Geoarchaeological Analyses of a Late-Copper-Age Kurgan on the Great Hungarian Plain
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Sampling and Macroscopic Analysis
- I.: N 46.55915708°, E 20.04552992°, 88.59 m altitude (depth: 3.7 m);
- II.: N 46.55911706°, E 20.04564056°, 90.52 m altitude (depth: 4.0 m);
- III.: 46.55906689°, E 20.04584153°, 91.31 m altitude (Drilling section, depth: 4.9 m);
- IV.: N 46.55901792°, E 20.04602844°, 89 m altitude (depth: 4.1 m);
- VI.: N 46.55906438°, E 20.04612621°, 87.46 m altitude (depth: 4.0 m).
3.2. Grain Size Analysis
3.3. Magnetic Susceptibility Analysis
3.4. Loss-On Ignition
3.5. Radiocarbon Dating
3.6. Malacological Analysis
3.7. Pollen Analysis
4. Results
4.1. Results of Stratigraphic Mapping Drillings
4.2. Results of the Sedimentological and Pedological Studies
4.3. Magnetic Susceptibility (MS) Results
4.4. Results of Pollen Analysis
4.5. Malacological Results
4.6. Chronological Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sümegi, P.; Bede, Á.; Szilágyi, G. Régészeti geológia, geoarcheológiai és környezettörténeti elemzések régészeti lelőhelyeken. A földtudományok és a régészet kapcsolata. Analyses of Archeological Geology, Geoarcheology and Environmental History on the Archeological Sites Contat between Earth Sciences and Archeology. Archeometriai Műhely 2015, 12, 135–150. [Google Scholar]
- Fidan, E. Geo-archaeological and geophysical investigation on the Early Bronze age layers of Tavşanli Höyük (Inland Western Anatolia). Mediterr. Archaeol. Archaeom. 2021, 21, 211–225. [Google Scholar]
- Sapir, Y.; Sarah, P.; Sapir, Y.; Katz, H.; Faust, A. Topsoil formation processes as indicated from geoarchaeological investigations at Tel ‘eton, Israel, and its environment. Mediterr. Archaeol. Archaeom. 2021, 21, 85–110. [Google Scholar]
- Liritzis, I.; Drivaliari, A.; Vafiadou, A. A review of archaeometric results on Sarakenos Cave, Greece: First stable isotope data (18O and 13C) on mullusk shell (Unio sp.) including OSL dating and characterization-provenance of ceramics by PXRF. Sci. Cult. 2021, 7, 93–110. [Google Scholar]
- Liritzis, I.; Oikonomou, A. An updated overview of archaeological sciences research in insular Greek Aegean Islands. Mediterr. Archaeol. Archaeom. 2021, 21, 1–27. [Google Scholar]
- Derese, C.; Vandenberghe, D.A.G.; van Gils, M.; Vanmontfort, B.; Meirsman, E.; Mees, F.; van den Haute, P. Establishing a chronology for landscape evolution around a final palaeolithic site at Arendonk-Korhaan (NE Belgium): First results from optically stimulated luminescence dating. Mediterr. Archaeol. Archaeom. 2010, 10, 43–51. [Google Scholar]
- Kinnaird, T.C.; Dixon, J.E.; Robertson, A.H.F.; Peltenburg, E.; Sanderson, D.C.W. Insight on topography development in the Vasilikós and Dhiarizos Valleys, Cyprus, from integrated OSL and landscape studies. Mediterr. Archaeol. Archaeom. 2013, 13, 49–62. [Google Scholar]
- Zhen, Q. Exploring the Early Anthropocene: Implications from the long-term human-climate ineractions in Early China. Mediterr. Archaeol. Archaeom. 2021, 21, 133–148. [Google Scholar]
- Dani, J.; Horváth, T. Őskori Kurgánok a Magyar Alföldön. A Gödörsíros (Jamnaja) Entitás Magyarországi Kutatása az Elmúlt 30 Év során. Áttekintés és Revízió; Archaeolingua Alapítvány: Budapest, Hungary, 2012; p. 215. [Google Scholar]
- Rouard, X. Did indo-european languages stem from a trans-eurasian original language? An interdisciplinary approach. Sci. Cult. 2022, 8, 15–49. [Google Scholar]
- Ecsedy, I. The People of the Pit-Grave Kurgans in Eastern Hungary; Fontes Archaeologici Hungaricae; Akadémiai Kiadó: Budapest, Hungary, 1979; p. 147. [Google Scholar]
- Horváth, T.; Dani, J.; Pető, Á.; Pospieszny, L.; Svingor, É. Multidisciplinary Contributions to the Study of Pit Grave Culture Kurgans of the Great Hungarian Plain. In Transition to the Bronze Age—Interregional Interaction and Socio-Cultural Change in the Third Millennium BC Carpathian Basin and Neighbouring Regions; Heyd, V., Kulcsár, G., Szeverényi, V., Eds.; Conference Paper The 16th EAA Annual Meeting in Hague; Archeolingua: Budapest, Hungary, 2010; pp. 153–181. [Google Scholar]
- Demkin, V.A.; Kashirskaya, N.N.; Demkina, T.S.; Khomutova, T.E.; El’tsov, M.V. Paleosol studies of burial mounds in the Ilovlya River valley (the Privolzhskaya Upland). Eurasian Soil Sci. 2008, 41, 115–127. [Google Scholar] [CrossRef]
- Rowinska, A.; Sudnik-Wójcikowska, B.; Moysiyenko, I.I. Kurgans–Cultural heritage in the anthropogenic landscape of the steppe and forest steppe zones through the eyes of an archaeologist and botanist. Wiad. Bot. 2010, 54, 7–20. [Google Scholar]
- Deák, B.; Tóthmérész, B.; Valkó, O.; Sudnik-Wójcikowska, B.; Moysiyenko, I.I.; Bragina, T.M.; Apostolova, I.; Dembicz, I.; Bykov, N.I.; Török, P. Cultural monuments and nature conservation: A review of the role of kurgans in the conservation and restoration of steppe vegetation. Biodivers. Conserv. 2016, 25, 2473–2490. [Google Scholar] [CrossRef]
- Ionesov, V.I. Cenotaphs in ritual practice of complex societies: Proto-Bactrian cultural context. Mediterr. Archaeol. Archaeom. 2020, 20, 91–105. [Google Scholar]
- Kaiser, E.; Winger, K. Pit graves in Bulgaria and the Yamnaya Culture. Praehist. Z. 2015, 90, 114–140. [Google Scholar] [CrossRef]
- Bede, Á.; Salisbury, R.B.; Csathó, A.I.; Czukor, P.; Páll, D.P.; Szilágyi, G.; Sümegi, P. Report of the complex geoarcheological survey at the Ecse-halom kurgan in Hortobágy, Hungary. Cent. Eur. Geol. 2015, 58, 268–289. [Google Scholar] [CrossRef] [Green Version]
- Pál, B.A.S.; Katalin, J. Joó Adatok a Hortobágy paleoökológiai rekonstrukciójához a Csípő-halom talajtani és malakológiai vizsgálata alapján. Földtani Közlöny 2003, 133, 421–432. [Google Scholar]
- Barczi, A. The importance of pedological investigations in Holocene palaeoecological reconstructions. Antaeus 2004, 27, 129–134. [Google Scholar]
- Joó, K.; Barczi, A.; Sümegi, P. Study of soil scientific, layer scientific and palaeoecological relations of the Csípő-mound kurgan. Atti Soc. Toscana Sci. Nat. 2007, A112, 141–144. [Google Scholar]
- Borisov, A.V.; Krivosheev, M.; Mimokhod, R.A.; El’tsov, M. “Sod blocks” in kurgan mounds: Historical and soil features of the technique of tumuli erection. J. Archaeol. Sci. 2019, 24, 122–131. [Google Scholar] [CrossRef]
- Rómer, F. Compte-Rendu de la Huitième Session à Budepest 1876. I. Résultats Généreaux du Mouvement Archéologique en Hongrie; Magyar Nemzeti Múzeum: Budapest, Hungary, 1878; p. 187. [Google Scholar]
- Alexandrovskiy, A.L. Natural Environment as Seen in Soil. Eurasian Soil Sci. 1996, 29, 245–254. [Google Scholar]
- Mitusov, A.V.; Mitusova, O.E.; Pustovoytov, K.; Lubos, C.C.-M.; Dreibrodt, S.; Bork, H.-R. Palaeoclimatic indicators in soils buried under archaeological monuments in the Eurasian steppe: A review. Holocene 2009, 19, 1153–1160. [Google Scholar] [CrossRef]
- Zaitseva, G.I.; Chugunov, K.V.; Bokovenko, N.A.; Dergachev, V.I.; Dirksen, V.G. Chronological study of archaeological sites and environmental change around 2600 BP in the Eurasian steppe belt (Uyuk Valley, Tuva Republic). Geochronometria 2005, 24, 97–107. [Google Scholar]
- Alexandrovskiy, A.L. Holocene Development of Soils in Response to Environmental Changes: The Novosvobodnaya Archaeological Site, North Caucasus. Catena 2000, 41, 238–248. [Google Scholar] [CrossRef]
- Demkin, V.A.; Klepikov, V.M.; Udaltsov, S.; Demkina, T.; Eltsov, M.V.; Khomutova, T. New aspects of natural science studies of archaeological burial monuments (kurgans) in the southern Russian steppes. J. Archaeol. Sci. 2014, 42, 241–249. [Google Scholar] [CrossRef]
- Sümegi, P. A Negyedidőszak Földtanának és Őskörnyezettanának Alapjai; JATE Press: Szeged, Hungary, 2002; 262p. [Google Scholar]
- Persaits, G.; Sümegi, P. Régészeti lelőhelyekről származó fitolit vizsgálatok jelentősége az archeobotanikában. In Komplex Archeobotanika; Törocsik, T., Náfrádi, K., Sümegi, P., Eds.; GeoLitera: Szeged, Hungary, 2015; pp. 145–154. [Google Scholar]
- Szilágyi, G.; Sümegi, P.; Molnár, D.; Sávai, S. Mollusc-based paleoecological investigations of the Late Copper—Early Bronze Age earth mounds (kurgans) on the Great Hungarian Plain. Cent. Eur. J. Geosci. 2015, 5, 465–479. [Google Scholar] [CrossRef]
- Hungarian National Museum Archaeological Database. Available online: https://archeodatabase.hnm.hu/hu/node/42649 (accessed on 15 December 2021).
- Molnár, B. A Kiskunsági Nemzeti Park Földtana és Vízföldtana; JATE Press: Szeged, Hungary, 2015; p. 524. [Google Scholar]
- Stefanovits, P. Talajtan; Mezőgazda Kiadó: Budapest, Hungary, 1972; p. 380. [Google Scholar]
- Sümegi, P.; Persaits, G.; Gulyás, S. Woodland-Grassland Ecotonal Shifts in Environmental Mosaics: Lessons Learnt from the Environmental History of the Carpathian Basin (Central Europe) during the Holocene and the Last Ice Age Based on Investigation of Paleobotanical and Mollusk Remains; Springer Press: New York, NY, USA, 2012; pp. 17–57. [Google Scholar]
- Holdridge, L.R. Determination of world plant formations from simple climatic data. Science 1947, 105, 367–368. [Google Scholar] [CrossRef]
- Péczely, G. Éghajlattan; Nemzeti Tankönyvkiadó: Budapest, Hungary, 1979; p. 342. [Google Scholar]
- Wikimedia Commons. Pannonian Basin Geographic Map Blank Cropped. Available online: https://upload.wikimedia.org/wikipedia/commons/2/27/Pannonian_Basin_geographic_map_blank_croped.svg (accessed on 17 December 2021).
- Gyalog, L.; Síkhegyi, F. Magyarország Földtani Térképe, M=1:100,000; A Magyar Állami Földtani Intézet Kiadványa: Budapest, Hungary, 2005. [Google Scholar]
- Arcanum. Military Survey of Hungary. 1941. Available online: https://maps.arcanum.com/hu/map/hungary1941/?layers=29&bbox=2048733.8922147613%2C5974534.368118141%2C2339653.221868142%2C6082463.45205681 (accessed on 17 December 2021). (In Hungarian).
- Google Maps. Available online: https://goo.gl/maps/n5twBG8njBKdCgSR9 (accessed on 17 December 2021).
- Birks, H.J.B.; Birks, H.H. Quaternary Paleoecology; Edward Arnold Press: London, UK, 1980; p. 289. [Google Scholar]
- Munsell, A.H. Munsell Soil Color Charts; Munsell Color Company: Baltimore, MD, USA, 2000; p. 29. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Michéli, E.; Csorba, A.; Szegi, T.; Dobos, E.; Fuchs, M. The soil types of the modernized, diagnostic based Hungarian Soil Classification System and their correlation with the World reference base for soil resources. Hung. Geogr. Bull. 2019, 68, 109–117. [Google Scholar] [CrossRef]
- Bokhorst, M.P.; Vandenberghe, J.; Sümegi, P.; Łanczont, M.; Gerasimenko, N.P.; Matviishina, Z.N.; Markovic, S.B.; Frechen, M. Atmospheric circulation patterns in central and eastern Europe during Weichselian Pleniglacial inferred from loess grain-size records. Quat. Int. 2011, 234, 62–74. [Google Scholar] [CrossRef]
- Sümegi, P.; Molnár, D.; Gulyás, S.; Náfrádi, K.; Sümegi, B.P.; Törőcsik, T.; Persaits, G.; Molnár, M.; Vandenberghe, J.; Zhou, L. High-resolution proxy record of the environmental response to climatic variations during transition MIS3/MIS2 and MIS2 in Central Europe: The loess-paleosol sequence of Katymár brickyard (Hungary). Quat. Int. 2019, 504, 40–55. [Google Scholar] [CrossRef]
- Wentworth, C.K. A Scale of grade and class terms for clastic sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Dearing, J. Environmental Magnetic Susceptibility: Using the Bartington MS2 System; Chi Publishing: Keniloworth, UK, 1999; p. 43. [Google Scholar]
- Dean, W.E. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. J. Sediment. Petrol. 1974, 44, 242–248. [Google Scholar]
- Hieri, O.; Lotter, A.; Lemcke, G. Loss on Ignition as a Method for Estimating Organic and Carbonate Content in Sediments: Reproducibility and Comparability of Results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Hertelendi, E.; Csongor, É.; Záborszky, L.; Molnár, I.; Gál, I.; Győrffy, M.; Nagy, S. Counting system for high precision C-14 dating. Radiocarbon 1989, 32, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Molnár, M.; Janovics, R.; Major, I.; Orsovszki, J.; Gönczi, R.; Veres, M.; Leonard, A.G.; Castle, S.M.; Lange, T.E.; Wacker, L. Status report of the new AMS 14C sample preparation lab of the Hertelendi Laboratory of Environmental Studies (Debrecen, Hungary). Radiocarbon 2013, 55, 665–676. [Google Scholar] [CrossRef] [Green Version]
- Demény, A.; Schöll-Barna, G.; Fórizs, I.; Osán, J.; Sümegi, P.; Bajnóczi, B. Stable isotope compositions and trace element concentrations in freshwater bivalve shells (Unio sp.) as indicators of environmental changes at Tiszapüspöki, eastern Hungary. Cent. Eur. Geol. 2012, 55, 441–460. [Google Scholar] [CrossRef] [Green Version]
- Gulyás, S.; Sümegi, P.; Molnár, M. New radiocarbon dates from the Late Neolithic tell settlement of Hódmezővásárhely-Gorzsa, SE Hungary. Radiocarbon 2010, 52, 1458–1464. [Google Scholar] [CrossRef] [Green Version]
- Hertelendi, E.; Sümegi, P.; Szöör, G. Geochronologic and paleoclimatic characterization of Quaternary sediments in the Great Hungarian Plain. Radiocarbon 1992, 34, 833–839. [Google Scholar] [CrossRef] [Green Version]
- Schöll-Barna, G. Kagyló- és csigahéjak stabilizotóp-vizsgálata: Környezet- és klíma-rekonstrukció a Balaton vízgyűjtőjében. Szegedi Tudományegyetem, Környezettudományi Doktori Iskola. Ph.D. Thesis, University of Szeged, Szeged, Hungary, 2011; p. 114. [Google Scholar]
- Reimer, P.; Austin, W.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Ramsey, C.B.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Philippsen, B. The freshwater reservoir effect in radiocarbon dating. Herit. Sci. 2013, 1, 24. [Google Scholar] [CrossRef] [Green Version]
- Krolopp, E. A Buda Környéki Alsópleisztocén Mésziszapok Csiga-Faunájának Állatföldrajzi Ökológiai Vizsgálata. Ph.D. Thesis, Eötvös Loránd University, Budapest, Hungary, 1958; p. 141. [Google Scholar]
- Magyari, E.; Sümegi, P.; Braun, M.; Jakab, G. Retarded hydrosere: Anthropogenic and climatic signals in a Holocene raised bog profile from the NE Carpathian Basin. J. Ecol. 2001, 89, 1019–1032. [Google Scholar] [CrossRef]
- Moore, P.D.; Webb, J.A.; Collinson, M.E. Pollen Analysis; Blackwell Scientific Publications: Oxford, UK, 1991. [Google Scholar]
- Reille, M. Pollen et Spores d’Europe et d’Afrique du Nord; Laboratoirede Botanique Historique et Palynologie: Marseille, France, 1992. [Google Scholar]
- Maher, L.J. Nomograms for computing 0.95 confidence limits of pollen data. Rev. Palaeobot. Palynol. 1972, 13, 85–93. [Google Scholar] [CrossRef]
- Sümegi, P.; Magyari, E.; Dániel, P.; Hertelendi, E.; Rudner, E. A kardoskúti Fehér-tó negyedidőszaki fejlődéstörténetének rekonstrukciója. Földtani Közlöny 1999, 129, 479–519. [Google Scholar]
- Allen, J.R.M.; Watts, W.A.; Huntley, B. Weichselian palynostratigraphy, palaeovegetation and palaeoenvironment: The record from Lago Grande di Monticchio, southern Italy. Quat. Int. 2000, 73–74, 91–110. [Google Scholar] [CrossRef]
- Behre, K.E. The interpretation of anthropogenic indicators in pollen diagrams. Pollen Spores 1981, 23, 225–245. [Google Scholar]
- Behre, K.E. (Ed.) Anthropogenic Indicators in Pollen Diagrams; Balkema Press: Boston, MA, USA, 1986; p. 232. [Google Scholar]
- Elenga, H.; Peyron, O.; Bonnefille, R.; Jolly, D.; Cheddadi, R.; Guiot, J.; Hamilton, A.C. Pollen-based biome reconstruction for southern Europe and Africa 18,000 yr bp. J. Biogeogr. 2000, 27, 621–634. [Google Scholar] [CrossRef] [Green Version]
- Magyari, E.K.; Chapman, J.C.; Passmore, D.G.; Allen JR, M.; Huntley, J.P.; Huntley, B. Holocene persistence of wooded steppe in the Great Hungarian Plain. J. Biogeogr. 2010, 37, 915–935. [Google Scholar] [CrossRef]
- Prentice, I.C.; Guiot, J.; Huntley, B.; Jolly, D.; Cheddadi, D. Reconstructing biomes from palaeoecological data: A general method and its application to European pollen data at 0 and 6 ka. Clim. Dyn. 1996, 12, 185–194. [Google Scholar] [CrossRef]
- Prentice, I.C.; Webb, T. BIOME 6000: Reconstructing global mid-Holocene vegetation patterns from palaeoecological records. J. Biogeogr. 1998, 25, 997–1005. [Google Scholar] [CrossRef]
- Tarasov, P.; Webb, T.; Andreev, A.A.; Afanas’eva, N.B.; Berezina, N.A.; Bezusko, L.G.; Blyakharchuk, T.A.; Bolikhovskaya, N.S.; Cheddadi, R.; Chernavskaya, M.M.; et al. Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. J. Biogeogr. 2002, 25, 1029–1053. [Google Scholar] [CrossRef] [Green Version]
- Gerling, C.; Bánffy, E.; Dani, J.; Kohler, K. Immigration and transhumance in the Early Bronze Age Carpathian Basin: The occupants of a kurgan. Antiquity 2012, 86, 1097–1111. [Google Scholar] [CrossRef]
- Zhou, W.; Head, M.J.; Wang, F.; Donahue, D.J.; Jull, A.J.T. The reliability of AMS radiocarbon dating of shells from China. Radiocarbon 1999, 41, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Ant, T.H. Faunistische, ökologische und tiergeographische Untersuchungen zur Verbreitung der Landschnecken in Nordwestdeutschland. Abh. Landesmus. Nat. Münster 1963, 25, 125. [Google Scholar]
Depth (cm) | Pinus sylvestris | Fagus | Carpinus | Quercus | Salix | Tilia | Ulmus | AP Total |
---|---|---|---|---|---|---|---|---|
% | % | % | % | % | % | % | % | |
360–370 | 9.01 | 0.85 | 1.97 | 3.94 | 4.79 | 0.28 | 1.41 | 22.25 |
370–380 | 9.51 | 1.15 | 2.31 | 4.61 | 5.48 | 0.29 | 2.02 | 25.36 |
Depth (cm) | Achillea type | Artemisia | Cerealia | Chenopodiaceae | Compositaea | Plantago lanceolata | Poaceae | Polygonum aviculare | Taraxacum | Verbascum | NAP |
---|---|---|---|---|---|---|---|---|---|---|---|
% | % | % | % | % | % | % | % | % | % | % | |
360–370 | 0.85 | 2.82 | 0.85 | 4.23 | 1.41 | 1.69 | 64.51 | 0.28 | 0.85 | 0.28 | 77.75 |
370–380 | 0.58 | 1.73 | 0.58 | 3.17 | 1.73 | 1.73 | 63.69 | 0.58 | 0.29 | 0.58 | 74.64 |
Species/Stratum | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Lymnaea truncatula | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + |
Planorbis planorbis | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + |
Anisus spirobis | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | + |
Pisidium | 0 | 0 | 0 | 0 | + | + | 0 | 0 | 0 | + |
Succinea oblonga | 0 | 0 | 0 | 0 | + | + | 0 | 0 | 0 | + |
Chondrula tridens | + | + | + | + | + | + | + | + | + | 0 |
Helicopsis striata | 0 | 0 | 0 | + | 0 | + | + | + | + | 0 |
Pupilla muscorum | 0 | 0 | 0 | + | 0 | + | + | + | 0 | + |
Vallonia costata | + | + | + | + | + | + | + | + | + | + |
Vallonia pulchella | + | + | + | + | + | + | + | + | + | + |
Cepaea vindobonensis | + | + | + | + | + | 0 | + | + | + | 0 |
Helix pomatia | 0 | 0 | + | + | + | + | + | + | 0 | 0 |
Lab Code | Material | Depth (cm) | 14C yr BP | ± | Cal BP yr | ± | Cal BC |
---|---|---|---|---|---|---|---|
DeA-21607 | soil organic C | 130–140 | 5589 | 32 | 6354 | 54 | 4459–4351 |
DeA-21606 | soil organic C | 130–140 | 5306 | 32 | 6094 | 100 | 4245–4045 |
DeA-21604 | soil organic C | 350–360 | 5552 | 46 | 5350 | 59 | 4460–4332 |
DeA-21605 | soil organic C | 350–360 | 6062 | 39 | 6898 | 106 | 5055–4843 |
DeA-21608 | Unio shell | 360–370 | 4506 | 33 | 5175 | 129 | 3355–3097 |
DeA-21602 | soil organic C | 360–370 | 5552 | 35 | 6345 | 54 | 4450–4342 |
DeA-21603 | soil organic C | 360–370 | 5913 | 33 | 6729 | 68 | 4848–4712 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cseh, P.; Molnár, D.; Makó, L.; Sümegi, P. Geoarchaeological Analyses of a Late-Copper-Age Kurgan on the Great Hungarian Plain. Quaternary 2022, 5, 20. https://doi.org/10.3390/quat5020020
Cseh P, Molnár D, Makó L, Sümegi P. Geoarchaeological Analyses of a Late-Copper-Age Kurgan on the Great Hungarian Plain. Quaternary. 2022; 5(2):20. https://doi.org/10.3390/quat5020020
Chicago/Turabian StyleCseh, Péter, Dávid Molnár, László Makó, and Pál Sümegi. 2022. "Geoarchaeological Analyses of a Late-Copper-Age Kurgan on the Great Hungarian Plain" Quaternary 5, no. 2: 20. https://doi.org/10.3390/quat5020020
APA StyleCseh, P., Molnár, D., Makó, L., & Sümegi, P. (2022). Geoarchaeological Analyses of a Late-Copper-Age Kurgan on the Great Hungarian Plain. Quaternary, 5(2), 20. https://doi.org/10.3390/quat5020020