Network-Based Methods for Identifying Key Active Proteins in the Extracellular Electron Transfer Process in Shewanella oneidensis MR-1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of Active Proteins
2.2. Protein–Protein Interaction
2.3. Transcriptional Regulatory Interaction
2.4. Network Centralization
2.5. Network Motifs and Functional Modules
3. Results and Discussion
3.1. Identification of Active Proteins Involved in Activating the EET Process
3.2. Networking of Active Protein Involved in Activating the EET Process
3.3. Active Network Motifs Involved in Activating the EET Process
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hau, H.H.; Gralnick, J.A. Ecology and biotechnology of the genus Shewanella. Annu. Rev. Microbiol. 2007, 61, 237–258. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Dong, H.; Reguera, G.; Beyenal, H.; Lu, A.; Liu, J.; Yu, H.Q.; Fredrickson, J.K. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 2016, 14, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Xing, D.; Lu, L.; Wei, M.; Liu, B.; Ren, N. Ferric iron enhances electricity generation by Shewanella oneidensis MR-1 in MFCs. Bioresour. Technol. 2013, 135, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liang, P.; Liu, P.; Wang, D.; Miao, B.; Huang, X. A novel microbial fuel cell sensor with biocathode sensing element. Biosens. Bioelectron. 2017, 94, 344–350. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, M.Y.; Wanger, G.; Leung, K.M.; Yuzvinsky, T.D.; Southam, G.; Yang, J.; Lau, W.M.; Nealson, K.H.; Gorby, Y.A. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Natl. Acad. Sci. USA 2010, 107, 18127–18131. [Google Scholar] [CrossRef] [PubMed]
- Pirbadian, S.; Barchinger, S.E.; Leung, K.M.; Byun, H.S.; Jangir, Y.; Bouhenni, R.A.; Reed, S.B.; Romine, M.F.; Saffarini, D.A.; Shi, L.; et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl. Acad. Sci. USA 2014, 111, 12883–12888. [Google Scholar] [CrossRef] [PubMed]
- Beliaev, A.S.; Klingeman, D.M.; Klappenbach, J.A.; Wu, L.; Romine, M.F.; Tiedje, J.M.; Nealson, K.H.; Fredrickson, J.K.; Zhou, J. Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J. Bacteriol. 2005, 187, 7138–7145. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Harris, D.P.; Luo, F.; Xiong, W.; Joachimiak, M.; Wu, L.; Dehal, P.; Jacobsen, J.; Yang, Z.; Palumbo, A.V. Snapshot of iron response in Shewanella oneidensis by gene network reconstruction. BMC Genom. 2009, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Barchinger, S.E.; Pirbadian, S.; Sambles, C.; Baker, C.S.; Leung, K.M.; Burroughs, N.J.; El-Naggar, M.Y.; Golbeck, J.H. Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation. Appl. Environ. Microbiol. 2016, 82, 5428–5443. [Google Scholar] [CrossRef] [PubMed]
- Gingold, H.; Pilpel, Y. Determinants of translation efficiency and accuracy. Mol. Syst. Biol. 2011, 7, 481. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, Y.; Choi, P.J.; Li, G.-W.; Chen, H.; Babu, M.; Hearn, J.; Emili, A.; Xie, X.S. Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells. Science 2010, 329, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Stettner, A.I.; Reznik, E.; Paschalidis, I.C.; Segre, D. Mapping the landscape of metabolic goals of a cell. Genome Biol. 2016, 17. [Google Scholar] [CrossRef] [PubMed]
- Baldrian, P.; Lopez-Mondejar, R. Microbial genomics, transcriptomics and proteomics: New discoveries in decomposition research using complementary methods. Appl. Microbiol. Biotechnol. 2014, 98, 1531–1537. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Islam, F.; Li, L.; Long, M.; Yang, C.; Jin, X.; Ali, B.; Mao, B.; Zhou, W. Complementary RNA-Sequencing Based Transcriptomics and iTRAQ Proteomics Reveal the Mechanism of the Alleviation of Quinclorac Stress by Salicylic Acid in Oryza sativa ssp. japonica. Int. J. Mol. Sci. 2017, 18, 1975. [Google Scholar] [CrossRef] [PubMed]
- Barabasi, A.L.; Oltvai, Z.N. Network biology: Understanding the cell’s functional organization. Nat. Rev. Genet. 2004, 5, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Vidal, M.; Cusick, M.E.; Barabasi, A.L. Interactome Networks and Human Disease. Cell 2011, 144, 986–998. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Pan, H.; Zhang, Y.H.; Feng, K.; Kong, X.; Huang, T.; Cai, Y.D. Network-Based Method for Identifying Co-Regeneration Genes in Bone, Dentin, Nerve and Vessel Tissues. Genes 2017, 8, 252. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.C.; Robertson, B.-J.M.W.; Markillie, L.M.; Serres, M.H.; Linggi, B.E.; Aldrich, J.T.; Hill, E.A.; Romine, M.F.; Lipton, M.S.; Wiley, H.S. Changes in translational efficiency is a dominant regulatory mechanism in the environmental response of bacteria. Integr. Biol. 2013, 5, 1393–1406. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Futschik, M.E. Mfuzz: A software package for soft clustering of microarray data. Bioinformation 2007, 2, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, A.; Szklarczyk, D.; Frankild, S.; Kuhn, M.; Simonovic, M.; Roth, A.; Lin, J.; Minguez, P.; Bork, P.; von Mering, C.; et al. STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013, 41, D808–D815. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef] [PubMed]
- Novichkov, P.S.; Kazakov, A.E.; Ravcheev, D.A.; Leyn, S.A.; Kovaleva, G.Y.; Sutormin, R.A.; Kazanov, M.D.; Riehl, W.; Arkin, A.P.; Dubchak, I.; et al. RegPrecise 3.0—A resource for genome-scale exploration of transcriptional regulation in bacteria. BMC Genom. 2013, 14, 745. [Google Scholar] [CrossRef]
- Csardi, G.; Nepusz, T. The igraph software package for complex network research. InterJournal 2006, CX.18, 1695. [Google Scholar]
- Wernicke, S.; Rasche, F. FANMOD: A tool for fast network motif detection. Bioinformatics 2006, 22, 1152–1153. [Google Scholar] [CrossRef] [PubMed]
- Guimera, R.; Nunes Amaral, L.A. Functional cartography of complex metabolic networks. Nature 2005, 433, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Hung, J.H. Gene Set/Pathway enrichment analysis. Methods Mol. Biol. 2013, 939, 201–213. [Google Scholar] [PubMed]
- Pinchuk, G.E.; Hill, E.A.; Geydebrekht, O.V.; De Ingeniis, J.; Zhang, X.; Osterman, A.; Scott, J.H.; Reed, S.B.; Romine, M.F.; Konopka, A.E.; et al. Constraint-based model of Shewanella oneidensis MR-1 metabolism: A tool for data analysis and hypothesis generation. PLoS Comput. Biol. 2010, 6, e1000822. [Google Scholar] [CrossRef] [PubMed]
- Ideker, T.; Krogan, N.J. Differential network biology. Mol. Syst. Biol. 2012, 8, 565. [Google Scholar] [CrossRef] [PubMed]
- The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2017, 45, D158–D169. [Google Scholar]
- Saitoh, F.; Wakatsuki, S.; Tokunaga, S.; Fujieda, H.; Araki, T. Glutamate signals through mGluR2 to control Schwann cell differentiation and proliferation. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.W.; Shu, C.J.; Sun, X. Cofactors Reconcile Multiple Signals in the Extracellular Electron Transfer Pathways in Shewanella oneidensis MR-1. J. Theor. Biol. 2017. under review. [Google Scholar]
- Tatsuta, T.; Joo, D.M.; Calendar, R.; Akiyama, Y.; Ogura, T. Evidence for an active role of the DnaK chaperone system in the degradation of sigma 32. FEBS Lett. 2000, 478, 271–275. [Google Scholar] [CrossRef]
- Callebaut, I.; Prat, K.; Meurice, E.; Mornon, J.P.; Tomavo, S. Prediction of the general transcription factors associated with RNA polymerase II in Plasmodium falciparum: Conserved features and differences relative to other eukaryotes. BMC Genom. 2005, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, D.; Gregory, S.T.; O’Connor, M. Error-prone and error-restrictive mutations affecting ribosomal protein S12. J. Mol. Biol. 2011, 410, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mathy, N.; Pellegrini, O.; Serganov, A.; Patel, D.J.; Ehresmann, C.; Portier, C. Specific recognition of rpsO mRNA and 16S rRNA by Escherichia coli ribosomal protein S15 relies on both mimicry and site differentiation. Mol. Microbiol. 2004, 52, 661–675. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Barua, S.; Liang, Y.; Wu, L.; Dong, Y.; Reed, S.; Chen, J.; Culley, D.; Kennedy, D.; Yang, Y.; et al. Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration. Microbial. Biotechnol. 2010, 3, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.K.; Melendez, J.A. Mitochondrial redox control of matrix metalloproteinases. Free Radic. Biol. Med. 2004, 37, 768–784. [Google Scholar] [CrossRef] [PubMed]
- Alon, U. Network motifs: Theory and experimental approaches. Nat. Rev. Genet. 2007, 8, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.W.; Sun, X. A Comparative Study of Network Motifs in the Integrated Transcriptional Regulation and Protein Interaction Networks of Shewanella. IEEE/ACM Trans. Comput. Biol. Bioinform. 2017. under review. [Google Scholar]
- Fischer, E.; Sauer, U. Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat. Genet. 2005, 37, 636–640. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Deutschbauer, A.M.; Skerker, J.M.; Wetmore, K.M.; Ruths, T.; Mar, J.S.; Kuehl, J.V.; Shao, W.; Arkin, A.P. Indirect and suboptimal control of gene expression is widespread in bacteria. Mol. Syst. Biol. 2013, 9, 660. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Wetmore, K.M.; Deutschbauer, A.M.; Arkin, A.P. A Comparison of the Costs and Benefits of Bacterial Gene Expression. PLoS ONE 2016, 11, e0164314. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.S.; Pandini, A.; Annibale, A.; Coolen, A.C.; Thomas, N.S.; Fraternali, F. Bridging topological and functional information in protein interaction networks by short loops profiling. Sci. Rep. 2015, 5, 8540. [Google Scholar] [CrossRef] [PubMed]
- Su, N.Y.; Ouni, I.; Papagiannis, C.V.; Kaiser, P. A dominant suppressor mutation of the met30 cell cycle defect suggests regulation of the Saccharomyces cerevisiae Met4-Cbf1 transcription complex by Met32. J. Biol. Chem. 2008, 283, 11615–11624. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Squier, T.C.; Zachara, J.M.; Fredrickson, J.K. Respiration of metal (hydr)oxides by Shewanella and Geobacter: A key role for multihaem c-type cytochromes. Mol. Microbiol. 2007, 65, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Hartshorne, R.S.; Reardon, C.L.; Ross, D.; Nuester, J.; Clarke, T.A.; Gates, A.J.; Mills, P.C.; Fredrickson, J.K.; Zachara, J.M.; Shi, L.; et al. Characterization of an electron conduit between bacteria and the extracellular environment. Proc. Natl. Acad. Sci. USA 2009, 106, 22169–22174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coursolle, D.; Gralnick, J.A. Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1. Mol. Microbiol. 2010, 77, 995–1008. [Google Scholar] [CrossRef] [PubMed]
- Marritt, S.J.; Lowe, T.G.; Bye, J.; McMillan, D.G.; Shi, L.; Fredrickson, J.; Zachara, J.; Richardson, D.J.; Cheesman, M.R.; Jeuken, L.J.; et al. A functional description of CymA, an electron-transfer hub supporting anaerobic respiratory flexibility in Shewanella. Biochem. J. 2012, 444, 465–474. [Google Scholar] [CrossRef] [PubMed]
- White, G.F.; Shi, Z.; Shi, L.; Wang, Z.; Dohnalkova, A.C.; Marshall, M.J.; Fredrickson, J.K.; Zachara, J.M.; Butt, J.N.; Richardson, D.J.; et al. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals. Proc. Natl. Acad. Sci. USA 2013, 110, 6346–6351. [Google Scholar] [CrossRef] [PubMed]
- Breuer, M.; Rosso, K.M.; Blumberger, J.; Butt, J.N. Multi-haem cytochromes in Shewanella oneidensis MR-1: Structures, functions and opportunities. J. R. Soc. Interface 2015, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plate, L.; Marletta, M.A. Nitric oxide modulates bacterial biofilm formation through a multicomponent cyclic-di-GMP signaling network. Mol. Cell 2012, 46, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Maier, T.M.; Myers, C.R. The outer membrane protein Omp35 affects the reduction of Fe(III), nitrate, and fumarate by Shewanella oneidensis MR-1. BMC Microbiol. 2004, 4, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szeinbaum, N.; Burns, J.L.; DiChristina, T.J. Electron transport and protein secretion pathways involved in Mn(III) reduction by Shewanella oneidensis. Environ. Microbiol. Rep. 2014, 6, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Kouzuma, A.; Oba, H.; Tajima, N.; Hashimoto, K.; Watanabe, K. Electrochemical selection and characterization of a high current-generating Shewanella oneidensis mutant with altered cell-surface morphology and biofilm-related gene expression. BMC Microbiol. 2014, 14, 190. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Yu, Y.Y.; Deng, X.P.; Ng, C.K.; Cao, B.; Wang, J.Y.; Rice, S.A.; Kjelleberg, S.; Song, H. Enhanced Shewanella biofilm promotes bioelectricity generation. Biotechnol. Bioeng. 2015, 112, 2051–2059. [Google Scholar] [CrossRef] [PubMed]
- Barnhart, M.M.; Chapman, M.R. Curli biogenesis and function. Annu. Rev. Microbiol. 2006, 60, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Price, M.S.; Chao, L.Y.; Marletta, M.A. Shewanella oneidensis MR-1 H-NOX regulation of a histidine kinase by nitric oxide. Biochemistry 2007, 46, 13677–13683. [Google Scholar] [CrossRef] [PubMed]
- Erbil, W.K.; Price, M.S.; Wemmer, D.E.; Marletta, M.A. A structural basis for H-NOX signaling in Shewanella oneidensis by trapping a histidine kinase inhibitory conformation. Proc. Natl. Acad. Sci. USA 2009, 106, 19753–19760. [Google Scholar] [CrossRef] [PubMed]
- Fredrickson, J.K.; Romine, M.F.; Beliaev, A.S.; Auchtung, J.M.; Driscoll, M.E.; Gardner, T.S.; Nealson, K.H.; Osterman, A.L.; Pinchuk, G.; Reed, J.L.; et al. Towards environmental systems biology of Shewanella. Nat. Rev. Microbiol. 2008, 6, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Sundararajan, A.; Kurowski, J.; Yan, T.; Klingeman, D.M.; Joachimiak, M.P.; Zhou, J.; Naranjo, B.; Gralnick, J.A.; Fields, M.W. Shewanella oneidensis MR-1 Sensory Box Protein Involved in Aerobic and Anoxic Growth. Appl. Environ. Microbiol. 2011, 77, 4647–4656. [Google Scholar] [CrossRef] [PubMed]
- Batagelj, V.; Mrvar, A. Pajek—Program for large network analysis. Connections 1998, 21, 47–57. [Google Scholar]
Confidence Score | Protein Interaction | Regulatory Interaction | Total | |||
---|---|---|---|---|---|---|
Proteins | Interactions | Genes | Interactions | Nodes | Arcs | |
CS_0.4 | 1636 (1711 *) | 17,577 | 582 | 714 | 1873 | 35,868 |
CS_0.5 | 1577 (1679 *) | 12,343 | 579 | 712 | 1815 | 25,398 |
CS_0.6 | 1483 (1613 *) | 9460 | 574 | 705 | 1728 | 19,625 |
CS_0.7 | 1366 (1520 *) | 7030 | 567 | 697 | 1617 | 14,757 |
CS_0.8 | 1162 (1310 *) | 4972 | 536 | 662 | 1408 | 10,606 |
CS_0.9 | 997 (1118 *) | 3112 | 502 | 618 | 1229 | 6842 |
Rank | CS_0.4 | CS_0.5 | CS_0.6 | CS_0.7 | CS_0.8 | CS_0.9 |
---|---|---|---|---|---|---|
1 | SO_1325 | SO_1325 | SO_1325 | SO_1325 | SO_1325 | SO_0228 |
2 | SO_3292 | SO_3292 | SO_3292 | SO_3292 | SO_0226 | SO_1325 |
3 | SO_0435 | SO_3430 | SO_1126 | SO_3471 | SO_1207 | SO_2491 |
4 | SO_3430 | SO_3440 | SO_3430 | SO_3430 | SO_2491 | SO_0226 |
5 | SO_3440 | SO_1126 | SO_3471 | SO_3209 | SO_3471 | SO_0009 |
6 | SO_1126 | SO_0435 | SO_0435 | SO_1126 | SO_3292 | SO_1207 |
7 | SO_3471 | SO_3471 | SO_3440 | SO_0435 | SO_1926 | SO_2912 |
8 | SO_2619 | SO_2619 | SO_2619 | SO_2491 | SO_3430 | SO_3292 |
9 | SO_3432 | SO_3432 | SO_1207 | SO_1926 | SO_2406 | SO_0610 |
10 | SO_4749 | SO_4749 | SO_3209 | SO_3440 | SO_1126 | SO_1677 |
11 | SO_1197 | SO_1926 | SO_1926 | SO_4747 | SO_0236 | SO_3471 |
12 | SO_0603 | SO_4215 | SO_4747 | SO_0226 | SO_0009 | SO_0237 |
13 | SO_2411 | SO_4747 | SO_3432 | SO_4215 | SO_0610 | SO_3207 |
14 | SO_1926 | SO_0603 | SO_4749 | SO_4749 | SO_3209 | SO_4428 |
15 | SO_4215 | SO_0226 | SO_3441 | SO_1207 | SO_0435 | SO_3209 |
16 | SO_3441 | SO_3209 | SO_4586 | SO_3432 | SO_2780 | SO_2619 |
17 | SO_1207 | SO_0009 | SO_0770 | SO_2619 | SO_0237 | SO_1629 |
18 | SO_4586 | SO_1197 | SO_0009 | SO_4586 | SO_4747 | SO_3210 |
19 | SO_4747 | SO_1207 | SO_4215 | SO_0009 | SO_0608 | SO_0247 |
20 | SO_3639 | SO_3441 | SO_0226 | SO_0228 | SO_0425 | SO_3639 |
21 | SO_0226 | SO_4016 | SO_0610 | SO_2406 | SO_2619 | SO_3430 |
22 | SO_1552 | SO_4586 | SO_1197 | SO_0610 | SO_1473 | SO_0435 |
Rank | ID | Name | Number | Biological Function |
---|---|---|---|---|
1 | SO_0226 | RpsL | 6 | 30S ribosomal protein S12 |
2 | SO_0435 | HemE | 6 | Uroporphyrinogen decarboxylase |
3 | SO_1207 | RpsO | 6 | 30S ribosomal protein S15 |
4 | SO_1325 | GltB | 6 | NADPH-dependent glutamate synthase large subunit GltB |
5 | SO_2619 | MetG | 6 | Methionine-tRNA ligase |
6 | SO_3292 | GuaA | 6 | GMP synthase [glutamine-hydrolyzing] |
7 | SO_3430 | RecA | 6 | Protein RecA |
8 | SO_3471 | GlyA | 6 | Serine hydroxymethyltransferase |
9 | SO_0009 | DnaN | 5 | DNA polymerase III subunit beta |
10 | SO_1126 | DnaK | 5 | Chaperone protein DnaK |
11 | SO_1926 | GltA | 5 | Citrate synthase |
12 | SO_3209 | CheY | 5 | Chemotaxis signal transduction system response regulator CheY |
13 | SO_4747 | AtpD | 5 | ATP synthase subunit beta |
14 | SO_0610 | PetC | 4 | Ubiquinol-cytochrome c reductase cytochrome c1 subunit PetC |
15 | SO_3432 | RpoS | 4 | RNA polymerase sigma factor RpoS |
16 | SO_3440 | Eno | 4 | Enolase |
17 | SO_4215 | FtsZ | 4 | Cell division protein FtsZ |
18 | SO_4586 | FtsY | 4 | Signal recognition particle receptor FtsY |
19 | SO_4749 | AtpA | 4 | ATP synthase subunit alpha |
20 | SO_1197 | FtsH | 3 | ATP-dependent zinc metalloprotease FtsH |
ID | Motif Name | Illustration | Times | Z-Score (CS_0.4) | Z-Score (CS_0.5) | Z-Score (CS_0.6) | Z-Score (CS_0.7) | Z-Score (CS_0.8) | Z-Score (CS_0.9) |
---|---|---|---|---|---|---|---|---|---|
1 | Co-regulated PPI | 6 | 10,462 | 6589.7 | 11,844 | 5282.5 | 5888.5 | 2087.4 | |
2 | Protein Clique | 6 | 191.25 | 240.78 | 230.85 | 370.21 | 389.55 | 643.88 | |
3 | Co-regulated Proteins | 6 | 166.86 | 215.43 | 214.67 | 352.11 | 367.41 | 624.95 | |
4 | PPI Regulating | 6 | 61.387 | 61.452 | 68.695 | 51.728 | 46.724 | 28.317 | |
5 | Bi-feedforward Loop | 6 | 6.5625 | 6.4191 | 6.6984 | 7.0355 | 6.1486 | 4.7833 | |
6 | Regulatory Cascade with a Feedback | 6 | 5.1718 | 5.4026 | 5.9498 | 7.1723 | 7.0436 | 10.383 | |
7 | Regulated PPI | 1 | 4.0703 | — | — | — | — | — | |
8 | Feedback with a PPI | 5 | 3.0341 | 2.4203 | 3.3099 | 4.9955 | 6.0888 | — | |
9 | Bi-regulated Protein | 1 | — | — | — | — | — | 2.288 | |
10 | Regulatory Cascade | 1 | — | — | — | — | — | 2.2782 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, D.; Sun, X. Network-Based Methods for Identifying Key Active Proteins in the Extracellular Electron Transfer Process in Shewanella oneidensis MR-1. Genes 2018, 9, 41. https://doi.org/10.3390/genes9010041
Ding D, Sun X. Network-Based Methods for Identifying Key Active Proteins in the Extracellular Electron Transfer Process in Shewanella oneidensis MR-1. Genes. 2018; 9(1):41. https://doi.org/10.3390/genes9010041
Chicago/Turabian StyleDing, Dewu, and Xiao Sun. 2018. "Network-Based Methods for Identifying Key Active Proteins in the Extracellular Electron Transfer Process in Shewanella oneidensis MR-1" Genes 9, no. 1: 41. https://doi.org/10.3390/genes9010041
APA StyleDing, D., & Sun, X. (2018). Network-Based Methods for Identifying Key Active Proteins in the Extracellular Electron Transfer Process in Shewanella oneidensis MR-1. Genes, 9(1), 41. https://doi.org/10.3390/genes9010041