Aggregation and Conductivity in Hot-Grown Petroporphyrin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IDE | Interdigital electrodes |
ITO | Indium-tin oxide layer |
AFM | Atomic force microscopy |
SEM | Scanning electron microscopy |
XRD | X-ray diffraction |
Appendix A
- An excellent coincidence between the diffraction curve reconstructed using a CIF-file and the XRD-pattern of freshly synthesized Cu-EtioP-III powder (Figure A1) confirms the reliability of the single-crystal experiment and the accuracy of obtained unit cell parameters.
- According to the obtained data for the unit cell, the peaks at 7.5 and 8.7 degrees should be assigned to the diffraction planes (011) and (010), respectively, as shown in Figure 3, bottom panel. The tentative assignment of peaks made for the XRD patterns of Cu-EtioP-III in [1], Supplementary Materials, is therefore invalid.
- It is now possible to conclude what is behind the changes in the relative intensity in Figure S3c. In most cases, there are two co-existing arrangements with respect to the substrate, in each of which flat Cu-EtioP-III molecules tilt away from the substrate surface, i.e., “standing-on” arrangement [1,10]. The tilt angle of molecular planes is 54.8 and 49.8 for (011) and (010) orientation, respectively—Figure A2. The Cu-EtioP-III films deposited on hot glass show a large increase in intensity of the (011) peak, accompanied by the drop of intensity of the (020) peak—Figure S3c. This indicates that the molecules prefer the (011) type of orientation only—Figure A2.
References
- Koifman, O.; Rychikhina, E.; Yunin, P.; Koptyaev, A.; Sachkov, Y.; Pakhomov, G. Vacuum-deposited petroporphyrins: Effect of regioisomerism on film morphology. Colloids Surf. Physicochem. Eng. Asp. 2022, 648, 129284. [Google Scholar] [CrossRef]
- Kasap, S.O. Photoconductivity and Photoconductive Materials; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Koptyaev, A.I.; Travkin, V.V.; Sachkov, Y.I.; Romanenko, Y.V.; Pakhomov, G.L. Conductivity of solution-processed films of a metal-free chlorophyll derivative: Drop casting vs. spin coating. J. Mater. Sci. Mater. Electron. 2021, 32, 17791–17799. [Google Scholar] [CrossRef]
- Jafari, M.J.; Azim-Araghi, M.E.; Barhemat, S. Effect of chemical environments on palladium phthalocyanine thin film sensors for humidity analysis. J. Mater. Sci. 2012, 47, 1992–1999. [Google Scholar] [CrossRef]
- Mukherjee, B.; Pal, A.J. (Organic) Switching phenomenon in lateral structures: Tuning by gate voltage. Org. Electron. 2007, 8, 584–590. [Google Scholar] [CrossRef]
- Tkachenko, N.V.; Chukharev, V.; Kaplas, P.; Tolkki, A.; Efimov, A.; Haring, K.; Viheriälä, J.; Niemi, T.; Lemmetyinen, H. Photoconductivity of thin organic films. Appl. Surf. Sci. 2010, 256, 3900–3905. [Google Scholar] [CrossRef]
- Cherian, R.C.; Menon, C. Preparation and characterization of thermally evaporated titanium phthalocyanine dichloride thin films. J. Phys. Chem. Solids 2008, 69, 2858–2863. [Google Scholar] [CrossRef]
- Dini, D.; Hanack, M. Phthalocyanines as materials for advanced technologies: Some examples. J. Porphyr. Phthalocyanines 2004, 8, 915–933. [Google Scholar] [CrossRef]
- Giovannetti, R. The Use of Spectrophotometry UV-Vis for the Study of Porphyrins. Macro Nano Spectrosc. 2012, 6, 87–108. [Google Scholar] [CrossRef] [Green Version]
- Peisert, H.; Schwieger, T.; Auerhammer, J.M.; Knupfer, M.; Golden, M.S.; Fink, J.; Bressler, P.R.; Mast, M. Order on disorder: Copper phthalocyanine thin films on technical substrates. J. Appl. Phys. 2001, 90, 466–469. [Google Scholar] [CrossRef]
- Woods, J.F.; Gallego, L.; Pfister, P.; Maaloum, M.; Jentzsch, A.V.; Rickhaus, M. Shape-assisted self-assembly. Nat. Commun. 2022, 13, 3681. [Google Scholar] [CrossRef] [PubMed]
Isomer | , nm | , nm | , S/cm | , eV | ||
---|---|---|---|---|---|---|
Cu-EtioP-I | cold | 575 | 392 | 1.3 × 10 | 0.6 | 6.1 |
hot | 573 | 390 | 8 × | 0.9 | 6.3 × | |
Cu-EtioP-II | cold | ∼570 | 396 | 1 × 10 | 0.75 | 5.0 |
hot | ∼571 | 394 | 1 × 10 | 0.8 | 2.1 × | |
Cu-EtioP-III | cold | 575 | 394 | 6 × 10 | 1.0 | 8.1 |
hot | 573 | 386 | 2 × 10 | 1.0 | 1.4 × |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koifman, O.; Koptyaev, A.; Travkin, V.; Yunin, P.; Somov, N.; Masterov, D.; Pakhomov, G. Aggregation and Conductivity in Hot-Grown Petroporphyrin Films. Colloids Interfaces 2022, 6, 77. https://doi.org/10.3390/colloids6040077
Koifman O, Koptyaev A, Travkin V, Yunin P, Somov N, Masterov D, Pakhomov G. Aggregation and Conductivity in Hot-Grown Petroporphyrin Films. Colloids and Interfaces. 2022; 6(4):77. https://doi.org/10.3390/colloids6040077
Chicago/Turabian StyleKoifman, Oskar, Andrey Koptyaev, Vlad Travkin, Pavel Yunin, Nikolay Somov, Dmitry Masterov, and Georgy Pakhomov. 2022. "Aggregation and Conductivity in Hot-Grown Petroporphyrin Films" Colloids and Interfaces 6, no. 4: 77. https://doi.org/10.3390/colloids6040077
APA StyleKoifman, O., Koptyaev, A., Travkin, V., Yunin, P., Somov, N., Masterov, D., & Pakhomov, G. (2022). Aggregation and Conductivity in Hot-Grown Petroporphyrin Films. Colloids and Interfaces, 6(4), 77. https://doi.org/10.3390/colloids6040077