Specifying the External Impact on Fluvial Lowland Evolution: The Last Glacial Tisza (Tisa) Catchment in Hungary and Serbia
Abstract
:1. Introduction
2. Study Region and Previous Research
3. Methods
4. New Results
4.1. Middle Tisza (NE Hungary)
4.2. Lower Tisa (Serbia)
- 2.80–5.20 m: alternating thin beds consisting of clay-rich fine-to-medium or coarse silt without sand (350 cm in Figure 7A) and obliquely bedded silty sand layers (up to 20% sand, modal values of 20 and 50 µm) (Figure 8A). The sand beds become thicker towards the base of this unit (ranging from a few centimetres to a few tens of centimetres thick), showing small but clear cross-laminated ripples pointing to a westward water flow (Figure 8B). The lower boundary of these sand beds is mostly sharp (erosive). Calcium carbonate nodules are frequently present, as well as mica grains on the bedding surfaces. A layer between 5.20 and 5.80 m shows a transitional grain size to the underlying layer;
- 5.80–6.50 m: horizontal, finely laminated, silty fine sands with modal values between 55 and 80 µm (Figure 7B) alternating with silt–clay beds (a few tens of centimetres thick) with sharp upper boundaries. Convoluted deformation at the scale of tens of centimetres resulting from liquefaction is seen in the silt–clay beds; a periglacial origin is not obvious. Gradually changing (6.50–7.00 m) to 7.00–8.70 m: sandy beds coarsening to >100 µm modal values with occasional coarse-sand fractions and decreasing silt and clay content, alternating with silt–clay beds (Figure 7B);
- 8.70–10.70 m: two clearly developed fining-up sand series (Figure 7C).
5. Identification and Age of the Different Phases of Fluvial Evolution
6. Discussion
6.1. General Characteristics of the Middle and Lower Tis(z)a River Systems
6.2. Intercomparison between the Middle and Lower Tis(z)a
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Büdel, J. Klima-Geomorphologie; Gebrüder Bornträger: Berlin, Germany, 1977; p. 304. [Google Scholar]
- Vandenberghe, J. The relation between climate and river processes, landforms and deposits during the Quaternary. Quat. Int. 2002, 91, 17–23. [Google Scholar] [CrossRef]
- Starkel, L. Climatically controlled terraces in uplifting mountain areas. Quat. Sci. Rev. 2003, 22, 2189–2198. [Google Scholar] [CrossRef]
- Vandenberghe, J. Changing fluvial processes under changing periglacial conditions. Z. Geomorphol. 1993, 88, 17–28. [Google Scholar]
- Vandenberghe, J. Timescales, climate and river development. Quat. Sci. Rev. 1995, 14, 631–638. [Google Scholar] [CrossRef]
- Bridgland, D.R.; Allen, P. A revised model for terrace formation and its significance for the early middle Pleistocene terrace aggradations of north-east Essex, England. In The Early Middle Pleistocene in Europe; Turner, C., Ed.; Balkema: Rotterdam, The Netherlands, 1996; pp. 121–134. [Google Scholar]
- Maddy, D.; Bridgland, D.; Westaway, R. Uplift-driven valley incision and climate-controlled river terrace development in the Thames Valley, UK. Quat. Int. 2001, 79, 23–36. [Google Scholar] [CrossRef]
- Vandenberghe, J. The fluvial cycle at cold-warm-cold transitions in lowland regions: A refinement of theory. Geomorphology 2008, 98, 275–284. [Google Scholar] [CrossRef]
- Vandenberghe, J. River terraces as a response to climatic forcing: Formation processes, sedimentary characteristics and sites for human occupation. Quat. Int. 2015, 370, 3–11. [Google Scholar] [CrossRef]
- Mol, J.; Vandenberghe, J.; Kasse, C. River response to variations of periglacial climate. Geomorphology 2000, 33, 131–148. [Google Scholar] [CrossRef]
- Pan, B.; Su, H.; Hu, Z.; Hu, X.; Gao, H.; Li, J.; Kirby, E. Evaluating the role of climate and tectonics during non-steady incision of the Yellow River: Evidence from a 1.24 Ma terrace record near Lanzhou, China. Quat. Sci. Rev. 2009, 28, 3281–3290. [Google Scholar] [CrossRef]
- Wang, X.; Van Balen, R.; Yi, S.; Vandenberghe, J.; Lu, H. Differential tectonic movements in the confluence area of the Huang Shui and Huang He rivers (Yellow River), NE Tibetan Plateau, as inferred from fluvial terrace positions. Boreas 2014, 43, 469–484. [Google Scholar] [CrossRef]
- Kemp, J.; Pietsch, T.; Gontz, A.; Oley, J. Lacustrine-fluvial interactions in Australia’s Riverine Plains. Quat. Sci. Rev. 2017, 166, 352–362. [Google Scholar] [CrossRef]
- Marsh, P.; Woo, M.K. Snowmelt, glacier melt and High Arctic streamflow regimes. Can. J. Earth Sci. 1981, 18, 380–1384. [Google Scholar] [CrossRef]
- Cordier, S.; Frechen, M.; Harmand, D. Dating fluvial erosion: Fluvial response to climate change in the Moselle catchment (France, Germany) since the Late Saalian. Boreas 2014, 43, 450–468. [Google Scholar] [CrossRef]
- Cordier, S.; Adamson, K.; Delmas, M.; Calvet, M.; Harmand, D. Of ice and water: Quaternary fluvial response to glacial forcing. Quat. Sci. Rev. 2017, 166, 57–73. [Google Scholar] [CrossRef]
- Ballantyne, C.K. A general model of paraglacial landscape response. Holocene 2002, 12, 371–376. [Google Scholar] [CrossRef]
- Owczarek, P.; Nawrot, A.; Migala, K.; Malik, I.; Korabiewski, B. Floodplain responses to contemporary climate change in small High-Arctic basins (Svalbard, Norway). Boreas 2014, 43, 384–402. [Google Scholar] [CrossRef]
- Dogan, U. Fluvial response to climate change during and after the Last Glacial Maximum in Central Anatolia, Turkey. Quat. Int. 2010, 222, 221–229. [Google Scholar] [CrossRef]
- Avcin, N.; Vandenberghe, J.; van Balen, R.T.; Kıyak, N.; Öztürk, T. Tectonic and Climatic Controls on Quaternary Fluvial Processes and Terrace Formation in a Mediterranean Setting: The Göksu River, Southern Anatolia. Quat. Res. 2018. under review. [Google Scholar]
- Hughes, K.; Croke, J. How did rivers in the wet tropics (NE Queensland, Australia) respond to climate changes over the past 30000 years? J. Quat. Sci. 2017, 32, 744–759. [Google Scholar] [CrossRef]
- Kasse, C. Depositional model for cold-climate tundra rivers. In Palaeohydrology and Environmental Change; Benito, G., Baker, V.R., Gregory, K.J., Eds.; Wiley and Sons: Chichester, UK, 1998; pp. 83–97. [Google Scholar]
- Rose, J.; Meng, X. River activity in small catchments over the last 140 ka, North-east Mallorca, Spain. In Fluvial Processes and Environmental Change; Brown, A.G., Quine, T.A., Eds.; Wiley & Sons: Chichester, UK, 1999; pp. 91–102. [Google Scholar]
- Olszak, J. Evolution of fluvial terraces in response to climate change and tectonic uplift during the Pleistoce: Evidence from Kamienica and Ochotnica River valleys (Polish Outer Carpathians). Geomorphology 2011, 129, 71–78. [Google Scholar] [CrossRef]
- Stange, K.M.; van Balen, R.T.; Carcaillet, J.; Vandenberghe, J. Terrace staircase development in the Southern Pyrenees Foreland: Inferences from 10Be terrace exposure ages at the Segre River. Glob. Planet. Change 2013, 101, 97–112. [Google Scholar] [CrossRef]
- Schumm, S. The Fluvial System; Wiley-Interscience: New York, NY, USA, 1977; p. 338. [Google Scholar]
- Van Huissteden, J. Tundra Rivers of the Last Glacial: Sedimentation and Geomorphological Processes during the Middle Pleniglacial in the Dinkel Valley (Eastern Netherlands); Rijks Geologische Dienst: Haarlem, The Netherlands, 1990; Volume 44, pp. 3–138. [Google Scholar]
- Vandenberghe, J. A typology of Pleistocene cold-based rivers. Quat. Int. 2001, 179, 111–121. [Google Scholar] [CrossRef]
- Bridgland, D.R.; Westaway, R. Preservation patterns of Late Cenozoic fluvial deposits and their implications: Results from IGCP 449. Quat. Int. 2008, 189, 5–38. [Google Scholar] [CrossRef]
- Kasse, C.; Bohncke, S.J.P.; Vandenberghe, J.; Gabris, G. Fluvial style changes during the last glacial—Interglacial transition in the middle Tisza valley (Hungary). Proc. Geol. Assoc. 2010, 121, 180–194. [Google Scholar] [CrossRef]
- Popov, D.; Markovic, S.; Strbac, D. Generations of meanders in Serbian part of Tisa valley. J. Geogr. Inst. Jovan Cvijic SASA 2008, 58, 29–41. [Google Scholar] [CrossRef]
- Nádor, A.; Lantos, M.; Tóth-Makk, Á.; Thamó-Bozsó, E. Milankovitch-scale multi-proxy records from fluvial sediments of the last 2.6 Ma, Pannonian Basin, Hungary. Quat. Sci. Rev. 2003, 22, 2157–2175. [Google Scholar] [CrossRef]
- Gabris, G.; Nador, A. Long-term fluvial archives in Hungary: Response of the Danube and Tisza rivers to tectonic movements and climatic changes during the Quaternary: A review and new synthesis. Quat. Sci. Rev. 2007, 26, 2758–2782. [Google Scholar] [CrossRef]
- Timar, G.; Sümegi, P.; Horvath, F. Late Quaternary dynamics of the Tisza river: Evidence of climatic and tectonic controls. Tectonophysics 2005, 410, 97–110. [Google Scholar] [CrossRef]
- Nádor, A.; Thamó-Bozsó, E.; Magyari, A.; Babinszki, E. Fluvial responses to tectonics and climate change during the Late Weichselian in the eastern part of the Pannonian Basin (Hungary). Sediment. Geol. 2007, 201, 174–192. [Google Scholar] [CrossRef]
- Gabris, G.; Horvath, E.; Novothny, A.; Ruszkiczay-Rüdiger, Z. Fluvial and Aeolian landscape evolution in Hungary-results of the last 20 years research. Neth. J. Geosci. 2012, 91, 111–128. [Google Scholar] [CrossRef]
- Willis, K.J.; Rudner, E.; Sümegi, P. The Full-Glacial Forests of Central and Southeastern Europe. Quat. Res. 2000, 53, 203–213. [Google Scholar] [CrossRef]
- Sümegi, P.; Krolopp, E. Quatermalacological analyses for modelling of the Upper Weichselian paleoenvironmental changes in the Carpathian Basin. Quat. Int. 2002, 91, 53–63. [Google Scholar] [CrossRef]
- Bacso, N. Climate of Hungary; Akademiai Kiado: Budapest, Hungary, 1959; p. 302. (In Hungarian) [Google Scholar]
- Fábián, S.A.; Kovács, J.; Varga, G.; Sipos, G.; Horváth, Z.; Thamó-Bozsó, E.; Tóth, G. Distribution of relict permafrost features in the Pannonian Basin, Hungary. Boreas 2014, 43, 722–732. [Google Scholar] [CrossRef]
- Vandenberghe, J.; French, H.M.; Gorbunov, A.; Marchenko, S.; Velichko, A.A.; Jin, H.; Cui, Z.; Zhang, T.; Wan, X. The Last Permafrost Maximum (LPM) map of the Northern Hemisphere: Permafrost extent and mean annual air temperatures, 25–17 ka BP. Boreas 2014, 43, 652–666. [Google Scholar] [CrossRef]
- Royden, L.H.; Horvath, F. The Pannonian Basin. A case study in basin evolution. AAPG Memoirs 1988, 45, 394. [Google Scholar]
- Horvath, F.; Cloetingh, S. Stress induced late-stage subsidence anomalies in the Pannonian Basin. Tectonophysics 1996, 266, 287–300. [Google Scholar] [CrossRef]
- Bada, G.; Horvath, F. On the structure and tectonic evolution of the Pannonian Basin and surrounding orogens. Acta Geol. Hung. 2001, 44, 301–327. [Google Scholar]
- Pecsi, M. Entwicklung und Morphologie des Donautales in Ungarn; Akademiai Kiado: Budapest, Hungary, 1959; p. 359. (In Hungarian) [Google Scholar]
- Thamo-Bozso, E.; Murray, A.A.; Nador, A.; Magyari, A.; Babinszki, E. Investigation of river network evolution using luminescence dating and heavy-mineral analysis of Late Quaternary fluvial sands from the Great Hungarian Plain. Quat. Geochronol. 2007, 2, 168–173. [Google Scholar] [CrossRef]
- Gabris, G. Pleistocene evolution of the Danube in the Carpathian Basin. Terra Nova 1994, 6, 495–501. [Google Scholar] [CrossRef]
- Konert, M.; Vandenberghe, J. Comparison of laser grain size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction. Sedimentology 1997, 44, 523–535. [Google Scholar] [CrossRef]
- Popov, D.; Vandenberghe, D.A.G.; Marković, S.B. Luminescence dating of fluvial deposits in Vojvodina, N Serbia: First results. Quat. Geochronol. 2012, 13, 42–51. [Google Scholar] [CrossRef]
- Bøtter-Jensen, L.; Andersen, C.E.; Duller, G.A.T.; Murray, A.S. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiat. Meas. 2003, 37, 535–541. [Google Scholar] [CrossRef]
- Lapp, T.; Kook, M.; Murray, A.S.; Thomsen, K.J.; Buylaert, J.-P.; Jain, M. A new luminescence detection and stimulation head for the Risø TL/OSL reader. Radiat. Meas. 2015, 81, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Duller, G.A.T. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiat. Meas. 2003, 37, 161–165. [Google Scholar] [CrossRef]
- Murray, A.S.; Wintle, A.G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 2000, 32, 57–73. [Google Scholar] [CrossRef]
- Murray, A.S.; Wintle, A.G. The single aliquot regenerative dose protocol: Potential for improvements in reliability. Radiat. Meas. 2003, 37, 377–381. [Google Scholar] [CrossRef]
- Hossain, S.M. A Critical Comparison and Evaluation of Methods for the Annual Radiation Dose Determination in the Luminescence Dating of Sediments. Ph.D. Thesis, Ghent University, Gent, Belgium, 2003. [Google Scholar]
- Vandenberghe, D. Investigation of the Optically Stimulated Luminescence Dating Method for Application to Young Geological Samples. Ph.D. Thesis, Ghent University, Gent, Belgium, 2004. [Google Scholar]
- De Corte, F.; Vandenberghe, D.; De Wispelaere, A.; Buylaert, J.-P.; Van den haute, P. Radon loss from encapsulated sediments in Ge gamma-ray spectrometry for the annual radiation dose determination in luminescence dating. Czechoslov. J. Phys. 2006, 56, D183–D194. [Google Scholar] [CrossRef]
- Adamiec, G.; Aitken, M. Dose-rate conversion factors: Update. Ancient TL 1998, 16, 37–50. [Google Scholar]
- Mejdahl, V. Thermoluminescence dating: Beta-dose attenuation in quartz grains. Archaeometry 1979, 21, 61–72. [Google Scholar] [CrossRef]
- Aitken, M.J. Thermoluminescence Dating; Academic Press Inc.: London, UK, 1985; p. 359. [Google Scholar]
- Vandenberghe, D.; De Corte, F.; Buylaert, J.-P.; Kucera, J.; Van den haute, P. On the internal radioactivity in quartz. Radiat. Meas. 2008, 43, 771–775. [Google Scholar] [CrossRef]
- Prescott, J.R.; Hutton, J.T. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiat. Meas. 1994, 23, 497–500. [Google Scholar] [CrossRef]
- Aitken, M.J. Thermoluminescence age evaluation and assessment of error limits: Revised system. Archaeometry 1976, 18, 233–238. [Google Scholar] [CrossRef]
- Aitken, M.J.; Alldred, J.C. The assessment of error limits in thermoluminescence dating. Archaeometry 1972, 14, 257–267. [Google Scholar] [CrossRef]
- Vandenberghe, D.; Kasse, C.; Hossain, S.M.; De Corte, F.; Van den haute, P.; Fuchs, M.; Murray, A.S. Exploring the method of optical dating and comparison of optical and 14C ages of Late Weichselian coversands in the southern Netherlands. J. Quat. Sci. 2004, 19, 73–86. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Bohncke, S.; Lammers, W.; Zilverberg, L. Geomorphology and palaeoecology of the Mark valley (southern Netherlands). I Geomorphological valley development during the Weichselian and Holocene. Boreas 1987, 16, 55–67. [Google Scholar] [CrossRef]
- Novotny, A.; Frechen, M.; Horvath, E.; Wacha, L.; Rolf, C. Investigating the penultimate and last glacial cycles of the Süttö loess section (Hungary) using luminescence dating, high-resolution grain size, and magnetic susceptibility data. Quat. Int. 2011, 234, 75–85. [Google Scholar] [CrossRef]
- Bokhorst, M.; Vandenberghe, J.; Sümegi, P.; Lanczont, M.; Gerasimenko, N.P.; Matviishina, Z.N.; Markovic, S.B.; Frechen, M. Atmospheric circulation patterns in Central and Eastern Europe during the Weichselian Pleniglacial inferred from loess grain-size records. Quat. Int. 2011, 234, 62–74. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Sun, Y.; Wang, X.; Abels, H.A.; Liu, X. Grain-size characterization of reworked fine-grained aeolian deposits. Earth Sci. Rev. 2018, 177, 43–52. [Google Scholar] [CrossRef]
- Wang, X.; Ma, J.; Yi, S.; Vandenberghe, J.; Dai, Y.; Lu, H. Interaction of fluvial and aeolian sedimentation processes and response to climate change since the last glacial in a semi-arid environment along the Yellow River. Quat. Res. 2018, 1. [Google Scholar] [CrossRef]
- Verdonk, S. Fluvial development of lithology and geomorphology of Tisza river terraces since the last glacial maximum in Vojvodina, Serbia. BSc Thesis, Faculty of Earth and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands, 2003; 45p. [Google Scholar]
- Marković, S.B.; Bokhorst, M.; Vandenberghe, J.; McCoy, W.D.; Oches, E.A.; Hambach, U.; Gaudenyi, T.; Jovanović, M.; Stevens, T.; Zöller, L.; et al. Late Pleistocene loess-palaeosol sequences in the Vojvodina region, north Serbia. J. Quat. Sci. 2008, 23, 73–84. [Google Scholar] [CrossRef]
- Marković, S.B.; Stevens, T.; Kukla, G.J.; Hambach, U.; Fitzsimmons, K.E.; Gibbard, P.; Buggle, B.; Zech, M.; Guo, Z.T.; Hao, Q.Z.; et al. The Danube loess stratigraphy—New steps towards the development of a pan-European loess stratigraphic model. Earth Sci. Rev. 2015, 148, 228–258. [Google Scholar] [CrossRef] [Green Version]
- Popov, D.; Marković, S.B.; Jovanović, M.; Mesaroš Arsenović, D.; Stankov, U.; Gubik, D. Geomorphological investigations and GIS approach of the Tamiš loess plateau, Banat region (northern Serbia). Geogr. Pannonica 2012, 16, 1–9. [Google Scholar] [CrossRef]
- Jain, M.; Murray, A.S.; Bøtter-Jensen, L. Optically stimulated luminescence dating: How significant is incomplete light exposure in fluvial environments? Quaternaire 2004, 15, 143–157. [Google Scholar] [CrossRef]
- Borsy, Z. Evolution of the alluvial fans of the Alföld. In Alluvial Fans: A Field Approach; Rachocki, A.H., Church, M., Eds.; Wiley and Sons Ltd.: Chichester, UK, 1990; pp. 229–246. [Google Scholar]
- Frechen, M.; Leibniz Institute for Applied Geophysics, Hannover, Germany. Personal communication, 2003.
- Berec, B.; Gábris, G. A Maros hordalékkúp bánsági szakasza (Alluvial fan of Maros River in Banat, Serbia–Romania). In Kárpát-Medence: Természet, Társadalom, Gazdaság (Carpathian Basin: Nature, Society, Economy); Frisnyák, S., Gál, A., Eds.; Nyíregyháza–Szerencs: Nyíregyháza, Hungary, 2013; pp. 51–64. (In Hungarian) [Google Scholar]
- Davis, B.A.S.; Passmore, D.G. Upper Tisza Project: Radiocarbon analyses of Holocene alluvial and lacustrine sediments. In Interim Report on Current Analyses to the Excavation and Fieldwork Committee; University of Newcastle: Callaghan, Australia, 1998; Volume 7. [Google Scholar]
- Kasse, C. Cold-climate aeolian sand-sheet formation in north-western Europe (c. 14-12.4 ka): A response to permafrost degradation and increased aridity. Permafr. Periglac. Process. 1997, 8, 295–311. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Kasse, C.; Bohncke, S.; Kozarski, S. Climate-related river activity at the Weichselian-Holocene transition: A comparative study of the Warta and Maas rivers. Terra Nova 1994, 6, 476–485. [Google Scholar] [CrossRef]
- Kasse, C.; Vandenberghe, J.; Bohncke, S. Climatic change and fluvial dynamics of the Maas during the Late Weichselian and Early Holocene. In European River Activity and Climatic Change during the Lateglacial and Early Holocene; Frenzel, B., Vandenberghe, J., Kasse, C., Bohncke, S., Gläser, B., Eds.; Gustav Fischer: Jena, Germany, 1995; Volume 14, pp. 123–150. [Google Scholar]
- Sidorchuk, A.; Borisova, O.; Panin, A. Fluvial response to the Late Valdai/Holocene environmental change on the East European Plain. Glob. Planet. Change 2001, 28, 303–318. [Google Scholar] [CrossRef]
- Sidorchuk, A.; Panin, A.; Borisova, O. Morphology of river channels and surface runoff in the Volga River basin (East European Plain) during the Late Glacial period. Geomorphology 2009, 113, 137–157. [Google Scholar] [CrossRef]
- Borisova, O.; Sidorchuk, A.; Panin, A. Palaeohydrology of the Seim River basin, Mid-Russian Upland, based on palaeochannel morphology and palynological data. Catena 2006, 66, 53–73. [Google Scholar] [CrossRef]
- Leopold, L.B.; Wolman, L.G.; Miller, J. Fluvial Processes in Geomorphology; W.H. Freeman and Co.: San Francisco, CA, USA, 1964; p. 522. [Google Scholar]
- Petrovszki, J.; Timar, G.; Molnar, G. Is sinuosity a function of slope and bankfull discharge?—A case study of the meandering rivers in the Pannonian Basin. Hydrol. Earth Syst. Sci. Discuss. 2014, 11, 12271–12290. [Google Scholar] [CrossRef]
- Van Huissteden, J.; Vandenberghe, J. Changing fluvial style of periglacial lowland rivers during the Weichselian Pleniglacial in the eastern Netherlands. Z. Geomorphol. 1988, 71, 131–146. [Google Scholar]
Field Code | GLL Code | 234Th (Bq kg−1) | 226Ra (Bq kg−1) | 210Pb (Bq kg−1) | 232Th (Bq kg−1) | 40K (Bq kg−1) | Water Content (%) | Dose Rate (Gy ka−1) | De (Gy) | Age (ka) |
---|---|---|---|---|---|---|---|---|---|---|
ZR 6.10 | GLL-150802 | 33 ± 3 | 38.5 ± 0.6 | 35 ± 2 | 44.0 ± 0.3 | 605 ± 4 | 20 ± 5 | 2.82 ± 0.02 | 92 ± 5 | 32 ± 3 |
ZR 6.60 | GLL-150803 | 29 ± 1 | 31.5 ± 0.5 | 34 ± 2 | 36.6 ± 0.4 | 445 ± 3 | 20 ± 5 | 2.27 ± 0.02 | 74 ± 3 | 33 ± 3 |
ZR 6.90 | GLL-150804 | 31 ± 2 | 34.7 ± 0.5 | 33 ± 2 | 42 ± 0.4 | 624 ± 4 | 20 ± 5 | 2.80 ± 0.03 | 90 ± 6 | 32 ± 4 |
Fluvial Phase | Fluvial Systems with Type-Sites | Periods of Activity |
---|---|---|
3d | Meanders W of Mužlja (lower Tisa) | Late Glacial |
3c | Meanders of Tiszaörs (middle Tisza)—Mužlja (lower Tisa) | 15.6 ka to start of Younger Dryas |
3b | Meanders of Kunmadaras (middle Tisza) | 19–17 ka |
3a | Meanders of Zrenjanin (lower Tisa)—Berekfurdo (middle Tisza) | From c. 33 to 17 ka |
2 | ‘Sajo alluvial fan’—braided | c. (27–)22–17 ka |
1 | Large meanders of Meggyes | >28 ka |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vandenberghe, J.; Kasse, C.; Popov, D.; Markovic, S.B.; Vandenberghe, D.; Bohncke, S.; Gabris, G. Specifying the External Impact on Fluvial Lowland Evolution: The Last Glacial Tisza (Tisa) Catchment in Hungary and Serbia. Quaternary 2018, 1, 14. https://doi.org/10.3390/quat1020014
Vandenberghe J, Kasse C, Popov D, Markovic SB, Vandenberghe D, Bohncke S, Gabris G. Specifying the External Impact on Fluvial Lowland Evolution: The Last Glacial Tisza (Tisa) Catchment in Hungary and Serbia. Quaternary. 2018; 1(2):14. https://doi.org/10.3390/quat1020014
Chicago/Turabian StyleVandenberghe, Jef, Cornelis (Kees) Kasse, Dragan Popov, Slobodan B. Markovic, Dimitri Vandenberghe, Sjoerd Bohncke, and Gyula Gabris. 2018. "Specifying the External Impact on Fluvial Lowland Evolution: The Last Glacial Tisza (Tisa) Catchment in Hungary and Serbia" Quaternary 1, no. 2: 14. https://doi.org/10.3390/quat1020014
APA StyleVandenberghe, J., Kasse, C., Popov, D., Markovic, S. B., Vandenberghe, D., Bohncke, S., & Gabris, G. (2018). Specifying the External Impact on Fluvial Lowland Evolution: The Last Glacial Tisza (Tisa) Catchment in Hungary and Serbia. Quaternary, 1(2), 14. https://doi.org/10.3390/quat1020014