affinities Extends to All Solvents. ACS Cent. Sci. 2018, 4, 1056–1064. [Google Scholar] [CrossRef]
- Qiao, B.; Cerdà, J.J.; Holm, C. Poly(Styrenesulfonate)-Poly(Diallyldimethylammonium) Mixtures: Toward the Understanding of Polyelectrolyte Complexes and Multilayers via Atomistic Simulations. Macromolecules 2010, 43, 7828–7838. [Google Scholar] [CrossRef]
- Qiao, B.; Sega, M.; Holm, C. An Atomistic Study of a Poly(Styrene Sulfonate)/ Poly(Diallyldimethylammonium) Bilayer: The Role of Surface Properties and Charge Reversal. Phys. Chem. Chem. Phys. 2011, 13, 16336–16342. [Google Scholar] [CrossRef] [PubMed]
- Qiao, B.F.; Sega, M.; Holm, C. Properties of Water in the Interfacial Region of a Polyelectrolyte Bilayer Adsorbed onto a Substrate Studied by Computer Simulations. Phys. Chem. Chem. Phys. 2012, 14, 11425–11432. [Google Scholar] [CrossRef]
- Diddens, D.; Baschnagel, J.; Johner, A. Microscopic Structure of Compacted Polyelectrolyte Complexes: Insights from Molecular Dynamics Simulations. ACS Macro Lett. 2019, 8, 123–127. [Google Scholar] [CrossRef]
- Batys, P.; Kivistö, S.; Lalwani, S.M.; Lutkenhaus, J.L.; Sammalkorpi, M. Comparing Water-Mediated Hydrogen-Bonding in Different Polyelectrolyte Complexes. Soft Matter 2019, 15, 7823–7831. [Google Scholar] [CrossRef]
- Schlenoff, J.B.; Dubas, S.T. Mechanism of Polyelectrolyte Multilayer Growth: Charge Overcompensation and Distribution. Macromolecules 2001, 34, 592–598. [Google Scholar] [CrossRef]
- Salomäki, M.; Tervasmäki, P.; Areva, S.; Kankare, J. The Hofmeister Anion Effect and the Growth of Polyelectrolyte Multilayers. Langmuir 2004, 20, 3679–3683. [Google Scholar] [CrossRef] [PubMed]
- Salomäki, M.; Kankare, J. Specific Anion Effect in Swelling of Polyelectrolyte Multilayers. Macromolecules 2008, 41, 4423–4428. [Google Scholar] [CrossRef]
- El Haitami, A.E.; Martel, D.; Ball, V.; Nguyen, H.C.; Gonthier, E.; Labbé, P.; Voegel, J.-C.; Schaaf, P.; Senger, B.; Boulmedais, F. Effect of the Supporting Electrolyte Anion on the Permeability of PSS / PAH Multilayer Films to an Electroactive Probe and on Their Thickness. Langmuir 2009, 25, 2282–2289. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Guzmán, E.; Ritacco, H.; Rubio, J.E.F.; Rubio, R.G.; Ortega, F. Salt-Induced Changes in the Growth of Polyelectrolyte Layers of Poly(Diallyl-Dimethylammonium Chloride) and Poly(4-Styrene Sulfonate of Sodium). Soft Matter 2009, 5, 2130–2142. [Google Scholar] [CrossRef]
- Dodoo, S.; Steitz, R.; Laschewsky, A.; von Klitzing, R. Effect of Ionic Strength and Type of Ions on the Structure of Water Swollen Polyelectrolyte Multilayers. Phys. Chem. Chem. Phys. 2011, 13, 10318–10325. [Google Scholar] [CrossRef]
- Ghostine, R.A.; Markarian, M.Z.; Schlenoff, J.B. Asymmetric Growth in Polyelectrolyte Multilayers. J. Am. Chem. Soc. 2013, 135, 7636–7646. [Google Scholar] [CrossRef]
- Volodkin, D.; von Klitzing, R. Competing Mechanisms in Polyelectrolyte Multilayer Formation and Swelling: Polycation-Polyanion Pairing vs. Polyelectrolyte-Ion Pairing. Curr. Opin. Colloid Interface Sci. 2014, 19, 25–31. [Google Scholar] [CrossRef]
- Tang, K.; Besseling, N.A.M. Formation of Polyelectrolyte Multilayers: Ionic Strengths and Growth Regimes. Soft Matter 2016, 12, 1032–1040. [Google Scholar] [CrossRef]
- Desbrieres, J.; Rinaudo, M. Formation of Polyelectrolyte Complexes in an Organic Solvent. Eur. Polym. J. 1981, 17, 1265–1269. [Google Scholar] [CrossRef]
- Zhou, J.; Ke, F.; Xia, Y.; Sun, J.; Xu, N.; Li, Z.C.; Liang, D. Complexation of DNA with Poly-(L-Lysine) and Its Copolymers in Dimethylformamide. Polymer 2013, 54, 2521–2527. [Google Scholar] [CrossRef]
- Kamineni, V.K.; Lvov, Y.M.; Dobbins, T.A. Layer-by-Layer Nanoassembly of Polyelectrolytes Using Formamide as the Working Medium. Langmuir 2007, 23, 7423–7427. [Google Scholar] [CrossRef] [PubMed]
- Jukić, J.; Kovačević, D.; Cindro, N.; Fink, R.; Oder, M.; Milisav, A.-M.; Požar, J. Predicting the Outcomes of Interpolyelectrolyte Neutralization at Surfaces on the Basis of Complexation Experiments and Vice Versa. Manuscript in preparation.
- Belda, R.; Herraez, J.V.; Diez, O. A Study of the Refractive Index and Surface Tension Synergy of the Binary Water/Ethanol: Influence of Concentration. Phys. Chem. Liq. 2005, 43, 91–101. [Google Scholar] [CrossRef]
- Nowakowska, J. The Refractive Indices of Ethyl Alcohol and Water Mixtures. Master′s Thesis, Loyola University, Chichago, IL, USA, 1939. [Google Scholar]
- Nečas, D.; Klapetek, P. Gwyddion: An Open-Source Software for SPM Data Analysis. Cent. Eur. J. Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Požar, J.; Kovačević, D. Complexation between Polyallylammonium Cations and Polystyrenesulfonate Anions: The Effect of Ionic Strength and the Electrolyte Type. Soft Matter 2014, 10, 6530–6545. [Google Scholar] [CrossRef] [PubMed]
- Požar, J.; Salopek, J.; Poldrugač, M.; Kovačević, D. The Effect of Cation Type, Ionic Strength and Temperature on the Complexation between Polyallylammonium Cation and Polystyrenesulfonate Anion. Colloids Surf. A Physicochem. Eng. Asp. 2016, 510, 159–168. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jukić, J.; Korade, K.; Milisav, A.-M.; Marion, I.D.; Kovačević, D. Ion-Specific and Solvent Effects on PDADMA–PSS Complexation and Multilayer Formation. Colloids Interfaces 2021, 5, 38. https://doi.org/10.3390/colloids5030038
Jukić J, Korade K, Milisav A-M, Marion ID, Kovačević D. Ion-Specific and Solvent Effects on PDADMA–PSS Complexation and Multilayer Formation. Colloids and Interfaces. 2021; 5(3):38. https://doi.org/10.3390/colloids5030038
Chicago/Turabian StyleJukić, Jasmina, Karla Korade, Ana-Marija Milisav, Ida Delač Marion, and Davor Kovačević. 2021. "Ion-Specific and Solvent Effects on PDADMA–PSS Complexation and Multilayer Formation" Colloids and Interfaces 5, no. 3: 38. https://doi.org/10.3390/colloids5030038
APA StyleJukić, J., Korade, K., Milisav, A.-M., Marion, I. D., & Kovačević, D. (2021). Ion-Specific and Solvent Effects on PDADMA–PSS Complexation and Multilayer Formation. Colloids and Interfaces, 5(3), 38. https://doi.org/10.3390/colloids5030038