Influence and Correction of Refraction Phenomenon in Liquid Contact Angle Measurement in Capillary Tube
Abstract
:1. Introduction
2. Methodology
2.1. Introduction to the Experimental System
2.2. Measurement and Conversion Method of Liquid Contact Angle in Pulsating Heat Pipe
2.3. Validate Constraints on All Measurement Angles
3. Results and Discussion
3.1. The Influence of Refraction Phenomenon on the Interface Line
3.2. The Influence of Refraction Phenomenon on Static Contact Angle
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Nomenclate | |
A, B, C, D, E, O, X, Y | point |
a, b | tangent |
c | specific heat capacity (kJ/(kg·K) |
g | gravity acceleration (m/s2) |
H | latent heat (kJ/kg) |
L | length (cm) |
N | number of samples |
n | index of refraction |
R | external diameter (cm) |
r | internal diameter (cm) |
t | temperature (°C) |
ρ | density (kg/m3) |
σ | surface tension (N/m) |
θ, α, β | angle (°) |
Abbreviation | |
PHP | pulsating heat pipe |
sat | saturation |
SD | standard deviation |
Subscript | |
l | liquid phase |
v | vapor phase |
i | 1, 2, 3, 4 …… |
in | incident angle |
re | refracting angle |
References
- Li, X.; Liu, Y. Contact angle model and wettability on the surfaces with microstructures. Mater. Rev. 2009, 23, 101–103. [Google Scholar]
- Young, T. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar]
- Jing, J.; Qi, H.; Liang, A.; Shi, J.; Jiang, H.; Zhang, Y.; Wang, Y.; Sun, N. Experimental research on the effect of pipe surface wettability on flow resistance in laminar flow. Chem. Ind. Eng. Prog. 2017, 36, 3203–3209. [Google Scholar]
- He, B.; Lee, J.; Patankar, N. Contact angle hysteresis on rough hydrophobic surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2004, 248, 101–104. [Google Scholar] [CrossRef]
- Li, J.C.; Wang, F. Water graphene contact surface investigated by pairwise potentials from force-matching PAW-PBE with dispersion correction. J. Chem. Phys. 2017, 146, 054702. [Google Scholar] [CrossRef] [PubMed]
- Kubiak, K.J.; Wilson, M.C.T.; Mathia, T.G.; Carras, S. Dynamics of contact line motion during the wetting of rough surfaces and correlation with topographical surface parameters. Scanning 2011, 33, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Drelich, J. Guidelines to measurements of reproducible contact angles using a sessile-drop technique. Surf. Innov. 2013, 1, 248–254. [Google Scholar] [CrossRef]
- Lin, C.S.; Zhu, Z.L.; Yin, W.Z.; Jiang, Y.H. Droplet pinning on spherical surfaces: Prediction of apparent advancing and receding angles. Surf. Technol. 2021, 50, 95–100. [Google Scholar]
- McHale, G.; Shirtcliffe, N.J.; Newton, M.I. Contact-Angle Hysteresis on Super-Hydrophobic Surfaces. Langmuir 2004, 20, 10146–10149. [Google Scholar] [CrossRef] [PubMed]
- Carlos, R.J.; Bachmann, J. Analyzing capillary-rise method settings for contact-angle determination of granular media. J. Plant Nutr. Soil Sci. 2012, 176, 16–19. [Google Scholar]
- Kong, L.; Cao, H.; Zhang, Y. External factors for contact angle of mineral filler with capillary rise method and solutions. J. Harbin Inst. Technol. 2017, 49, 85–89. [Google Scholar]
- Wang, F.; Britta, N. Wetting and Contact-Angle Hysteresis: Density Asymmetry and van der Waals Force. Phys. Rev. Lett. 2024, 132, 126202. [Google Scholar] [CrossRef] [PubMed]
- Al-Zaidi, E.; Fan, X. Effect of aqueous electrolyte concentration and valency on contact angle on flat glass surfaces and inside capillary quartz glass. Colloids Surf. A Physicochem. Eng. Asp. 2018, 543, 1–8. [Google Scholar] [CrossRef]
- Li, X.; Fan, X.; Brandani, S. Difference in pore contact angle and the contact angle measured on a flat surface and in an open space. Chem. Eng. Sci. 2014, 117, 137–145. [Google Scholar] [CrossRef]
- Gu, J. The Contact Angle of Fluid in SiO2 Microtubes and Its Influencing Factors. Master’s Thesis, China University of Petroleum, Beijing, China, 2021. [Google Scholar]
- Cheong, B.H.-P.; Ng, T.W.; Yu, Y.; Liew, O.W. Using the interface line in a capillary for small volume contact angle measurement in biochemical applications. Langmuir 2011, 27, 11925–11929. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.; Li, M.; Li, N. Method of Measuring Contact Angle of Liquid in Capillary. Sci. Technol. Eng. 2015, 15, 92–94. [Google Scholar]
- Yin, D.; Wang, H.; Ma, H.B.; Ji, Y.L. Operation limitation of an oscillating heat pipe. Int. J. Heat Mass Transf. 2016, 94, 366–372. [Google Scholar] [CrossRef]
- Ma, C.; Yang, L.; Li, M.M.; He, J.L.; Hua, C.L.; Wang, L.; Li, G.F.; Liu, J.L.; Yang, J.; Liu, K.; et al. Closed-loop two-phase pulsating heat pipe towards heat export and thermal error control for spindle-bearing system of large-size vertical machining center. Appl. Therm. Eng. 2025, 269, 125993. [Google Scholar] [CrossRef]
- Glowacka, W.K.; Jain, H.; Okura, M.; Maimaitiming, A.; Mamatjan, Y.; Nejad, R.; Farooq, H.; Taylor, M.D.; Aldape, K.; Kongkham, P. 5-Hydroxymethylcytosine preferentially targets genes upregulated in isocitrate dehydrogenase 1 mutant high-grade glioma. Acta Neuropathol. 2018, 135, 617–634. [Google Scholar] [CrossRef] [PubMed]
Working Fluid | tsat (°C) | ρl (kg/m3) | ρv (kg/m3) | cp (kJ/(kg·K)) | Hlv (kJ/kg) | σ (N/m) |
---|---|---|---|---|---|---|
Distilled water | 100 | 958 | 0.6 | 4.18 | 2256.7 | 0.0589 |
Serial Number | Measurement Value (°) | Actual Value (°) | Difference (°) |
---|---|---|---|
1 | 54.32 | 49.22 | 5.10 |
2 | 54.17 | 51.16 | 3.01 |
3 | 54.53 | 52.69 | 1.84 |
Serial Number | Measurement Value (°) | Actual Value (°) | Difference (°) |
---|---|---|---|
1 | 45.17 | 41.98 | 3.19 |
2 | 45.63 | 40.90 | 4.74 |
3 | 47.57 | 41.95 | 5.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, W.; Ran, M.; Pan, L. Influence and Correction of Refraction Phenomenon in Liquid Contact Angle Measurement in Capillary Tube. Colloids Interfaces 2025, 9, 25. https://doi.org/10.3390/colloids9030025
Shi W, Ran M, Pan L. Influence and Correction of Refraction Phenomenon in Liquid Contact Angle Measurement in Capillary Tube. Colloids and Interfaces. 2025; 9(3):25. https://doi.org/10.3390/colloids9030025
Chicago/Turabian StyleShi, Weixiu, Mengmeng Ran, and Lisheng Pan. 2025. "Influence and Correction of Refraction Phenomenon in Liquid Contact Angle Measurement in Capillary Tube" Colloids and Interfaces 9, no. 3: 25. https://doi.org/10.3390/colloids9030025
APA StyleShi, W., Ran, M., & Pan, L. (2025). Influence and Correction of Refraction Phenomenon in Liquid Contact Angle Measurement in Capillary Tube. Colloids and Interfaces, 9(3), 25. https://doi.org/10.3390/colloids9030025