Production of Graphene Stably Dispersible in Ethanol by Microwave Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.2.1. Exfoliated Graphene
2.2.2. Graphene Diethyl Maleate
2.2.3. Graphene Diethyl Maleate Produced by Adding AIBN
2.2.4. Analyses
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clancy, A.J.; Bayazit, M.K.; Hodge, S.A.; Skipper, N.T.; Howard, C.A.; Shaffer, M.S.P. Charged Carbon Nanomaterials: Redox Chemistries of Fullerenes, Carbon Nanotubes, and Graphenes. Chem. Rev. 2018, 118, 7363–7408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randviir, E.P.; Brownson, D.A.C.; Banks, C.E. A Decade of Graphene Research: Production, Applications and Outlook. Mater. Today 2014, 17, 426–432. [Google Scholar] [CrossRef]
- Wei, W.; Qu, X. Extraordinary Physical Properties of Functionalized Graphene. Small 2012, 8, 2138–2151. [Google Scholar] [CrossRef] [PubMed]
- Vacacela Gomez, C.; Guevara, M.; Tene, T.; Villamagua, L.; Usca, G.T.; Maldonado, F.; Tapia, C.; Cataldo, A.; Bellucci, S.; Caputi, L.S. The Liquid Exfoliation of Graphene in Polar Solvents. Appl. Surf. Sci. 2021, 546, 149046. [Google Scholar] [CrossRef]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H.L. Ultrahigh Electron Mobility in Suspended Graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Morozov, S.V.; Novoselov, K.S.; Katsnelson, M.I.; Schedin, F.; Elias, D.C.; Jaszczak, J.A.; Geim, A.K. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Phys. Rev. Lett. 2008, 100, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Azar, N.S.; Pourfath, M. Aggregation Kinetics and Stability Mechanisms of Pristine and Oxidized Nanocarbons in Polar Solvents. J. Phys. Chem. C 2016, 120, 16804–16814. [Google Scholar] [CrossRef]
- Lotya, M.; King, P.J.; Khan, U.; De, S.; Coleman, J.N. High-Concentration, Surfactant-Stabilized Graphene Dispersions. ACS Nano 2010, 4, 3155–3162. [Google Scholar] [CrossRef]
- Shabafrooz, V.; Bandla, S.; Hanan, J.C. Graphene Dispersion in a Surfactant-Free, Polar Solvent. J. Mater. Sci. 2018, 53, 559–572. [Google Scholar] [CrossRef]
- Sarkar, S.; Bekyarova, E.; Haddon, R.C.; Gao, W.; Vedejs, E.; Campbell, J.B.; Gadwood, R.C.; Rodgers, J.D.; Spear, K.L.; Watanabe, Y.; et al. The Chemistry of Graphene Oxide. Acc. Chem. Res. 1982, 47, 3324–3327. [Google Scholar] [CrossRef]
- Park, S.; An, J.; Jung, I.; Piner, R.D.; An, S.J.; Li, X.; Velamakanni, A.; Ruoff, R.S. Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. Nano Lett. 2009, 9, 1593–1597. [Google Scholar] [CrossRef] [PubMed]
- Cayambe, M.; Zambrano, C.; Tene, T.; Guevara, M.; Usca, G.T.; Brito, H.; Molina, R.; Coello-Fiallos, D.; Caputi, L.S.; Gomez, C.V. Dispersion of Graphene in Ethanol by Sonication. Mater. Today Proc. 2019, 37, 4027–4030. [Google Scholar] [CrossRef]
- Zhang, X.; Coleman, A.C.; Katsonis, N.; Browne, W.R.; van Wees, B.J.; Feringa, B.L. Dispersion of Graphene in Ethanol Using a Simple Solvent Exchange Method. Chem. Commun. 2010, 46, 7539–7541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alzakia, F.I.; Tan, S.C. Liquid-Exfoliated 2D Materials for Optoelectronic Applications. Adv. Sci. 2021, 8. [Google Scholar] [CrossRef]
- Wang, S.; Yi, M.; Shen, Z.; Zhang, X.; Ma, S. Adding Ethanol Can Effectively Enhance the Graphene Concentration in Water-Surfactant Solutions. RSC Adv. 2014, 4, 25374–25378. [Google Scholar] [CrossRef]
- Meschi Amoli, B.; Trinidad, J.; Rivers, G.; Sy, S.; Russo, P.; Yu, A.; Zhou, N.Y.; Zhao, B. SDS-Stabilized Graphene Nanosheets for Highly Electrically Conductive Adhesives. Carbon N. Y. 2015, 91, 188–199. [Google Scholar] [CrossRef]
- Parvez, K.; Wu, Z.S.; Li, R.; Liu, X.; Graf, R.; Feng, X.; Müllen, K. Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts. J. Am. Chem. Soc. 2014, 136, 6083–6091. [Google Scholar] [CrossRef] [Green Version]
- Parvez, K.; Worsley, R.; Alieva, A.; Felten, A.; Casiraghi, C. Water-Based and Inkjet Printable Inks Made by Electrochemically Exfoliated Graphene. Carbon N. Y. 2019, 149, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Perumal, S.; Perumal, S.; Lee, H.M.; Cheong, I.W. Dispersion Behavior of Graphene with Different Solvents and Surfactants. J. Adhes. Interface 2019, 20, 53–60. [Google Scholar]
- Wajid, A.S.; Das, S.; Irin, F.; Ahmed, H.S.T.; Shelburne, J.L.; Parviz, D.; Fullerton, R.J.; Jankowski, A.F.; Hedden, R.C.; Green, M.J. Polymer-Stabilized Graphene Dispersions at High Concentrations in Organic Solvents for Composite Production. Carbon N. Y. 2012, 50, 526–534. [Google Scholar] [CrossRef]
- Perumal, S.; Lee, H.M.; Cheong, I.W. High-Concentration Graphene Dispersion Stabilized by Block Copolymers in Ethanol. J. Colloid Interface Sci. 2017, 497, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Laaksonen, P.; Kainlauri, M.; Laaksonen, T.; Shchepetov, A.; Jiang, H.; Ahopelto, J.; Linder, M.B. Interfacial Engineering by Proteins: Exfoliation and Functionalization of Graphene by Hydrophobins. Angew. Chem.—Int. Ed. 2010, 49, 4946–4949. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Secor, E.B.; Chen, K.S.; Zhu, J.; Liu, X.; Gao, T.Z.; Seo, J.W.T.; Zhao, Y.; Hersam, M.C. High-Performance Solid-State Supercapacitors and Microsupercapacitors Derived from Printable Graphene Inks. Adv. Energy Mater. 2016, 6, 17661–17663. [Google Scholar] [CrossRef]
- Parviz, D.; Das, S.; Ahmed, H.S.T.; Irin, F.; Bhattacharia, S.; Green, M.J. Dispersions of Non-Covalently Functionalized Graphene with Minimal Stabilizer. ACS Nano 2012, 6, 8857–8867. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Zhou, S. High-Concentration Self-Cross-Linkable Graphene Dispersion. Chem. Mater. 2018, 30, 4935–4942. [Google Scholar] [CrossRef]
- Das, S.; Wajid, A.S.; Shelburne, J.L.; Liao, Y.C.; Green, M.J. Localized in Situ Polymerization on Graphene Surfaces for Stabilized Graphene Dispersions. ACS Appl. Mater. Interfaces 2011, 3, 1844–1851. [Google Scholar] [CrossRef] [Green Version]
- An, X.; Simmons, T.; Shah, R.; Wolfe, C.; Lewis, K.M.; Washington, M.; Nayak, S.K.; Talapatra, S.; Kar, S. Stable Aqueous Dispersions of Noncovalently Functionalized Graphene from Graphite and Their Multifunctional High-Performance Applications. Nano Lett. 2010, 10, 4295–4301. [Google Scholar] [CrossRef]
- Zhang, L.; Miao, Z.; Hao, Z.; Liu, J. Exfoliating and Dispersing Few-Layered Graphene in Low-Boiling-Point Organic Solvents towards Solution-Processed Optoelectronic Device Applications. Chem.—Asian J. 2016, 11, 1441–1446. [Google Scholar] [CrossRef]
- Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun’ko, Y.K.; et al. High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nat. Nanotechnol. 2008, 3, 563–568. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, X.; Liu, Y.; Tai, Z.; Yan, X.; Ma, J. Understanding Oxygen Bubble-Triggered Exfoliation of Graphite Toward the Low-Defect Graphene. Adv. Mater. Interfaces 2021, 8, 1–8. [Google Scholar] [CrossRef]
- thermofisher.com. Available online: https://tools.thermofisher.com/content/sfs/brochures/AN52252_E%201111%20LayerThkns_H_1.pdf (accessed on 27 November 2022).
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 1–4. [Google Scholar] [CrossRef] [PubMed]
- thermofisher.com. Available online: https://tools.thermofisher.com/content/sfs/brochures/D19505~.pdf (accessed on 27 November 2022).
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman Spectroscopy in Graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Biscoe, J.; Warren, B.E. An X-ray Study of Carbon Black. J. Appl. Phys. 1942, 13, 364–371. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The Chemistry of Graphene Oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, Y.; Lotya, M.; Rickard, D.; Bergin, S.D.; Coleman, J.N. Measurement of Multicomponent Solubility Parameters for Graphene Facilitates Solvent Discovery. Langmuir 2010, 26, 3208–3213. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Yu, P.; Ma, Y. Stable Dispersions of Graphene and Highly Conducting Graphene Films: A New Approach to Creating Colloids of Graphene Monolayers. Chem. Commun. 2009, 30, 4527–4529. [Google Scholar] [CrossRef]
- La Notte, L.; Bianco, G.V.; Palma, A.L.; Di Carlo, A.; Bruno, G.; Reale, A. Sprayed Organic Photovoltaic Cells and Mini-Modules Based on Chemical Vapor Deposited Graphene as Transparent Conductive Electrode. Carbon N. Y. 2018, 129, 878–883. [Google Scholar] [CrossRef]
- Tran, T.S.; Dutta, N.K.; Choudhury, N.R. Graphene Inks for Printed Flexible Electronics: Graphene Dispersions, Ink Formulations, Printing Techniques and Applications. Adv. Colloid Interface Sci. 2018, 261, 41–61. [Google Scholar] [CrossRef]
- Xu, Y.L.; Uddin, A.; Estevez, D.; Luo, Y.; Peng, H.X.; Qin, F.X. Lightweight Microwire/Graphene/Silicone Rubber Composites for Efficient Electromagnetic Interference Shielding and Low Microwave Reflectivity. Compos. Sci. Technol. 2020, 189. [Google Scholar] [CrossRef]
- Uddin, A.; Khatoon, R.; Estevez, D.; Salem, M.; Ali, A.; Attique, S.; Lu, J.; Qin, F.X. Waste Paper Cellulose Based-MoS2 Hybrid Composites: Towards Sustainable Green Shielding. Mater. Today Commun. 2022, 31. [Google Scholar] [CrossRef]
GEM Preparation | Loss off Mass 370 °C (wt.%) | Residual Mass 795 °C (wt.%) |
---|---|---|
- | −6.73 | 61.20 |
AIBN | −15.35 | 70.75 |
Parameters | GEM | EG | |
---|---|---|---|
Cell length [nm] | A | 2.17 ± 0.05 | 2.12 ± 0.02 |
C | 6.72 ± 0.01 | 6.71 ± 0.01 | |
Crystal size [nm] | 7.53 ± 4.76 | 8.02 ± 2.68 | |
Density [kg/m2] | 2.90 | 3.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martis, A.; Fontana, M.; Serrapede, M.; Bianco, S.; Chiodoni, A.; Pirri, C.F.; Bocchini, S. Production of Graphene Stably Dispersible in Ethanol by Microwave Reaction. Colloids Interfaces 2022, 6, 75. https://doi.org/10.3390/colloids6040075
Martis A, Fontana M, Serrapede M, Bianco S, Chiodoni A, Pirri CF, Bocchini S. Production of Graphene Stably Dispersible in Ethanol by Microwave Reaction. Colloids and Interfaces. 2022; 6(4):75. https://doi.org/10.3390/colloids6040075
Chicago/Turabian StyleMartis, Alberto, Marco Fontana, Mara Serrapede, Stefano Bianco, Angelica Chiodoni, Candido Fabrizio Pirri, and Sergio Bocchini. 2022. "Production of Graphene Stably Dispersible in Ethanol by Microwave Reaction" Colloids and Interfaces 6, no. 4: 75. https://doi.org/10.3390/colloids6040075
APA StyleMartis, A., Fontana, M., Serrapede, M., Bianco, S., Chiodoni, A., Pirri, C. F., & Bocchini, S. (2022). Production of Graphene Stably Dispersible in Ethanol by Microwave Reaction. Colloids and Interfaces, 6(4), 75. https://doi.org/10.3390/colloids6040075