Polyacrylic-Co-Maleic-Acid-Coated Magnetite Nanoparticles for Enhanced Removal of Heavy Metals from Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments and Analytical Methods
2.3. Batch Adsorption Experiments
2.4. Kinetics Models of Adsorption
2.5. Adsorption Isotherms
3. Results and Discussion
3.1. Effect of pH
3.2. Metals Adsorption Kinetics and Isotherms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tahoon, M.A.; Siddeeg, S.M.; Salem Alsaiari, N.; Mnif, W.; Ben Rebah, F. Effective Heavy Metals Removal from Water Using Nanomaterials: A Review. Process 2020, 8, 645. [Google Scholar] [CrossRef]
- Giraldo, L.; Erto, A.; Moreno-Piraján, J.C. Magnetite Nanoparticles for Removal of Heavy Metals from Aqueous Solutions: Synthesis and Characterization. Adsorption 2013, 19, 465–474. [Google Scholar] [CrossRef]
- Hu, H.; Wang, Z.; Pan, L. Synthesis of Monodisperse Fe3O4@silica Core–Shell Microspheres and Their Application for Removal of Heavy Metal Ions from Water. J. Alloys Compd. 2010, 492, 656–661. [Google Scholar] [CrossRef]
- Watts, M.P.; Coker, V.S.; Parry, S.A.; Pattrick, R.A.D.; Thomas, R.A.P.; Kalin, R.; Lloyd, J.R. Biogenic Nano-Magnetite and Nano-Zero Valent Iron Treatment of Alkaline Cr(VI) Leachate and Chromite Ore Processing Residue. Appl. Geochem. 2015, 54, 27–42. [Google Scholar] [CrossRef]
- Hou, L.; Liang, Q.; Wang, F. Mechanisms That Control the Adsorption–Desorption Behavior of Phosphate on Magnetite Nanoparticles: The Role of Particle Size and Surface Chemistry Characteristics. RSC Adv. 2020, 10, 2378–2388. [Google Scholar] [CrossRef] [Green Version]
- Panda, S.K.; Aggarwal, I.; Kumar, H.; Prasad, L.; Kumar, A.; Sharma, A.; Vo, D.-V.N.; Van Thuan, D.; Mishra, V. Magnetite Nanoparticles as Sorbents for Dye Removal: A Review. Environ. Chem. Lett. 2021, 19, 2487–2525. [Google Scholar] [CrossRef]
- Wu, W.; He, Q.; Jiang, C. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Res. Lett. 2008, 3, 397–415. [Google Scholar] [CrossRef] [Green Version]
- Tombácz, E.; Tóth, I.Y.; Nesztor, D.; Illés, E.; Hajdú, A.; Szekeres, M.; Vékás, L. Adsorption of Organic Acids on Magnetite Nanoparticles, PH-Dependent Colloidal Stability and Salt Tolerance. Colloids Surf. A Physicochem. Eng. Asp. 2013, 435, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Liosis, C.; Papadopoulou, A.; Karvelas, E.; Karakasidis, T.E.; Sarris, I.E. Heavy Metal Adsorption Using Magnetic Nanoparticles for Water Purification: A Critical Review. Materials 2021, 14, 7500. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, Y.; Nie, W.; Song, L. Preparation of Fe3O4/Chitosan/Poly(Acrylic Acid) Composite Particles and Its Application in Adsorbing Copper Ion (II). Cellulose 2012, 19, 2081–2091. [Google Scholar] [CrossRef]
- Paulino, A.T.; Belfiore, L.A.; Kubota, L.T.; Muniz, E.C.; Almeida, V.C.; Tambourgi, E.B. Effect of Magnetite on the Adsorption Behavior of Pb(II), Cd(II), and Cu(II) in Chitosan-Based Hydrogels. Desalination 2011, 275, 187–196. [Google Scholar] [CrossRef]
- Liu, P.; Jiang, L.; Zhu, L.; Wang, A. Novel Approach for Attapulgite/Poly(Acrylic Acid) (ATP/PAA) Nanocomposite Microgels as Selective Adsorbent for Pb(II) Ion. React. Funct. Polym. 2014, 74, 72–80. [Google Scholar] [CrossRef]
- Fan, H.; Ma, X.; Zhou, S.; Huang, J.; Liu, Y.; Liu, Y. Highly Efficient Removal of Heavy Metal Ions by Carboxymethyl Cellulose-Immobilized Fe3O4 Nanoparticles Prepared via High-Gravity Technology. Carbohydr. Polym. 2019, 213, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Liu, P.; Zhao, S. Magnetic ATP/FA/Poly(AA-Co-AM) Ternary Nanocomposite Microgel as Selective Adsorbent for Removal of Heavy Metals from Wastewater. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 470, 31–38. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Z.; Jiang, G. Coating Fe3O4 Magnetic Nanoparticles with Humic Acid for High Efficient Removal of Heavy Metals in Water. Environ. Sci. Technol. 2008, 42, 6949–6954. [Google Scholar] [CrossRef]
- Jiao, A.; Li, Z.; Bao, L. Poly(Acrylic Acid-Co-Maleic Acid) for the Enhanced Treatment of Cu (II)-Loaded Aqueous Solution and Its Reuse by Ultrafiltration–Electrolytic Process. Desalination 2013, 322, 29–36. [Google Scholar] [CrossRef]
- Rivas, B.L.; Pereira, E.; Cid, R.; Geckeler, K.E. Polyelectrolyte-Assisted Removal of Metal Ions with Ultrafiltration. J. Appl. Polym. Sci. 2005, 95, 1091–1099. [Google Scholar] [CrossRef]
- Tóth, I.Y.; Illés, E.; Bauer, R.A.; Nesztor, D.; Szekeres, M.; Zupkó, I.; Tombácz, E. Designed Polyelectrolyte Shell on Magnetite Nanocore for Dilution-Resistant Biocompatible Magnetic Fluids. Langmuir 2012, 28, 16638–16646. [Google Scholar] [CrossRef] [Green Version]
- Felthouse, T.R.; Burnett, J.C.; Horrell, B.; Mummey, M.J.; Kuo, Y.-J. Maleic Anhydride, Maleic Acid, and Fumaric Acid. In Kirk-Othmer Encyclopedia of Chemical Technology; Wiley Online Library: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Jang, Y.-J.; Liu, S.; Yue, H.; Park, J.A.; Cha, H.; Ho, S.L.; Marasini, S.; Ghazanfari, A.; Ahmad, M.Y.; Miao, X.; et al. Hydrophilic Biocompatible Poly(Acrylic Acid-Co-Maleic Acid) Polymer as a Surface-Coating Ligand of Ultrasmall Gd2O3 Nanoparticles to Obtain a High r1 Value and T1 MR Images. Diagnostics 2020, 11, 2. [Google Scholar] [CrossRef]
- Illés, E.; Tombácz, E. The Effect of Humic Acid Adsorption on PH-Dependent Surface Charging and Aggregation of Magnetite Nanoparticles. J. Colloid Interface Sci. 2006, 295, 115–123. [Google Scholar] [CrossRef]
- Tóth, I.Y.; Nesztor, D.; Novák, L.; Illés, E.; Szekeres, M.; Szabó, T.; Tombácz, E. Clustering of Carboxylated Magnetite Nanoparticles through Polyethylenimine: Covalent versus Electrostatic Approach. J. Magn. Magn. Mater. 2017, 427, 280–288. [Google Scholar] [CrossRef]
- Inglezakis, V.J.; Zorpas, A.A.; Loizidou, M.D.; Grigoropoulou, H.P. The Effect of Competitive Cations and Anions on Ion Exchange of Heavy Metals. Sep. Purif. Technol. 2005, 46, 202–207. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Nowicki, P.; Nosal-Wiercińska, A.; Pietrzak, R.; Szewczuk-Karpisz, K.; Ostolska, I.; Sternik, D. Adsorption of Poly(Acrylic Acid) on the Surface of Microporous Activated Carbon Obtained from Cherry Stones. Colloids Surfaces A Physicochem. Eng. Asp. 2017, 514, 137–145. [Google Scholar] [CrossRef]
- Shi, J.; Li, H.; Lu, H.; Zhao, X. Use of Carboxyl Functional Magnetite Nanoparticles as Potential Sorbents for the Removal of Heavy Metal Ions from Aqueous Solution. J. Chem. Eng. Data 2015, 60, 2035–2041. [Google Scholar] [CrossRef]
- Mao, Y.; Fung, B.M. A Study of the Adsorption of Acrylic Acid and Maleic Acid from Aqueous Solutions onto Alumina. J. Colloid Interface Sci. 1997, 191, 216–221. [Google Scholar] [CrossRef]
- Charman, W.N.; Christy, D.P.; Geunin, E.P.; Monkhouse, D.C. Interaction between Calcium, a Model Divalent Cation, and a Range of Poly (Acrylic Acid) Resins as a Function of Solution PH. Drug Dev. Ind. Pharm. 1991, 17, 271–280. [Google Scholar] [CrossRef]
- Guan, X.; Yan, S.; Zeng, Q.; Xu, Z.; Chen, Y.; Fan, H. Polyacrylic Acid-Grafted Magnetite Nanoparticles for Remediation of Pb(II)-Contained Water. Fibers Polym. 2016, 17, 1131–1139. [Google Scholar] [CrossRef]
- Pohl, A. Removal of Heavy Metal Ions from Water and Wastewaters by Sulfur-Containing Precipitation Agents. Water, Air, Soil Pollut. 2020, 231, 503. [Google Scholar] [CrossRef]
- Naiya, T.K.; Bhattacharya, A.K.; Mandal, S.; Das, S.K. The Sorption of Lead(II) Ions on Rice Husk Ash. J. Hazard. Mater. 2009, 163, 1254–1264. [Google Scholar] [CrossRef]
- Karami, H. Heavy Metal Removal from Water by Magnetite Nanorods. Chem. Eng. J. 2013, 219, 209–216. [Google Scholar] [CrossRef]
- Cuppett, J.D.; Duncan, S.E.; Dietrich, A.M. Evaluation of Copper Speciation and Water Quality Factors That Affect Aqueous Copper Tasting Response. Chem. Senses 2006, 31, 689–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Pranolo, Y.; Zhang, W.; Wang, W.; Cheng, C.Y. Precipitation of Impurities from Synthetic Laterite Leach Solutions. Hydrometallurgy 2010, 104, 81–85. [Google Scholar] [CrossRef]
- Wong, Y.C.; Szeto, Y.S.; Cheung, W.H.; McKay, G. Pseudo-First-Order Kinetic Studies of the Sorption of Acid Dyes onto Chitosan. J. Appl. Polym. Sci. 2004, 92, 1633–1645. [Google Scholar] [CrossRef]
- Chiou, C.T. Fundamentals of the Adsorption Theory. In Partition and Adsorption of Organic Contaminants in Environmental Systems; Wiley-Interscience: New York, NY, USA, 2002; pp. 39–52. [Google Scholar]
- Marchioretto, M.M.; Bruning, H.; Rulkens, W. Heavy Metals Precipitation in Sewage Sludge. Sep. Sci. Technol. 2005, 40, 3393–3405. [Google Scholar] [CrossRef]
- Alvarez-Puebla, R.A.; Valenzuela-Calahorro, C.; Garrido, J.J. Modeling the Adsorption and Precipitation Processes of Cu(II) on Humin. J. Colloid Interface Sci. 2004, 277, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Li, H.; Liu, Y.; Song, S. Comparison of Pb(II) Adsorption onto Graphene Oxide Prepared from Natural Graphites: Diagramming the Pb(II) Adsorption Sites. Appl. Surf. Sci. 2016, 364, 620–627. [Google Scholar] [CrossRef]
- Jiang, L.; Chai, F.; Chen, Q. Soft Magnetic Nanocomposite Microgels by In-Situ Crosslinking of Poly Acrylic Acid onto Superparamagnetic Magnetite Nanoparticles and Their Applications for the Removal of Pb(II) Ion. Eur. Polym. J. 2017, 89, 468–481. [Google Scholar] [CrossRef]
- Yan, H.; Yang, L.; Yang, Z.; Yang, H.; Li, A.; Cheng, R. Preparation of Chitosan/Poly(Acrylic Acid) Magnetic Composite Microspheres and Applications in the Removal of Copper(II) Ions from Aqueous Solutions. J. Hazard. Mater. 2012, 229, 371–380. [Google Scholar] [CrossRef]
Kinetic Model | Parameter | Metal | |
---|---|---|---|
Pb2+ | Cu2+ | ||
Pseudo-first-order | qe (mg g−1); (mmol g−1) | 46.76; 0.22 | 46.98; 0.73 |
k1 (min−1) | 0.03 | 0.05 | |
R2 | 0.95 | 0.99 | |
Pseudo-second-order | qe (mg g−1); (mmol g−1) | 51.89; 0.23 | 50.11; 0.79 |
k2 (g mg−1 min−1); (g mmol−1 min−1) | 6.99 × 10−4; 0.15 | 1.45 × 10−3; 0.09 | |
h (mg g−1 min−1); (mmol g−1 min−1) | 1.9; 8.68 × 10−3 | 3.6; 0.06 | |
R2 | 0.91 | 0.97 |
Isotherm | Parameter | Metal | |
---|---|---|---|
Pb2+ | Cu2+ | ||
Langmuir | qm (mg g−1); (mmol g−1) | 518.68; 2.50 | 179.81; 2.82 |
KL (L mg−1); (L mmol−1) | 0.67; 138.06 | 0.64; 40.99 | |
R2 | 0.92 | 0.92 | |
Freundlich | KF (mg g−1); (mmol g−1) | 186.54; 23.18 | 61.27; 9.63 |
n | 1.62; 1.62 | 1.80; 1.80 | |
R2 | 0.91 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mlih, R.; Suazo-Hernández, J.; Liang, Y.; Tombácz, E.; Bol, R.; Klumpp, E. Polyacrylic-Co-Maleic-Acid-Coated Magnetite Nanoparticles for Enhanced Removal of Heavy Metals from Aqueous Solutions. Colloids Interfaces 2023, 7, 5. https://doi.org/10.3390/colloids7010005
Mlih R, Suazo-Hernández J, Liang Y, Tombácz E, Bol R, Klumpp E. Polyacrylic-Co-Maleic-Acid-Coated Magnetite Nanoparticles for Enhanced Removal of Heavy Metals from Aqueous Solutions. Colloids and Interfaces. 2023; 7(1):5. https://doi.org/10.3390/colloids7010005
Chicago/Turabian StyleMlih, Rawan, Jonathan Suazo-Hernández, Yan Liang, Etelka Tombácz, Roland Bol, and Erwin Klumpp. 2023. "Polyacrylic-Co-Maleic-Acid-Coated Magnetite Nanoparticles for Enhanced Removal of Heavy Metals from Aqueous Solutions" Colloids and Interfaces 7, no. 1: 5. https://doi.org/10.3390/colloids7010005
APA StyleMlih, R., Suazo-Hernández, J., Liang, Y., Tombácz, E., Bol, R., & Klumpp, E. (2023). Polyacrylic-Co-Maleic-Acid-Coated Magnetite Nanoparticles for Enhanced Removal of Heavy Metals from Aqueous Solutions. Colloids and Interfaces, 7(1), 5. https://doi.org/10.3390/colloids7010005