B2B: Bladder Cancer Summary
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AC | adjuvant chemotherapy |
ADC | antibody-drug conjugate |
AUA | American Urological Association |
Ba/Sq | basal/squamous |
BCa | bladder cancer |
BCG | bacillus Calmette-Guérin |
CI | confidence interval |
CIS | carcinoma in situ |
CR | complete response |
ctDNA | circulating tumour DNA |
dd-MVAC | dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin |
DFS | disease-free survival |
EAU | European Association of Urology |
EFS | event-free survival |
EORTC | European Organisation for Research and Treatment of Cancer |
EV | enfortumab vedotin |
FDA | U.S. Food and Drug Administration |
GC | gemcitabine-cisplatin |
GD | gemcitabine-docetaxel |
GFR | glomerular filtration rate |
GM-CSF | granulocyte-macrophage colony-stimulating factor |
HG | high grade |
HIVEC | hyperthermic intra-vesical chemotherapy |
HR | high risk |
HRQOL | health-related quality of life |
IBCG | International Bladder Cancer Group |
IL | interleukin |
IO | immunotherapy |
IR | intermediate risk |
IRCC | International Robotic Cystectomy Consortium |
ITT | intent-to-treat |
IVC | intravesical chemotherapy |
LG | low grade |
LR | low risk |
LumP | luminal papillary |
MIBC | muscle-invasive bladder cancer |
MMC | mitomycin C |
mUC | metastatic urothelial carcinoma |
NAC | neoadjuvant chemotherapy |
NE | neuroendocrine |
NMIBC | non–muscle-invasive bladder cancer |
OR | operating room |
OS | overall survival |
pCR | pathologic complete response |
PD-L1 | programmed death-ligand 1 |
PFS | progression-free survival |
QALY | quality-adjusted life-year |
RC | radical cystectomy |
RCT | randomized controlled trial |
RFS | recurrence-free survival |
RITE | radiofrequency-induced thermo-chemotherapeutic effect |
RT | reverse thermal |
TMT | trimodal therapy |
TURBT | transurethral resection of bladder tumour |
References
- Holzbeierlein, J.M.; Bixler, B.R.; Buckley, D.I.; Chang, S.S.; Holmes, R.; James, A.C.; Kirkby, E.; McKiernan, J.M.; Schuckman, A.K. Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO guideline: 2024 amendment. J. Urol. 2024, 211, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Babjuk, M.; Burger, M.; Capoun, O.; Cohen, D.; Compérat, E.M.; Dominguez Escrig, J.L.; Gontero, P.; Liedberg, F.; Masson-Lecomte, A.; Mostafid, A.H.; et al. European Association of Urology Guidelines on non-muscle-invasive bladder cancer (Ta, T1, and carcinoma in situ). Eur. Urol. 2022, 81, 75–94. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.S.; Steinberg, G.; Witjes, J.A.; Li, R.; Shariat, S.F.; Roupret, M.; Babjuk, M.; Bivalacqua, T.J.; Psutka, S.P.; Williams, S.B.; et al. Intermediate-risk non-muscle-invasive bladder cancer: Updated consensus definition and management recommendations from the International Bladder Cancer Group. Eur. Urol. Oncol. 2022, 5, 505–516. [Google Scholar] [CrossRef]
- Soria, F.; Rosazza, M.; Livoti, S.; Moschini, M.; De Angelis, M.; Giudice, F.D.; Pichler, R.; Hurle, R.; Mancon, S.; Carrion, D.M.; et al. Clinical validation of the intermediate-risk non–muscle-invasive bladder cancer scoring system and substratification model proposed by the International Bladder Cancer Group: A multicenter Young Academic Urologists Urothelial Working Group collaboration. Eur. Urol. Oncol. 2024, 7, 1497–1503. [Google Scholar] [CrossRef]
- Sylvester, R.J.; Oosterlinck, W.; Holmang, S.; Sydes, M.R.; Birtle, A.; Gudjonsson, S.; De Nunzio, C.; Okamura, K.; Kaasinen, E.; Solsona, E.; et al. Systematic review and individual patient data meta-analysis of randomized trials comparing a single immediate instillation of chemotherapy after transurethral resection with transurethral resection alone in patients with stage pTa-pT1 urothelial carcinoma of the bladder: Which patients benefit from the instillation? Eur. Urol. 2016, 69, 231–244. [Google Scholar] [CrossRef]
- Messing, E.M.; Tangen, C.M.; Lerner, S.P.; Sahasrabudhe, D.M.; Koppie, T.M.; Wood, D.P.; Mack, P.C.; Svatek, R.S.; Evans, C.P.; Hafez, K.S.; et al. Effect of intravesical instillation of gemcitabine vs. saline immediately following resection of suspected low-grade non-muscle-invasive bladder cancer on tumor recurrence: SWOG S0337 randomized clinical trial. JAMA 2018, 319, 1880–1888. [Google Scholar] [CrossRef]
- Au, J.L.S.; Badalament, R.A.; Wientjes, M.G.; Young, D.C.; Warner, J.A.; Venema, P.L.; Pollifrone, D.L.; Harbrecht, J.D.; Chin, J.L.; Lerner, S.P.; et al. Methods to improve efficacy of intravesical mitomycin C: Results of a randomized phase III trial. J. Natl. Cancer Inst. 2001, 93, 597–604. [Google Scholar] [CrossRef]
- Djafari, A.A.; Javanmard, B.; Razzaghi, M.; Hojjati, S.A.; Razzaghi, Z.; Faraji, S.; Rahavian, A.; Garousi, M. Intravesical gemcitabine versus intravesical Bacillus Calmette-Guerin for the treatment of intermediate-risk non-muscle invasive bladder cancer: A randomized controlled trial. Urol. J. 2023, 20, 123–128. [Google Scholar] [CrossRef]
- Lamm, D.L.; Blumenstein, B.A.; Crissman, J.D.; Montie, J.E.; Gottesman, J.E.; Lowe, B.A.; Sarosdy, M.F.; Bohl, R.D.; Grossman, H.B.; Beck, T.M.; et al. Maintenance bacillus Calmette-Guerin immunotherapy for recurrent TA, T1 and carcinoma in situ transitional cell carcinoma of the bladder: A randomized Southwest Oncology Group Study. J. Urol. 2000, 163, 1124–1129. [Google Scholar] [CrossRef]
- Steinberg, R.L.; Thomas, L.J.; Brooks, N.; Mott, S.L.; Vitale, A.; Crump, T.; Rao, M.Y.; Daniels, M.J.; Wang, J.; Nagaraju, S.; et al. Multi-institution evaluation of sequential gemcitabine and docetaxel as rescue therapy for nonmuscle invasive bladder cancer. J. Urol. 2020, 203, 902–908. [Google Scholar] [CrossRef]
- Prasad, S.M.; Huang, W.C.; Shore, N.D.; Hu, B.; Bjurlin, M.; Brown, G.; Genov, P.; Shishkov, D.; Khuskivadze, A.; Ganev, T.; et al. Treatment of low-grade intermediate-risk nonmuscle-invasive bladder cancer with UGN-102 ± transurethral resection of bladder tumor compared to transurethral resection of bladder tumor monotherapy: A randomized, controlled, phase 3 trial (ATLAS). J. Urol. 2023, 210, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Kates, M.; Chu, X.; Hahn, N.; Pietzak, E.; Smith, A.; Shevrin, D.H.; Crispen, P.; Williams, S.B.; Daneshmand, S.; Packiam, V.T.; et al. Background and update for ECOG-ACRIN EA8212: A randomized phase 3 trial of intravesical bacillus Calmette-Guérin (BCG) versus intravesical docetaxel and gemcitabine treatment in BCG-naïve high-grade non-muscle-invasive bladder cancer (BRIDGE). Eur. Urol. Focus 2023, 9, 561–563. [Google Scholar] [CrossRef] [PubMed]
- UroToday. AUA 2024: MoonRISe-1: Phase 3 Study of TAR-210, an Erdafitinib Intravesical Delivery System, Versus Intravesical Chemotherapy in Patients with Intermediate-Risk Non–Muscle-Invasive Bladder Cancer with Susceptible FGFR Alterations. Available online: https://www.urotoday.com/conference-highlights/aua-2024/aua-2024-bladder-cancer/151836-aua-2024-moonrise-1-phase-3-study-of-tar-210-an-erdafitinib-intravesical-delivery-system-versus-intravesical-chemotherapy-in-patients-with-intermediate-risk-non-muscle-invasive-bladder-cancer-with-susceptible-fgfr-alterations.html (accessed on 28 October 2024).
- Necchi, A.; Catto, J.W.F.; Powles, T.B.; Guerrero-Ramos, F.; Simone, G.; Shore, N.D.; Salinas, J.; Merseburger, A.S.; Roumiguié, M.; Kitamura, H.; et al. 2407TiP SunRISe-3: TAR-200 plus cetrelimab (CET) or TAR-200 versus intravesical bacillus Calmette-Guérin (BCG) in patients (pts) with BCG-naive high-risk non-muscle-invasive bladder cancer (HR NMIBC). Ann. Oncol. 2023, 34, S1224. [Google Scholar] [CrossRef]
- Damrauer, J.S.; Roell, K.R.; Smith, M.A.; Sun, X.; Kirk, E.L.; Hoadley, K.A.; Benefield, H.C.; Iyer, G.; Solit, D.B.; Milowsky, M.I.; et al. Identification of a novel inflamed tumor microenvironment signature as a predictive biomarker of bacillus Calmette-Guérin immunotherapy in non-muscle-invasive bladder cancer. Clin. Cancer Res. 2021, 27, 4599–4609. [Google Scholar] [CrossRef]
- Choi, W.; Porten, S.; Kim, S.; Willis, D.; Plimack, E.R.; Hoffman-Censits, J.; Roth, B.; Cheng, T.; Tran, M.; Lee, I.L.; et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 2014, 25, 152–165. [Google Scholar] [CrossRef]
- Sjödahl, G.; Lauss, M.; Lövgren, K.; Chebil, G.; Gudjonsson, S.; Veerla, S.; Patschan, O.; Aine, M.; Fernö, M.; Ringnér, M.; et al. A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res. 2012, 18, 3377–3386. [Google Scholar] [CrossRef]
- Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.A.; Akbani, R.; et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 2017, 171, 540–556.e25. [Google Scholar] [CrossRef]
- Kamoun, A.; de Reyniès, A.; Allory, Y.; Sjödahl, G.; Robertson, A.G.; Seiler, R.; Hoadley, K.A.; Groeneveld, C.S.; Al-Ahmadie, H.; Choi, W.; et al. A consensus molecular classification of muscle-invasive bladder cancer. Eur. Urol. 2020, 77, 420–433. [Google Scholar] [CrossRef]
- Efstathiou, J.A.; Mouw, K.W.; Gibb, E.A.; Liu, Y.; Wu, C.L.; Drumm, M.R.; da Costa, J.B.; du Plessis, M.; Wang, N.Q.; Davicioni, E.; et al. Impact of immune and stromal infiltration on outcomes following bladder-sparing trimodality therapy for muscle-invasive bladder cancer. Eur. Urol. 2019, 76, 59–68. [Google Scholar] [CrossRef]
- Robertson, A.G.; Groeneveld, C.S.; Jordan, B.; Lin, X.; McLaughlin, K.A.; Das, A.; Fall, L.A.; Fantini, D.; Taxter, T.J.; Mogil, L.S.; et al. Identification of differential tumor subtypes of T1 bladder cancer. Eur. Urol. 2020, 78, 533–537. [Google Scholar] [CrossRef]
- Da Costa, J.B.; Gibb, E.A.; Bivalacqua, T.J.; Liu, Y.; Zarni Oo, H.; Miyamoto, D.T.; Alshalalfa, M.; Davicioni, E.; Wright, J.; Dall’Era, M.A.; et al. Molecular characterization of neuroendocrine-like bladder cancer. Clin. Cancer Res. 2019, 25, 3908–3920. [Google Scholar] [CrossRef]
- Seiler, R.; Ashab, H.A.D.; Erho, N.; van Rhijn, B.W.G.; Winters, B.; Douglas, J.; Van Kessel, K.E.; Fransen van de Putte, E.E.; Sommerlad, M.; Wang, N.Q.; et al. Impact of molecular subtypes in muscle-invasive bladder cancer on predicting response and survival after neoadjuvant chemotherapy. Eur. Urol. 2017, 72, 544–554. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Kockx, M.; Rodriguez-Vida, A.; Duran, I.; Crabb, S.J.; Van Der Heijden, M.S.; Szabados, B.; Pous, A.F.; Gravis, G.; Herranz, U.A.; et al. Clinical efficacy and biomarker analysis of neoadjuvant atezolizumab in operable urothelial carcinoma in the ABACUS trial. Nat. Med. 2019, 25, 1706–1714. [Google Scholar] [CrossRef] [PubMed]
- Sjödahl, G.; Abrahamsson, J.; Holmsten, K.; Bernardo, C.; Chebil, G.; Eriksson, P.; Johansson, I.; Kollberg, P.; Lindh, C.; Lövgren, K.; et al. Different responses to neoadjuvant chemotherapy in urothelial carcinoma molecular subtypes. Eur. Urol. 2022, 81, 523–532. [Google Scholar] [CrossRef] [PubMed]
- McConkey, D.J.; Choi, W.; Shen, Y.; Lee, I.L.; Porten, S.; Matin, S.F.; Kamat, A.M.; Corn, P.; Millikan, R.E.; Dinney, C.; et al. A prognostic gene expression signature in the molecular classification of chemotherapy-naïve urothelial cancer is predictive of clinical outcomes from neoadjuvant chemotherapy: A phase 2 trial of dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin with bevacizumab in urothelial cancer. Eur. Urol. 2016, 69, 855–862. [Google Scholar] [CrossRef]
- Lotan, Y.; Boorjian, S.A.; Zhang, J.; Bivalacqua, T.J.; Porten, S.P.; Wheeler, T.; Lerner, S.P.; Hutchinson, R.; Francis, F.; Davicioni, E.; et al. Molecular subtyping of clinically localized urothelial carcinoma reveals lower rates of pathological upstaging at radical cystectomy among luminal tumors. Eur. Urol. 2019, 76, 200–206. [Google Scholar] [CrossRef]
- Taber, A.; Christensen, E.; Lamy, P.; Nordentoft, I.; Prip, F.; Lindskrog, S.V.; Birkenkamp-Demtröder, K.; Okholm, T.L.H.; Knudsen, M.; Pedersen, J.S.; et al. Molecular correlates of cisplatin-based chemotherapy response in muscle invasive bladder cancer by integrated multi-omics analysis. Nat. Commun. 2020, 11, 4858. [Google Scholar] [CrossRef]
- Lerner, S.P.; McConkey, D.J.; Tangen, C.M.; Meeks, J.J.; Flaig, T.W.; Hua, X.; Daneshmand, S.; Alva, A.S.; Lucia, M.S.; Theodorescu, D.; et al. Association of molecular subtypes with pathologic response, PFS, and OS in a phase II study of COXEN with neoadjuvant chemotherapy for muscle-invasive bladder cancer. Clin. Cancer Res. 2024, 30, 444–449. [Google Scholar] [CrossRef]
- Groeneveld, C.S.; Pfister, C.; Culine, S.; Harter, V.; Krucker, C.; Fontugne, J.; Dixon, V.; Sirab, N.; Bernard-Pierrot, I.; de Reyniès, A.; et al. Basal/squamous and mixed subtype bladder cancers present poor outcomes after neoadjuvant chemotherapy in the VESPER trial. Ann. Oncol. 2025, 36, 89–98. [Google Scholar] [CrossRef]
- Crabb, S.J.; Hussain, S.A.; Oughton, J.B.; Swain, J.; Cairns, D.A.; Collinson, M.; Ainsworth, G.; McCready, D.; Griffin, J.; Heath, P.; et al. Use of gene expression patterns to identify unique molecular subtypes in muscle invasive bladder cancer: GUSTO. J. Clin. Oncol. 2024, 42, TPS4621. [Google Scholar] [CrossRef]
- Parekh, D.J.; Reis, I.M.; Castle, E.P.; Gonzalgo, M.L.; Woods, M.E.; Svatek, R.S.; Weizer, A.Z.; Konety, B.R.; Tollefson, M.; Krupski, T.L.; et al. Robot-assisted radical cystectomy versus open radical cystectomy in patients with bladder cancer (RAZOR): An open-label, randomised, phase 3, non-inferiority trial. Lancet 2018, 391, 2525–2536. [Google Scholar] [CrossRef] [PubMed]
- Khetrapal, P.; Wong, J.K.L.; Tan, W.P.; Rupasinghe, T.; Tan, W.S.; Williams, S.B.; Boorjian, S.A.; Wijburg, C.; Parekh, D.J.; Wiklund, P.; et al. Robot-assisted radical cystectomy versus open radical cystectomy: A systematic review and meta-analysis of perioperative, oncological, and quality of life outcomes using randomized controlled trials. Eur. Urol. 2023, 84, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.P.; Al Hussein Al Awamlh, B.; Wu, X.; O’Malley, P.; Inoyatov, I.M.; Ayangbesan, A.; Faltas, B.M.; Christos, P.J.; Scherr, D.S. Recurrence patterns after open and robot-assisted radical cystectomy for bladder cancer. Eur. Urol. 2015, 68, 399–405. [Google Scholar] [CrossRef]
- Calaway, A.C.; Einhorn, L.H.; Masterson, T.A.; Foster, R.S.; Cary, C. Adverse surgical outcomes associated with robotic retroperitoneal lymph node dissection among patients with testicular cancer. Eur. Urol. 2019, 76, 607–609. [Google Scholar] [CrossRef]
- Russo, P.; Blum, K.A.; Weng, S.; Graafland, N.; Bex, A. Outcomes for atypical tumor recurrences following minimally invasive kidney cancer operations. Eur. Urol. Open Sci. 2022, 40, 125–132. [Google Scholar] [CrossRef]
- Catto, J.W.F.; Khetrapal, P.; Ricciardi, F.; Ambler, G.; Williams, N.R.; Al-Hammouri, T.; Khan, M.S.; Thurairaja, R.; Nair, R.; Feber, A.; et al. Effect of robot-assisted radical cystectomy with intracorporeal urinary diversion vs open radical cystectomy on 90-day morbidity and mortality among patients with bladder cancer: A randomized clinical trial. JAMA 2022, 327, 2092–2103. [Google Scholar] [CrossRef]
- Mastroianni, R.; Ferriero, M.; Tuderti, G.; Anceschi, U.; Bove, A.M.; Brassetti, A.; Misuraca, L.; Zampa, A.; Torregiani, G.; Ghiani, E.; et al. Open radical cystectomy versus robot-assisted radical cystectomy with intracorporeal urinary diversion: Early outcomes of a single-center randomized controlled trial. J. Urol. 2022, 207, 982–992. [Google Scholar] [CrossRef]
- Dixon, S.; Hill, H.; Flight, L.; Khetrapal, P.; Ambler, G.; Williams, N.R.; Brew-Graves, C.; Kelly, J.D.; Catto, J.W.F.; iROC Study Team; et al. Cost-effectiveness of robot-assisted radical cystectomy vs open radical cystectomy for patients with bladder cancer. JAMA Netw. Open 2023, 6, e2317255. [Google Scholar] [CrossRef]
- Nix, J.; Smith, A.; Kurpad, R.; Nielsen, M.E.; Wallen, E.M.; Pruthi, R.S. Prospective randomized controlled trial of robotic versus open radical cystectomy for bladder cancer: Perioperative and pathologic results. Eur. Urol. 2010, 57, 196–201. [Google Scholar] [CrossRef]
- Bochner, B.H.; Sjoberg, D.D.; Laudone, V.P. A randomized trial of robot-assisted laparoscopic radical cystectomy. N. Engl. J. Med. 2014, 371, 389–390. [Google Scholar] [CrossRef]
- Bochner, B.H.; Dalbagni, G.; Sjoberg, D.D.; Silberstein, J.; Keren Paz, G.E.; Donat, S.M.H.; Coleman, J.A.; Mathew, S.; Vickers, A.; Schnorr, G.C.; et al. Comparing open radical cystectomy and robot-assisted laparoscopic radical cystectomy: A randomized clinical trial. Eur. Urol. 2015, 67, 1042–1050. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.; Khan, S.A.; Hayn, M.H.; Agarwal, P.K.; Badani, K.K.; Derya Balbay, M.; Castle, E.P.; Dasgupta, P.; Ghavamian, R.; Guru, K.A.; et al. Analysis of intracorporeal compared with extracorporeal urinary diversion after robot-assisted radical cystectomy: Results from the International Robotic Cystectomy Consortium. Eur. Urol. 2014, 65, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Hayn, M.H.; Hussain, A.; Mansour, A.M.; Andrews, P.E.; Carpentier, P.; Castle, E.; Dasgupta, P.; Rimington, P.; Thomas, R.; Khan, S.; et al. The learning curve of robot-assisted radical cystectomy: Results from the International Robotic Cystectomy Consortium. Eur. Urol. 2010, 58, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Johar, R.S.; Hayn, M.H.; Stegemann, A.P.; Ahmed, K.; Agarwal, P.; Balbay, M.D.; Hemal, A.; Kibel, A.S.; Muhletaler, F.; Nepple, K.; et al. Complications after robot-assisted radical cystectomy: Results from the International Robotic Cystectomy Consortium. Eur. Urol. 2013, 64, 52–57. [Google Scholar] [CrossRef]
- Novara, G.; Ficarra, V.; Zattoni, F. Is robot-assisted radical cystectomy the right way to reduce complications in patients undergoing radical cystectomy? Eur. Urol. 2011, 59, 219–221. [Google Scholar] [CrossRef]
- Smith, A.B.; Raynor, M.; Amling, C.L.; Busby, J.E.; Castle, E.; Davis, R.; Nielsen, M.; Thomas, R.; Wallen, E.M.; Woods, M.; et al. Multi-institutional analysis of robotic radical cystectomy for bladder cancer: Perioperative outcomes and complications in 227 patients. J. Laparoendosc. Adv. Surg. Tech. A 2012, 22, 17–21. [Google Scholar] [CrossRef]
- Houenstein, H.A.; Jing, Z.; Elsayed, A.S.; Ramahi, Y.O.; Stöckle, M.; Wijburg, C.; Hosseini, A.; Wiklund, P.; Kim, E.; Kaouk, J.; et al. Analysis of complications after robot-assisted radical cystectomy between 2002-2021. Urology 2023, 171, 133–139. [Google Scholar] [CrossRef]
- Dalimov, Z.; Iqbal, U.; Jing, Z.; Wiklund, P.; Kaouk, J.; Kim, E.; Wijburg, C.; Wagner, A.A.; Roupret, M.; Dasgupta, P.; et al. Intracorporeal versus extracorporeal neobladder after robot-assisted radical cystectomy: Results from the International Robotic Cystectomy Consortium. Urology 2022, 159, 127–132. [Google Scholar] [CrossRef]
- McNicholas, D.P.; El-Taji, O.; Siddiqui, Z.; Hanchanale, V. Systematic review comparing uretero-enteric stricture rates between open cystectomy with ileal conduit, robotic cystectomy with extra-corporeal ileal conduit and robotic cystectomy with intra corporeal ileal conduit formation. J. Robot. Surg. 2024, 18, 100. [Google Scholar] [CrossRef]
- Richters, A.; Aben, K.K.H.; Kiemeney, L.A.L.M. The global burden of urinary bladder cancer: An update. World J. Urol. 2020, 38, 1895–1904. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, A.S.; Santos, F.; Dragomir, A.; Tanguay, S.; Kassouf, W.; Aprikian, A.G. Postoperative mortality and complications after radical cystectomy for bladder cancer in Quebec: A population-based analysis during the years 2000–2009. Can. Urol. Assoc. J. 2014, 8, 259. [Google Scholar] [CrossRef] [PubMed]
- Grossman, H.B.; Natale, R.B.; Tangen, C.M.; Speights, V.O.; Vogelzang, N.J.; Trump, D.L.; White, R.W.d.; Sarosdy, M.F.; Wood, D.P.; Raghavan, D.; et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N. Engl. J. Med. 2003, 349, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, G.; Hall, R.; Sylvester, R.; Raghavan, D.; Parmar, M.K. International phase III trial assessing neoadjuvant cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: Long-term results of the BA06 30894 trial. J. Clin. Oncol. 2011, 29, 2171–2177. [Google Scholar] [CrossRef]
- Vale, C.L. Neoadjuvant chemotherapy in invasive bladder cancer: Update of a systematic review and meta-analysis of individual patient data. Eur. Urol. 2005, 48, 202–206. [Google Scholar] [CrossRef]
- Yin, M.; Joshi, M.; Meijer, R.P.; Glantz, M.; Holder, S.; Harvey, H.A.; Kaag, M.; Fransen van de Putte, E.E.; Horenblas, S.; Drabick, J.J. Neoadjuvant chemotherapy for muscle-invasive bladder cancer: A systematic review and two-step meta-analysis. Oncologist 2016, 21, 708–715. [Google Scholar] [CrossRef]
- Galsky, M.D.; Pal, S.K.; Chowdhury, S.; Harshman, L.C.; Crabb, S.J.; Wong, Y.N.; Yu, E.Y.; Powles, T.; Moshier, E.L.; Ladoire, S.; et al. Comparative effectiveness of gemcitabine plus cisplatin versus methotrexate, vinblastine, doxorubicin, plus cisplatin as neoadjuvant therapy for muscle-invasive bladder cancer. Cancer 2015, 121, 2586–2593. [Google Scholar] [CrossRef]
- Flaig, T.W.; Tangen, C.M.; Daneshmand, S.; Alva, A.; Lerner, S.P.; Scott Lucia, M.; McConkey, D.J.; Theodorescu, D.; Goldkorn, A.; Milowsky, M.I.; et al. A randomized phase II study of coexpression extrapolation (COXEN) with neoadjuvant chemotherapy for bladder cancer (SWOG S1314; NCT02177695). Clin. Cancer Res. 2021, 27, 2435–2441. [Google Scholar] [CrossRef]
- Sternberg, C.N.; Skoneczna, I.; Kerst, J.M.; Albers, P.; Fossa, S.D.; Agerbaek, M.; Dumez, H.; de Santis, M.; Théodore, C.; Leahy, M.G.; et al. Immediate versus deferred chemotherapy after radical cystectomy in patients with pT3-pT4 or N+ M0 urothelial carcinoma of the bladder (EORTC 30994): An intergroup, open-label, randomised phase 3 trial. Lancet Oncol. 2015, 16, 76–86. [Google Scholar] [CrossRef]
- Burdett, S.; Fisher, D.J.; Vale, C.L.; Bono, A.V.; Clarke, N.W.; Cognetti, F.; Collette, L.; Cote, R.J.; Goebell, P.J.; Groshen, S.; et al. Adjuvant chemotherapy for muscle-invasive bladder cancer: A systematic review and meta-analysis of individual participant data from randomised controlled trials. Eur. Urol. 2022, 81, 50–61. [Google Scholar] [CrossRef]
- Szabados, B.; Kockx, M.; Assaf, Z.J.; van Dam, P.J.; Rodriguez-Vida, A.; Duran, I.; Crabb, S.J.; Van Der Heijden, M.S.; Pous, A.F.; Gravis, G.; et al. Final results of neoadjuvant atezolizumab in cisplatin-ineligible patients with muscle-invasive urothelial cancer of the bladder. Eur. Urol. 2022, 82, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Galsky, M.D.; Witjes, J.A.; Gschwend, J.E.; Milowsky, M.I.; Schenker, M.; Valderrama, B.P.; Tomita, Y.; Bamias, A.; Lebret, T.; Shariat, S.F.; et al. Adjuvant nivolumab in high-risk muscle-invasive urothelial carcinoma: Expanded efficacy from CheckMate 274. J. Clin. Oncol. 2025, 43, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Apolo, A.B.; Ballman, K.V.; Sonpavde, G.; Berg, S.; Kim, W.Y.; Parikh, R.; Teo, M.Y.; Sweis, R.F.; Geynisman, D.M.; Grivas, P.; et al. Adjuvant pembrolizumab versus observation in muscle-invasive urothelial carcinoma. N. Engl. J. Med. 2025, 392, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Birtle, A.; Johnson, M.; Chester, J.; Jones, R.; Dolling, D.; Bryan, R.T.; Harris, C.; Winterbottom, A.; Blacker, A.; Catto, J.W.F.; et al. Adjuvant chemotherapy in upper tract urothelial carcinoma (the POUT trial): A phase 3, open-label, randomised controlled trial. Lancet 2020, 395, 1268–1277. [Google Scholar] [CrossRef] [PubMed]
- Christensen, E.; Birkenkamp-Demtröder, K.; Sethi, H.; Shchegrova, S.; Salari, R.; Nordentoft, I.; Wu, H.T.; Knudsen, M.; Lamy, P.; Lindskrog, S.V.; et al. Early detection of metastatic relapse and monitoring of therapeutic efficacy by ultra-deep sequencing of plasma cell-free DNA in patients with urothelial bladder carcinoma. J. Clin. Oncol. 2019, 37, 1547–1557. [Google Scholar] [CrossRef]
- Powles, T.; Assaf, Z.J.; Davarpanah, N.; Banchereau, R.; Szabados, B.E.; Yuen, K.C.; Grivas, P.; Hussain, M.; Oudard, S.; Gschwend, J.E.; et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature 2021, 595, 432–437. [Google Scholar] [CrossRef]
- Jackson-Spence, F.; Toms, C.; O’Mahony, L.F.; Choy, J.; Flanders, L.; Szabados, B.; Powles, T. IMvigor011: A study of adjuvant atezolizumab in patients with high-risk MIBC who are ctDNA+ post-surgery. Future Oncol. 2023, 19, 509–515. [Google Scholar] [CrossRef]
- Siefker-Radtke, A.O.; Steinberg, G.; Bedke, J.; Nishiyama, H.; Martin, J.; Kataria, R.; Frenkl, T.L.; Hoimes, C.J. KEYNOTE-866: Phase III study of perioperative pembrolizumab (pembro) or placebo (pbo) in combination with neoadjuvant chemotherapy in cisplatin (cis)-eligible patients (pts) with muscle-invasive bladder cancer (MIBC). Ann. Oncol. 2019, 30, v401. [Google Scholar] [CrossRef]
- Hoimes, C.J.; Bedke, J.; Loriot, Y.; Nishiyama, H.; Fang, X.; Kataria, R.S.; Moreno, B.H.; Galsky, M.D. KEYNOTE-B15/EV-304: Randomized phase 3 study of perioperative enfortumab vedotin plus pembrolizumab versus chemotherapy in cisplatin-eligible patients with muscle-invasive bladder cancer (MIBC). J. Clin. Oncol. 2021, 39, TPS4587. [Google Scholar] [CrossRef]
- Sonpavde, G.; Necchi, A.; Gupta, S.; Steinberg, G.D.; Gschwend, J.E.; Van Der Heijden, M.S.; Garzon, N.; Ibrahim, M.; Raybold, B.; Liaw, D.; et al. ENERGIZE: A phase III study of neoadjuvant chemotherapy alone or with nivolumab with/without linrodostat mesylate for muscle-invasive bladder cancer. Future Oncol. 2020, 16, 4359–4368. [Google Scholar] [CrossRef]
- Powles, T.; Catto, J.W.F.; Galsky, M.D.; Al-Ahmadie, H.; Meeks, J.J.; Nishiyama, H.; Vu, T.Q.; Antonuzzo, L.; Wiechno, P.; Atduev, V.; et al. Perioperative durvalumab with neoadjuvant chemotherapy in operable bladder cancer. N. Engl. J. Med. 2024, 391, 1773–1786. [Google Scholar] [CrossRef] [PubMed]
- Galsky, M.D.; Necchi, A.; Shore, N.D.; Plimack, E.R.; Jia, C.; Sbar, E.; Moreno, B.H.; Witjes, J.A. KEYNOTE-905/EV-303: Perioperative pembrolizumab or pembrolizumab plus enfortumab vedotin (EV) and cystectomy compared to cystectomy alone in cisplatin-ineligible patients with muscle-invasive bladder cancer (MIBC). J. Clin. Oncol. 2021, 39, TPS507. [Google Scholar] [CrossRef]
- Powles, T.; Drakaki, A.; Teoh, J.Y.C.; Grande, E.; Fontes-Sousa, M.; Porta, C.; Wu, E.; Goluboff, E.T.; Ho, S.; Hois, S.; et al. A phase 3, randomized, open-label, multicenter, global study of the efficacy and safety of durvalumab (D) + tremelimumab (T) + enfortumab vedotin (EV) or D + EV for neoadjuvant treatment in cisplatin-ineligible muscle-invasive bladder cancer (MIBC) (VOLGA). J. Clin. Oncol. 2022, 40, TPS579. [Google Scholar] [CrossRef]
- Powles, T.; Valderrama, B.P.; Gupta, S.; Bedke, J.; Kikuchi, E.; Hoffman-Censits, J.; Iyer, G.; Vulsteke, C.; Park, S.H.; Shin, S.J.; et al. Enfortumab vedotin and pembrolizumab in untreated advanced urothelial cancer. N. Engl. J. Med. 2024, 390, 875–888. [Google Scholar] [CrossRef]
- UroToday. ASCO 2024: Impact of Exposure on Outcomes with Enfortumab Vedotin in Patients with Locally Advanced or Metastatic Urothelial Cancer. Available online: https://www.urotoday.com/conference-highlights/asco-2024/asco-2024-bladder-cancer/152601-asco-2024-impact-of-exposure-on-outcomes-with-enfortumab-vedotin-in-patients-with-locally-advanced-or-metastatic-urothelial-cancer.html (accessed on 3 November 2024).
- Food and Drug Administration. Federal Register: Bacillus Calmette-Guérin-Unresponsive Nonmuscle Invasive Bladder Cancer: Developing Drug and Biological Products for Treatment; Revised Draft Guidance for Industry; Availability. Available online: https://www.federalregister.gov/documents/2024/08/09/2024-17733/bacillus-calmette-gurin-unresponsive-nonmuscle-invasive-bladder-cancer-developing-drug-and (accessed on 3 November 2024).
- Svatek, R.S.; Tangen, C.; Delacroix, S.; Lowrance, W.; Lerner, S.P. Background and update for S1602 a phase III randomized trial to evaluate the influence of BCG strain differences and T cell priming with intradermal BCG before intravesical therapy for BCG-naïve high-grade non-muscle-invasive bladder cancer. Eur. Urol. Focus 2018, 4, 522–524. [Google Scholar] [CrossRef]
- Rentsch, C.A.; Thalmann, G.N.; Lucca, I.; Kwiatkowski, M.; Wirth, G.J.; Strebel, R.T.; Engeler, D.; Pedrazzini, A.; Hüttenbrink, C.; Schultze-Seemann, W.; et al. A phase 1/2 single-arm clinical trial of recombinant bacillus Calmette-Guérin (BCG) VPM1002BC immunotherapy in non-muscle-invasive bladder cancer recurrence after conventional BCG therapy: SAKK 06/14. Eur. Urol. Oncol. 2022, 5, 195–202. [Google Scholar] [CrossRef]
- Ji, N.; Mukherjee, N.; Reyes, R.M.; Gelfond, J.; Javors, M.; Meeks, J.J.; McConkey, D.J.; Shu, Z.-J.; Ramamurthy, C.; Dennett, R.; et al. Rapamycin enhances BCG-specific γδ T cells during intravesical BCG therapy for non-muscle invasive bladder cancer: A randomized, double-blind study. J. Immunother. Cancer 2021, 9, e001941. [Google Scholar] [CrossRef]
- Boorjian, S.A.; Alemozaffar, M.; Konety, B.R.; Shore, N.D.; Gomella, L.G.; Kamat, A.M.; Bivalacqua, T.J.; Montgomery, J.S.; Lerner, S.P.; Busby, J.E.; et al. Intravesical nadofaragene firadenovec gene therapy for BCG-unresponsive non-muscle-invasive bladder cancer: A single-arm, open-label, repeat-dose clinical trial. Lancet Oncol. 2021, 22, 107–117. [Google Scholar] [CrossRef]
- Chamie, K.; Chang, S.S.; Kramolowsky, E.; Gonzalgo, M.L.; Agarwal, P.K.; Bassett, J.C.; Bjurlin, M.; Cher, M.L.; Clark, W.; Cowan, B.E.; et al. IL-15 superagonist NAI in BCG-unresponsive non–muscle-invasive bladder cancer. NEJM Evid. 2022, 2, EVIDoa2200167. [Google Scholar] [CrossRef]
- Tyson, M.D.; Uchio, E.; Nam, J.K.; Lamm, D.L.; Bivalacqua, T.J.; Shore, N.D.; Kassouf, W.; Steinberg, G.D.; Black, P.C.; Kamat, A.M.; et al. P2-02 pivotal results from Bond-003: A phase 3, single-arm study of intravesical cretostimogene grenadenorepvec for the treatment of high risk, BCG-unresponsive non-muscle invasive bladder cancer with carcinoma in situ. J. Urol. 2024, 211, e1. [Google Scholar] [CrossRef]
- UroToday. ASCO 2024: A Phase 1/2 Study of EG-70 (Detalimogene Voraplasmid) Intravesical Monotherapy for Patients with BCG-Unresponsive Non-Muscle Invasive Bladder Cancer with Carcinoma In Situ. Available online: https://www.urotoday.com/conference-highlights/asco-2024/asco-2024-bladder-cancer/152516-asco-2024-a-phase-1-2-study-of-eg-70-detalimogene-voraplasmid-intravesical-monotherapy-for-patients-with-bcg-unresponsive-non-muscle-invasive-bladder-cancer-with-carcinoma-in-situ.html (accessed on 4 November 2024).
- Tan, W.S.; Kelly, J.D. Intravesical device-assisted therapies for non-muscle-invasive bladder cancer. Nat. Rev. Urol. 2018, 15, 667–685. [Google Scholar] [CrossRef] [PubMed]
- Angulo, J.C.; Álvarez-Ossorio, J.L.; Domínguez-Escrig, J.L.; Moyano, J.L.; Sousa, A.; Fernández, J.M.; Gómez-Veiga, F.; Unda, M.; Carballido, J.; Carrero, V.; et al. Hyperthermic mitomycin C in intermediate-risk non-muscle-invasive bladder cancer: Results of the HIVEC-1 trial. Eur. Urol. Oncol. 2023, 6, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.S.; Prendergast, A.; Ackerman, C.; Yogeswaran, Y.; Cresswell, J.; Mariappan, P.; Phull, J.; Hunter-Campbell, P.; Lazarowicz, H.; Mishra, V.; et al. Adjuvant intravesical chemohyperthermia versus passive chemotherapy in patients with intermediate-risk non-muscle-invasive bladder cancer (HIVEC-II): A phase 2, open-label, randomised controlled trial. Eur. Urol. 2023, 83, 497–504. [Google Scholar] [CrossRef]
- Serami, S. UGN-102 Delivers High 12-Month DOR in Non-Muscle Invasive Bladder Cancer. Targeted Oncology. Available online: https://www.targetedonc.com/view/ugn-102-delivers-high-12-month-dor-in-non-muscle-invasive-bladder-cancer (accessed on 3 November 2024).
- OncologyPRO. LBA85—TAR-200 +/− Cetrelimab (CET) and CET Alone in Patients (pts) with Bacillus Calmette-Guérin-Unresponsive (BCG UR) High-Risk Non-Muscle-Invasive Bladder Cancer (HR NMIBC): Updated Results from SunRISe-1 (SR-1). Available online: https://oncologypro.esmo.org/meeting-resources/esmo-congress-2024/tar-200-cetrelimab-cet-and-cet-alone-in-patients-pts-with-bacillus-calmette-guerin-unresponsive-bcg-ur-high-risk-non-muscle-invasive-blad (accessed on 4 November 2024).
- Vilaseca, A.; Jayram, G.; Raventos, C.; Shore, N.D.; Zainfeld, D.; Kang, T.W.; Ku, J.H.; Meeks, J.; Rodríguez Faba, Ó.; Roghmann, F.; et al. LBA104 first safety and efficacy results of the TAR-210 erdafitinib (erda) intravesical delivery system in patients (pts) with non–muscle-invasive bladder cancer (NMIBC) with select FGFR alterations (alt). Ann. Oncol. 2023, 34, S1343. [Google Scholar] [CrossRef]
- Balar, A.V.; Kamat, A.M.; Kulkarni, G.S.; Uchio, E.M.; Boormans, J.L.; Roumiguié, M.; Krieger, L.E.M.; Singer, E.A.; Bajorin, D.F.; Grivas, P.; et al. Pembrolizumab monotherapy for the treatment of high-risk non-muscle-invasive bladder cancer unresponsive to BCG (KEYNOTE-057): An open-label, single-arm, multicentre, phase 2 study. Lancet Oncol. 2021, 22, 919–930. [Google Scholar] [CrossRef]
- Black, P.C.; Tangen, C.M.; Singh, P.; McConkey, D.J.; Lucia, M.S.; Lowrance, W.T.; Koshkin, V.S.; Stratton, K.L.; Bivalacqua, T.J.; Kassouf, W.; et al. Phase 2 trial of atezolizumab in bacillus Calmette-Guérin-unresponsive high-risk non-muscle-invasive bladder cancer: SWOG S1605. Eur. Urol. 2023, 84, 536–544. [Google Scholar] [CrossRef]
- De Santis, M.; Abdrashitov, R.; Hegele, A.; Kolb, M.; Parker, S.; Redorta, J.P.; Nishiyama, H.; Xiao, F.; Gupta, A.K.; Shore, N.D. A phase III, randomized, open-label, multicenter, global study of durvalumab and bacillus Calmette-Guérin (BCG) versus BCG alone in high-risk, BCG-naïve non-muscle-invasive bladder cancer (NMIBC) patients (POTOMAC). J. Clin. Oncol. 2019, 37, TPS500. [Google Scholar] [CrossRef]
- Kamat, A.M.; Shore, N.; Hahn, N.; Alanee, S.; Nishiyama, H.; Shariat, S.; Nam, K.; Kapadia, E.; Frenkl, T.; Steinberg, G. KEYNOTE-676: Phase III study of BCG and pembrolizumab for persistent/recurrent high-risk NMIBC. Future Oncol. 2020, 16, 507–516. [Google Scholar] [CrossRef]
- Meghani, K.; Cooley, L.F.; Choy, B.; Kocherginsky, M.; Swaminathan, S.; Munir, S.S.; Svatek, R.S.; Kuzel, T.; Meeks, J.J. First-in-human intravesical delivery of pembrolizumab identifies immune activation in bladder cancer unresponsive to bacillus Calmette-Guérin. Eur. Urol. 2022, 82, 602–610. [Google Scholar] [CrossRef]
- Kamat, A.M.; Lotan, Y.; Roupret, M.; Steinberg, G.D.; Inman, B.A.; Powles, T.; Redorta, J.P.; Porten, S.P.; Kulkarni, G.S.; Uchio, E.M.; et al. A first-in-human trial of intravesical enfortumab vedotin (EV), an antibody-drug conjugate (ADC), in patients with non-muscle invasive bladder cancer (NMIBC): Interim results of a phase 1 study (EV-104). J. Clin. Oncol. 2023, 41, 4596. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Société Internationale d’Urologie. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Black, P.C.; Lerner, S.P.; Desai, M.M.; Konety, B.R.; Gupta, S.; Joshi, A.; Oualla, K.; Rajappa, S.; Talwar, V.; Prakash, G.; et al. B2B: Bladder Cancer Summary. Soc. Int. Urol. J. 2025, 6, 18. https://doi.org/10.3390/siuj6010018
Black PC, Lerner SP, Desai MM, Konety BR, Gupta S, Joshi A, Oualla K, Rajappa S, Talwar V, Prakash G, et al. B2B: Bladder Cancer Summary. Société Internationale d’Urologie Journal. 2025; 6(1):18. https://doi.org/10.3390/siuj6010018
Chicago/Turabian StyleBlack, Peter C., Seth P. Lerner, Mihir M. Desai, Badrinath R. Konety, Shilpa Gupta, Amit Joshi, Karima Oualla, Senthil Rajappa, Vineet Talwar, Gagan Prakash, and et al. 2025. "B2B: Bladder Cancer Summary" Société Internationale d’Urologie Journal 6, no. 1: 18. https://doi.org/10.3390/siuj6010018
APA StyleBlack, P. C., Lerner, S. P., Desai, M. M., Konety, B. R., Gupta, S., Joshi, A., Oualla, K., Rajappa, S., Talwar, V., Prakash, G., & Tanguay, S. (2025). B2B: Bladder Cancer Summary. Société Internationale d’Urologie Journal, 6(1), 18. https://doi.org/10.3390/siuj6010018