The Potential of Colloidal Systems Based on Carbamate-Containing Hexadecylpiperidinium Surfactants in Biomedical Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
General Procedure for Synthesis of Carbamate-Containing Hexadecylpiperidinium Surfactants
2.2. Methods
2.2.1. In Vitro Biological Studies
2.2.2. Physicochemical Studies of Cationic Surfactants
2.2.3. Preparation of Niosomes
2.2.4. Investigation of the Physicochemical Characteristics of Niosomes
3. Results and Discussions
3.1. The Antimicrobial Activity of Carbamate-Containing Piperidinium Surfactants
3.2. Aggregation Behavior of Carbamate-Containing Piperidinium Surfactants
3.3. Mixed Systems Based on Carbamate-Containing Piperidinium Surfactants and Nonionic Surfactant Brij®35
3.4. Niosomes Modified with Cationic Surfactants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nunes, B.; Cagide, F.; Fernandes, C.; Borges, A.; Borges, F.; Simões, M. Efficacy of Novel Quaternary Ammonium and Phosphonium Salts Differing in Cation Type and Alkyl Chain Length against Antibiotic-Resistant Staphylococcus Aureus. Int. J. Mol. Sci. 2023, 25, 504. [Google Scholar] [CrossRef]
- Boyce, J.M. Quaternary Ammonium Disinfectants and Antiseptics: Tolerance, Resistance and Potential Impact on Antibiotic Resistance. Antimicrob. Resist. Infect. Control 2023, 12, 32. [Google Scholar] [CrossRef]
- Lu, Z.; Mahony, A.K.; Arnold, W.A.; Marshall, C.W.; McNamara, P.J. Quaternary Ammonia Compounds in Disinfectant Products: Evaluating the Potential for Promoting Antibiotic Resistance and Disrupting Wastewater Treatment Plant Performance. Environ. Sci. Adv. 2024, 3, 208–226. [Google Scholar] [CrossRef]
- Mai, Y.; Wang, Z.; Zhou, Y.; Wang, G.; Chen, J.; Lin, Y.; Ji, P.; Zhang, W.; Jing, Q.; Chen, L.; et al. From Disinfectants to Antibiotics: Enhanced Biosafety of Quaternary Ammonium Compounds by Chemical Modification. J. Hazard. Mater. 2023, 460, 132454. [Google Scholar] [CrossRef]
- Rambo, M.K.D.; Lins, R.F.; Silva, F.L.N.; Alonso, A.; Rambo, M.C.D.; Leal, J.E.C.; Sousa-Neto, D. de Effect of Cationic Surfactant on the Physicochemical and Antibacterial Properties of Colloidal Systems (Emulsions and Microemulsions). Braz. J. Biol. 2024, 84, e278013. [Google Scholar] [CrossRef]
- Gonçalves, R.A.; Holmberg, K.; Lindman, B. Cationic Surfactants: A Review. J. Mol. Liq. 2023, 375, 121335. [Google Scholar] [CrossRef]
- Mintzer, M.A.; Simanek, E.E. Nonviral Vectors for Gene Delivery. Chem. Rev. 2009, 109, 259–302. [Google Scholar] [CrossRef]
- Radhakrishnan, A.V.; Madhukar, S.; Chowdhury, A.; Raghunathan, V.A. Influence of Micellar Size on the Structure of Surfactant-DNA Complexes. Phys. Rev. E 2022, 105, 064504. [Google Scholar] [CrossRef]
- Ramachandran, S.; Satapathy, S.R.; Dutta, T. Delivery Strategies for mRNA Vaccines. Pharm. Med. 2022, 36, 11–20. [Google Scholar] [CrossRef]
- Zakharova, L.Y.; Maganova, F.I.; Sinyashin, K.O.; Gaynanova, G.A.; Mirgorodskaya, A.B.; Vasilieva, E.A.; Sinyashin, O.G. Supramolecular Strategy for the Design of Nanocarriers for Drugs and Natural Bioactives: Current State of the Art (A Review). Russ. J. Gen. Chem. 2023, 93, 1867–1899. [Google Scholar] [CrossRef]
- Muthuprasanna, P.; Suriaprabha, K.; Rao, T.S.; Mandava, V.; Sindhu, B. Analgesic and Antiinflammatory Study of Surfactant Modified Liposomes. Biosci. Biotechnol. Res. Asia 2016, 5, 255–260. [Google Scholar]
- Duangjit, S.; Opanasopit, P.; Rojanarata, T.; Obata, Y.; Takayama, K.; Ngawhirunpat, T.; Pamornpathomkul, B. Role of the Charge, Carbon Chain Length, and Content of Surfactant on the Skin Penetration of Meloxicam-Loaded Liposomes. Int. J. Nanomed. 2014, 9, 2005–2017. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, Y. Structure–Activity Relationship of Cationic Surfactants as Antimicrobial Agents. Curr. Opin. Colloid Interface Sci. 2020, 45, 28–43. [Google Scholar] [CrossRef]
- Seweryn, A. Interactions between Surfactants and the Skin—Theory and Practice. Adv. Colloid Interface Sci. 2018, 256, 242–255. [Google Scholar] [CrossRef]
- Matteo Jörgensen, A.; Knoll, P.; Haddadzadegan, S.; Fabian, H.; Hupfauf, A.; Gust, R.; Georg Jörgensen, R.; Bernkop-Schnürch, A. Biodegradable Arginine Based Steroid-Surfactants: Cationic Green Agents for Hydrophobic Ion-Pairing. Int. J. Pharm. 2023, 630, 122438. [Google Scholar] [CrossRef]
- Jesus, C.F.; Alves, A.A.S.; Fiuza, S.M.; Murtinho, D.; Antunes, F.E. Mini-Review: Synthetic Methods for the Production of Cationic Sugar-Based Surfactants. J. Mol. Liq. 2021, 342, 117389. [Google Scholar] [CrossRef]
- Olutas, E.B.; Kartal, N.B.; Birinci Yildirim, A. Self-Assembly, Surface, Antibacterial, and Solubilization Properties of Phenylglycine Type Amino Acid-Based Cationic Surfactants. J. Mol. Liq. 2022, 367, 120528. [Google Scholar] [CrossRef]
- Han, W.; Long, W.; Peng, L.; Zhang, W.; Shi, B. Effect of Nonionic and Anionic Surfactant on Ecotoxicity and Micellization Behaviors of Dodecyl Trimethyl Ammonium Bromide (DTAB). Colloids Surf. Physicochem. Eng. Asp. 2023, 671, 131588. [Google Scholar] [CrossRef]
- Mirgorodskaya, A.B.; Kushnazarova, R.A.; Voloshina, A.D.; Amerhanova, S.K.; Lenina, O.A.; Petrov, K.A.; Zakharova, L.Y. Improvement of Aggregation Behavior, Toxicity and Antimicrobial Properties of Hydroxypiperidinium Surfactants by the Formation of Mixed Micelles with Tween 80. J. Mol. Liq. 2023, 384, 122289. [Google Scholar] [CrossRef]
- Liwarska-Bizukojc, E.; Miksch, K.; Malachowska-Jutsz, A.; Kalka, J. Acute Toxicity and Genotoxicity of Five Selected Anionic and Nonionic Surfactants. Chemosphere 2005, 58, 1249–1253. [Google Scholar] [CrossRef]
- Öztürk, K.; Arslan, F.B.; Öztürk, S.C.; Çalış, S. Mixed Micelles Formulation for Carvedilol Delivery: In-Vitro Characterization and in-Vivo Evaluation. Int. J. Pharm. 2022, 611, 121294. [Google Scholar] [CrossRef]
- Dehghan, S.; Naghipour, A.; Anbaji, F.Z.; Golshanrad, P.; Mirazi, H.; Adelnia, H.; Bodaghi, M.; Far, B.F. Enhanced in Vitro and in Vivo Anticancer Activity through the Development of Sunitinib-Loaded Nanoniosomes with Controlled Release and Improved Uptake. Int. J. Pharm. 2023, 640, 122977. [Google Scholar] [CrossRef]
- Poustforoosh, A. Investigation on the Structural and Dynamical Properties of Cationic, Anionic, and Catanionic Niosomes as Multifunctional Controlled Drug Delivery System for Cabozantinib. Colloids Surf. Physicochem. Eng. Asp. 2024, 687, 133547. [Google Scholar] [CrossRef]
- Faddah, H.; Nsairat, H.; Shalan, N.M.; El-Tanani, M.; Alqudah, D.A.; Alshaer, W. Preparation, Optimization and In Vitro Evaluation of Doxorubicin-loaded into Hyaluronic Acid Coated Niosomes Against Breast Cancer. Chem. Biodivers. 2024, 21, e202301470. [Google Scholar] [CrossRef]
- Uchegbu, I.F.; Vyas, S.P. Non-Ionic Surfactant Based Vesicles (Niosomes) in Drug Delivery. Int. J. Pharm. 1998, 172, 33–70. [Google Scholar] [CrossRef]
- Roque, L.; Fernández, M.; Benito, J.M.; Escudero, I. Stability and Characterization Studies of Span 80 Niosomes Modified with CTAB in the Presence of NaCl. Colloids Surf. Physicochem. Eng. Asp. 2020, 601, 124999. [Google Scholar] [CrossRef]
- Grijalvo, S.; Puras, G.; Zárate, J.; Sainz-Ramos, M.; Qtaish, N.A.L.; López, T.; Mashal, M.; Attia, N.; Díaz Díaz, D.; Pons, R.; et al. Cationic Niosomes as Non-Viral Vehicles for Nucleic Acids: Challenges and Opportunities in Gene Delivery. Pharmaceutics 2019, 11, 50. [Google Scholar] [CrossRef]
- Kushnazarova, R.A.; Mirgorodskaya, A.B.; Zakharova, L.Y. Niosomes Modified with Cationic Surfactants to Increase the Bioavailability and Stability of Indomethacin. Russ. Chem. Bull. 2021, 70, 585–591. [Google Scholar] [CrossRef]
- Mirgorodskaya, A.B.; Kushnazarova, R.A.; Kuznetsov, D.M.; Tyryshkina, A.A.; Zakharova, L.Y. Aggregation Behavior and Catalytic Action of Carbamate-Bearing Surfactants in Aqueous Solutions. Kinet. Catal. 2022, 63, 261–269. [Google Scholar] [CrossRef]
- Mirgorodskaya, A.B.; Kushnazarova, R.A.; Lukashenko, S.S.; Voloshina, A.D.; Lenina, O.A.; Zakharova, L.Y.; Sinyashin, O.G. Carbamate-Bearing Surfactants: Micellization, Solubilization, and Biological Activity. J. Mol. Liq. 2018, 269, 203–210. [Google Scholar] [CrossRef]
- Armarego, W.L.F.; Perrin, D.D. Purification of Laboratory Chemicals, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2024; Available online: https://www.academia.edu/8067506/W_L_F_Armarego_D_D_Perrin_Purification_of_Laboratory_Chemicals_4th_edition (accessed on 4 October 2024).
- Kushnazarova, R.A.; Mirgorodskaya, A.B.; Kuznetsov, D.M.; Tyryshkina, A.A.; Voloshina, A.D.; Gumerova, S.K.; Lenina, O.A.; Nikitin, E.N.; Zakharova, L.Y. Modulation of Aggregation Behavior, Antimicrobial Properties and Catalytic Activity of Piperidinium Surfactants by Modifying Their Head Group with a Polar Fragment. J. Mol. Liq. 2021, 336, 116318. [Google Scholar] [CrossRef]
- Voloshina, A.D.; Gumerova, S.K.; Sapunova, A.S.; Kulik, N.V.; Mirgorodskaya, A.B.; Kotenko, A.A.; Prokopyeva, T.M.; Mikhailov, V.A.; Zakharova, L.Y.; Sinyashin, O.G. The Structure – Activity Correlation in the Family of Dicationic Imidazolium Surfactants: Antimicrobial Properties and Cytotoxic Effect. Biochim. Biophys. Acta BBA Gen. Subj. 2020, 1864, 129728. [Google Scholar] [CrossRef]
- Kushnazarova, R.A.; Mirgorodskaya, A.B.; Bekrenev, D.D.; Lyubina, A.P.; Lenina, O.A.; Petrov, K.A.; Voloshina, A.D.; Zakharova, L.Y. Supramolecular Systems Based on 2-Hydroxyethylpiperidinium Surfactants and Brij® 35: Aggregation Behavior, Solubilization Properties, and Antimicrobial Activity. Russ. Chem. Bull. 2024, 73, 536–545. [Google Scholar] [CrossRef]
- Urban-Chmiel, R.; Marek, A.; Stępień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic Resistance in Bacteria—A Review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.G.J. Environmental Factors Influencing the Development and Spread of Antibiotic Resistance. FEMS Microbiol. Rev. 2018, 42, 68–80. [Google Scholar] [CrossRef]
- Indrayanto, G.; Putra, G.S.; Suhud, F. Validation of In-Vitro Bioassay Methods: Application in Herbal Drug Research. In Profiles of Drug Substances, Excipients and Related Methodology; Elsevier: Amsterdam, The Netherlands, 2021; Volume 46, pp. 273–307. ISBN 978-0-12-824127-1. [Google Scholar]
- Ilić, N.; Novković, M.; Guida, F.; Xhindoli, D.; Benincasa, M.; Tossi, A.; Juretić, D. Selective Antimicrobial Activity and Mode of Action of Adepantins, Glycine-Rich Peptide Antibiotics Based on Anuran Antimicrobial Peptide Sequences. Biochim. Biophys. Acta Biomembr. 2013, 1828, 1004–1012. [Google Scholar] [CrossRef]
- Mchedlov-Petrossyan, N.O. Protolytic Equilibrium in Lyophilic Nanosized Dispersions: Differentiating Influence of the Pseudophase and Salt Effects. Pure Appl. Chem. 2008, 80, 1459–1510. [Google Scholar] [CrossRef]
- Mazaleuskaya, L.L.; Theken, K.N.; Gong, L.; Thorn, C.F.; FitzGerald, G.A.; Altman, R.B.; Klein, T.E. PharmGKB Summary: Ibuprofen Pathways. Pharmacogenet. Genom. 2015, 25, 96–106. [Google Scholar] [CrossRef]
- Hedaya, M.; Bandarkar, F.; Nada, A. In Vitro and in Vivo Evaluation of Ibuprofen Nanosuspensions for Enhanced Oral Bioavailability. Med. Princ. Pract. 2021, 30, 361–368. [Google Scholar] [CrossRef]
- Stoyanova, K.; Vinarov, Z.; Tcholakova, S. Improving Ibuprofen Solubility by Surfactant-Facilitated Self-Assembly into Mixed Micelles. J. Drug Deliv. Sci. Technol. 2016, 36, 208–215. [Google Scholar] [CrossRef]
- Álvarez, C.; Núñez, I.; Torrado, J.J.; Gordon, J.; Potthast, H.; García-Arieta, A. Investigation on the Possibility of Biowaivers for Ibuprofen. J. Pharm. Sci. 2011, 100, 2343–2349. [Google Scholar] [CrossRef]
- Kumar, M.; Khushi, K.; Bhardwaj, A.; Deb, D.K.; Singh, N.; Elahi, D.; Sharma, S.; Bajpai, G.; Srivastava, A. In-Vitro Study for Ibuprofen Encapsulation, Controlled Release and Cytotoxicity Improvement Using Excipient-Drugs Mixed Micelle. Colloids Surf. Physicochem. Eng. Asp. 2022, 654, 130057. [Google Scholar] [CrossRef]
- Imran, B.; Din, F.U.; Ali, Z.; Fatima, A.; Khan, M.W.; Kim, D.W.; Malik, M.; Sohail, S.; Batool, S.; Jawad, M.; et al. Statistically Designed Dexibuprofen Loaded Solid Lipid Nanoparticles for Enhanced Oral Bioavailability. J. Drug Deliv. Sci. Technol. 2022, 77, 103904. [Google Scholar] [CrossRef]
- Tinku; Choudhary, S. A Thermodynamic Approach to Understand the Partitioning of Tetracycline Family Antibiotics in Individual and Mixed Micellar Systems. J. Chem. Thermodyn. 2022, 165, 106664. [Google Scholar] [CrossRef]
- Tănase, M.A.; Raducan, A.; Oancea, P.; Diţu, L.M.; Stan, M.; Petcu, C.; Scomoroşcenco, C.; Ninciuleanu, C.M.; Nistor, C.L.; Cinteza, L.O. Mixed Pluronic—Cremophor Polymeric Micelles as Nanocarriers for Poorly Soluble Antibiotics—The Influence on the Antibacterial Activity. Pharmaceutics 2021, 13, 435. [Google Scholar] [CrossRef]
- Grimaudo, M.A.; Pescina, S.; Padula, C.; Santi, P.; Concheiro, A.; Alvarez-Lorenzo, C.; Nicoli, S. Poloxamer 407/TPGS Mixed Micelles as Promising Carriers for Cyclosporine Ocular Delivery. Mol. Pharm. 2018, 15, 571–584. [Google Scholar] [CrossRef]
- Clint, J.H. Micellization of Mixed Nonionic Surface Active Agents. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1975, 71, 1327. [Google Scholar] [CrossRef]
- Rosen, M.J.; Hua, X.Y. Surface Concentrations and Molecular Interactions in Binary Mixtures of Surfactants. J. Colloid Interface Sci. 1982, 86, 164–172. [Google Scholar] [CrossRef]
- Kumar Shah, S.; Chakraborty, G.; Bhattarai, A.; De, R. Synergistic and Antagonistic Effects in Micellization of Mixed Surfactants. J. Mol. Liq. 2022, 368, 120678. [Google Scholar] [CrossRef]
- Liga, S.; Paul, C.; Moacă, E.-A.; Péter, F. Niosomes: Composition, Formulation Techniques, and Recent Progress as Delivery Systems in Cancer Therapy. Pharmaceutics 2024, 16, 223. [Google Scholar] [CrossRef]
- Nasseri, B. Effect of Cholesterol and Temperature on the Elastic Properties of Niosomal Membranes. Int. J. Pharm. 2005, 300, 95–101. [Google Scholar] [CrossRef]
- Chen, S.; Hanning, S.; Falconer, J.; Locke, M.; Wen, J. Recent Advances in Non-Ionic Surfactant Vesicles (Niosomes): Fabrication, Characterization, Pharmaceutical and Cosmetic Applications. Eur. J. Pharm. Biopharm. 2019, 144, 18–39. [Google Scholar] [CrossRef]
- Pires, P.C.; Paiva-Santos, A.C.; Veiga, F. Liposome-Derived Nanosystems for the Treatment of Behavioral and Neurodegenerative Diseases: The Promise of Niosomes, Transfersomes, and Ethosomes for Increased Brain Drug Bioavailability. Pharmaceuticals 2023, 16, 1424. [Google Scholar] [CrossRef]
- Barani, M.; Paknia, F.; Roostaee, M.; Kavyani, B.; Kalantar-Neyestanaki, D.; Ajalli, N.; Amirbeigi, A. Niosome as an Effective Nanoscale Solution for the Treatment of Microbial Infections. BioMed Res. Int. 2023, 2023, 9933283. [Google Scholar] [CrossRef]
Compounds | Minimum Inhibitory Concentration (MIC), µg·mL−1 | |||||||
---|---|---|---|---|---|---|---|---|
Sa | Bc | Ef | MRSA-1 | MRSA-2 | Ec | Pa | Ca | |
3-CB(Bu)-P-16 | 0.5 ± 0.04 | 0.9 ± 0.07 | 1.9 ± 0.1 | 0.5 ± 0.04 | 0.5 ± 0.04 | 1.9 ± 0.12 | 125.0 ± 10 | 3.9 ± 0.2 |
1-CB(Bu)-P-16 | 0.9 ± 0.08 | 0.9 ± 0.07 | 0.9 ± 0.08 | 0.5 ± 0.04 | 0.5 ± 0.04 | 15.6 ± 1.2 | 62.5 ± 5.4 | 3.9 ± 0.1 |
1,4-CB(Bu)-P-16 | 1.9 ± 0.1 | 7.8 ± 0.6 | 0.9 ± 0.07 | 1.9 ± 0.1 | 1.9 ± 0.1 | 250 ± 19 | – | 62.5 ± 5.4 |
CB(Bu)-P-16 [30] | 1.9 ± 0.2 | 1.9 ± 0.1 | – | – | – | 62.5 ± 5.8 | – | 3.9 ± 0.2 |
PM-16 [32] | 1.9 ± 0.1 | 3.9 ± 0.3 | – | – | – | 31.3 ± 2.5 | – | 7.8 ± 0.6 |
1-CB(Bu)-P-16/Brij®35 | 1.8 ± 0.16 | 1.8 ± 0.16 | 1.8 ± 0.16 | 0.9 ± 0.09 | 0.9 ± 0.09 | 31.3 ± 2.9 | 125.0 ± 10 | 7.8 ± 0. 6 |
Ciprofloxacin | 0.5 ± 0.03 | 0.9 ± 0.06 | 3.9 ± 0.2 | 125.0 ± 11 | 0.9 ± 0.07 | 0.5 ± 0.04 | 0.9 ± 0.07 | – |
Amoxicillin | 0.3 ± 0.02 | – | – | 31.3 ± 2.6 | 31.3 ± 2.5 | – | – | – |
Ketoconazole | – | – | – | – | – | – | – | 3.9 ± 0.2 |
Minimum bactericidal and fungicidal concentration (MBC), (MFC), µg·mL−1 | ||||||||
3-CB(Bu)-P-16 | 1.9 ± 0.1 | 62.5 ± 5.7 | 31.3 ± 2.6 | 3.9 ± 0.2 | 0.5 ± 0.04 | 125 ± 10 | – | 7.8 ± 0.6 |
1-CB(Bu)-P-16 | 7.8 ± 0.5 | 31.3 ± 2.6 | 1.9 ± 0.1 | 0.5 ± 0.04 | 0.9 ± 0.07 | 15.6 ± 1.3 | 62.5 ± 5.5 | 31.3 ± 2.5 |
1,4-CB(Bu)-P-16 | 7.8 ± 0.7 | 125 ± 12 | 1.9 ± 0.1 | 31.3 ± 2.6 | 15.6 ± 1.3 | – | – | 62.5 ± 5.4 |
CB(Bu)-P-16 [30] | 3.9 ± 0.3 | 62.5 ± 5.7 | – | – | – | 250 ± 22 | – | 3.9 ± 0.1 |
PM-16 [32] | 7.8 ± 0.6 | 7.8 ± 0.7 | – | – | – | 31.3 ± 2.5 | – | 7.8 ± 0.6 |
1-CB(Bu)-P-16/Brij®35 | 15.6 ± 1.4 | 62.5 ± 5.6 | 3.9 ± 0.1 | 0.9 ± 0.08 | 1.9 ± 0.1 | 31.3 ± 2.4 | – | 62.5 ± 5.6 |
Ciprofloxacin | 0.5 ± 0.04 | 0.9 ± 0.06 | 3.9 ± 0.3 | 250 ± 19 | 0.9 ± 0.07 | 0.5 ± 0.04 | 15.6 ± 1.3 | – |
Amoxicillin | 0.9 ± 0.06 | – | – | 31.3 ± 2.5 | 31.3 ± 2.7 | – | – | – |
Ketoconazole | – | – | – | - | - | – | – | 3.9 ± 0.2 |
Systems | HC50, µg·mL−1 | SI (HC50/MIC) | IC50, µg·mL−1 | SI (IC50/MIC) |
---|---|---|---|---|
3-CB(Bu)-P-16 | 49.0 ± 3.7 | 98.0 | 15.6 ± 1.3 | 31.2 |
1-CB(Bu)-P-16 | 25.4 ± 1.9 | 28.2 | 27.5 ± 2.1 | 31.0 |
1,4-CB(Bu)-P-16 | 26.3 ± 2.1 | 13.8 | 39.4 ± 3.3 | 21.0 |
PM-16 [32] | 30.0 ± 2.8 | 15.1 | – | – |
1-CB(Bu)-P-16/Brij®35 | 53.0 ± 3.9 | 29.5 | 57.0 ± 4.2 | 31.6 |
Surfactant | CMC, mM | β | pKa | ψ, mV | CIBF, g·L−1 | |
---|---|---|---|---|---|---|
Tens. | Conduct. | |||||
3-CB(Bu)-P-16 | 0.70 | 0.80 | 0.66 | 5.7 | 111 | 0.32 b |
1-CB(Bu)-P-16 | 0.30 | 0.35 | 0.58 | 6.0 | 96 | 0.29 b |
PM-16 [32] | 1.0 | 1.20 | 0.70 | 5.5 | 126 | – |
1-CB(Bu)-P-16/Brij®35 | 0.10 | – | – | 6.8 | 47 | 0.25 b0.67 c |
Brij®35 [34] | 0.09 | – | – | 7.6 | – | 0.13 b |
Compositions | PdI | Dh a, nm | ZP, mV | PdI | Dh a, nm | ZP, mV | PdI | Dh a, nm | ZP, mV |
---|---|---|---|---|---|---|---|---|---|
After 1 Day | After 1 Month | After 2 Months | |||||||
Brij®35/Chol (5:5) | 0.22 ± 0.019 | 72 ± 1.9 | −5.6 ± 0.58 | 0.22 ± 0.048 | 86 ± 2.3 | −5.8 ± 0.79 | 0.22 ± 0.006 | 77 ± 2.9 | −6.1 ± 0.71 |
Brij®35/Chol (6:4) | 0.26 ± 0.002 | 75 ± 2.5 | −4.3 ± 0.49 | 0.30 ± 0.007 | 81 ± 2.8 | −5.4 ± 0.68 | 0.25 ± 0.014 | 78 ± 1.8 | −5.4 ± 0.63 |
Brij®35/Chol (7:3) | 0.41 ± 0.012 | 72 ± 2.9 | −3.9 ± 0.16 | 0.45 ± 0.015 | 94 ± 3.2 | −3.7 ± 0.28 | 0.48 ± 0.032 | 94 ± 1.0 | 0.3 ± 1.5 |
Brij®35/Chol (10:5) | 0.56 ± 0.041 | 72 ± 7.6 | −3.9 ± 0.08 | 0.64 ± 0.220 | 93 ± 2.2 | −4.3 ± 0.33 | 0.61 ± 0.053 | 115 ± 2.2 | −3.0 ± 0.78 |
Brij®35/Chol/ 1-CB(Bu)-P-16 (5:5:0.5) | 0.21 ± 0.009 | 70 ± 2.3 | 43.8 ± 0.12 | 0.26 ± 0.005 | 78 ± 2.9 | 42.1 ± 1.15 | 0.26 ± 0.013 | 75 ± 3.9 | 40.6 ± 0.39 |
Brij®35/Chol/ 1-CB(Bu)-P-16 (6:4:0.5) | 0.29 ± 0.022 | 52 ± 3.5 | 34.8 ± 0.24 | 0.26 ± 0.013 | 68 ± 2.9 | 35.5 ± 1.68 | 0.27 ± 0.011 | 59 ± 3.2 | 37 ± 0.55 |
Compositions | CIBF, g·L−1 | EE, % | PdI | Dh a, nm | ZP, mV | PdI | Dh a, nm | ZP, mV |
---|---|---|---|---|---|---|---|---|
After 1 Day | After 2 Months | |||||||
Brij®35/Chol (5:5) | 5 | 33.0 | 0.41 ± 0.004 | 93 ± 3.2 | −3.5 ± 0.5 | 0.19 ± 0.013 | 98 ± 2.4 | −4.0 ± 0.48 |
Brij®35/Chol/ 1-CB(Bu)-P-16 (5:5:0.5) | 5 | 40.4 | 0.36 ± 0.019 | 80 ± 1.8 | 29.5 ± 1.1 | 0.22 ± 0.029 | 76 ± 1.2 | 34.7 ± 1.16 |
Brij®35/Chol (5:5) | 2 | 60.0 | 0.22 ± 0.007 | 82 ± 2.4 | −3.0 ± 0.9 | 0.12 ± 0.014 | 98 ± 2.2 | −4.5 ± 0.36 |
Brij®35/Chol/ 1-CB(Bu)-P-16 (5:5:0.5) | 2 | 84.5 | 0.26 ± 0.010 | 72 ± 1.9 | 31.1 ± 2.2 | 0.25 ± 0.013 | 76 ± 1.1 | 33.0 ± 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kushnazarova, R.; Mirgorodskaya, A.; Bekrenev, D.; Kuznetsov, D.; Lyubina, A.; Voloshina, A.; Zakharova, L. The Potential of Colloidal Systems Based on Carbamate-Containing Hexadecylpiperidinium Surfactants in Biomedical Applications. Colloids Interfaces 2024, 8, 57. https://doi.org/10.3390/colloids8050057
Kushnazarova R, Mirgorodskaya A, Bekrenev D, Kuznetsov D, Lyubina A, Voloshina A, Zakharova L. The Potential of Colloidal Systems Based on Carbamate-Containing Hexadecylpiperidinium Surfactants in Biomedical Applications. Colloids and Interfaces. 2024; 8(5):57. https://doi.org/10.3390/colloids8050057
Chicago/Turabian StyleKushnazarova, Rushana, Alla Mirgorodskaya, Dmitry Bekrenev, Denis Kuznetsov, Anna Lyubina, Alexandra Voloshina, and Lucia Zakharova. 2024. "The Potential of Colloidal Systems Based on Carbamate-Containing Hexadecylpiperidinium Surfactants in Biomedical Applications" Colloids and Interfaces 8, no. 5: 57. https://doi.org/10.3390/colloids8050057
APA StyleKushnazarova, R., Mirgorodskaya, A., Bekrenev, D., Kuznetsov, D., Lyubina, A., Voloshina, A., & Zakharova, L. (2024). The Potential of Colloidal Systems Based on Carbamate-Containing Hexadecylpiperidinium Surfactants in Biomedical Applications. Colloids and Interfaces, 8(5), 57. https://doi.org/10.3390/colloids8050057