Soils in Understanding Land Surface Construction: An Example from Campania Plain, Southern Italy
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results
4.1. Lithostratigraphic Sequences
- Unit I.
- Post-NYT soil and colluvial sediments.
- Unit II.
- Multistratified pyroclastic unit (NYT).
- Unit III.
- Post-CI soil and/or colluvial/alluvial sediments.
- Unit IV.
- Tuff unit (CI).
4.2. Soil Profiles
4.2.1. Morphological Characteristics
4.2.2. Laboratory Analyses
5. Discussion
5.1. Soil Horizonation Settlement
5.2. Pedological Signature of Sedimentary–Geomorphic Processes in the Studied Area
6. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schaetzl, R.J.; Anderson, S. Soils: Genesis and Geomorphology, 2nd ed.; Cambridge University Press: Cambridge, MA, USA, 2015; 817p. [Google Scholar]
- Soil Science Division Staff (USDA-NRCS). Soil Survey Manual; Ditzler, C., Scheffe, K., Monger, H.C., Eds.; USDA Handbook 18; Government Printing Office: Washington, DC, USA, 2017; Volume 18. [Google Scholar]
- Ahr, S.W.; Nordt, L.C.; Schaetzl, R.J. Lithologic Discontinuities in Soils. In International Encyclopedia of Geography; Richardson, D.L., Ed.; Wiley and Sons: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Lowe, D.J. Using soil stratigraphy and tephrochronology to understand the origin, age, and classification of a unique Late Quaternary tephra-derived Ultisol in Aotearoa New Zealand. Quaternary 2019, 2, 9. [Google Scholar] [CrossRef]
- Palmer, A.S.; Lowe, D.J.; Almond, P.C. Pedostratigraphy. In Encyclopaedia of Quaternary Science, 3rd ed.; Elias, S.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; 22p. [Google Scholar]
- Lorz, C.; Phillips, J.D. Pedo-Ecological Consequences of Lithological Discontinuities in Soils—Examples from Central Europe. J. Plant Nutr. Soil Sci. 2006, 169, 573–581. [Google Scholar] [CrossRef]
- Scarciglia, F.; Vecchio, G.; De Rosa, R.; Robustelli, G.; Muto, F.; Le Pera, E.; Critelli, S. Il contributo della pedologia nell’analisi geomorfologica. L’esempio della Sila (Calabria, Italia meridionale)—The contribution of pedology to geomorphologicalanalysis. The case of Sila (Calabria, Southern Italy). Mem. Descr. Carta Geol. d’Italia 2008, LXXVIII, 253–276. [Google Scholar]
- Kowalska, J.B.; Kajdas, B.M.; Zaleski, T. Lithological indicators of discontinuities in mountain soils rich in calcium carbonate in the Polish Carpathians. J. Mt. Sci. 2020, 17, 1058–1083. [Google Scholar] [CrossRef]
- Huang, W.S.; Liang, C.S.; Tsai, H.; Hseu, Z.Y.; Huang, S.T. Pedogenesis of Fluvial Terrace Soils Related to Geomorphic Processes in Central Taiwan. Land 2023, 12, 535. [Google Scholar] [CrossRef]
- Martignier, L.; Verrecchia, E.P. Weathering Processes in Superficial Deposits (Regolith) and Their Influence on Pedogenesis: A Case Study in the Swiss Jura Mountains. Geomorphology 2013, 189, 26–40. [Google Scholar] [CrossRef]
- Crosta, G.B.; Dal Negro, P. Observations and Modelling of Soil Slip-Debris Flow Initiation Processes in Pyroclastic Deposits: The Sarno 1998 Event. Nat. Hazards Earth Syst. Sci. 2003, 3, 53–69. [Google Scholar] [CrossRef]
- Damiano, E.; Olivares, L. The Role of Infiltration Processes in Steep Slope Stability of Pyroclastic Granular Soils: Laboratory and Numerical Investigation. Nat. Hazards 2010, 52, 329–350. [Google Scholar] [CrossRef]
- Celico, P.; Guadagno, F.M. L’ instabilità delle coltri piroclastiche delle dorsali carbonatiche in Campania: Attuali conoscenze. Quad. Geol. Appl. 1998, 5, 75–133. [Google Scholar]
- Tarquini, S.; Isola, I.; Favalli, M.; Mazzarini, F.; Bisson, M.; Pareschi, M.T.; Boschi, E. TINITALY/01: A New Triangular Irregular Network of Italy. Ann. Geophys. 2007, 50, 407–425. [Google Scholar] [CrossRef]
- Tarquini, S.; Vinci, S.; Favalli, M.; Doumaz, F.; Fornaciai, A.; Nannipieri, L. Release of a 10-m-Resolution DEM for the Italian Territory: Comparison with Global-Coverage DEMs and Anaglyph-Mode Exploration via the Web. Comput. Geosci. 2012, 38, 168–170. [Google Scholar] [CrossRef]
- Milia, A.; Torrente, M.M. Tectonics and Stratigraphic Architecture of a Peri-Tyrrhenian Half-Graben (Bay of Naples, Italy). Tectonophysics 1999, 315, 301–318. [Google Scholar] [CrossRef]
- Putignano, M.L.; Ruberti, D.; Tescione, M.; Vigliotti, M. Evoluzione Tardo Quaternaria Del Margine Casertano Della Piana Campana (Italia Meridionale). Boll. Della Soc. Geol. Ital. 2007, 126, 11–24. [Google Scholar]
- Santangelo, N.; Ciampo, G.; Di Donato, V.; Esposito, P.; Petrosino, P.; Romano, P.; Ermolli, E.R.; Santo, A.; Toscano, F.; Villa, I. Late Quaternary Buried Lagoons in the Northern Campania Plain (Southern Italy): Evolution of a Coastal System under the Influence of Volcano-Tectonics and Eustatism. Ital. J. Geosci. 2010, 129, 156–175. [Google Scholar] [CrossRef]
- Romano, P.; Santo, A.; Voltaggio, M. L’evoluzione geomorfologia della Pianura del Fiume Volturno (Campania) durante il tardo Quaternario (Pleistocene medio-superiore-Olocene). Il Quat. Ital. J. Quat. Sci. 1994, 7, 41–56. [Google Scholar]
- Amorosi, A.; Pacifico, A.; Rossi, V.; Ruberti, D. Late Quaternary Incision and Deposition in an Active Volcanic Setting: The Volturno Valley Fill, Southern Italy. Sediment. Geol. 2012, 282, 307–320. [Google Scholar] [CrossRef]
- Aiello, G.; Barra, D.; Collina, C.; Piperno, M.; Guidi, A.; Stanislao, C.; Saracino, M.; Donadio, C. Geomorphological and paleoenvironmental evolution in the prehistoric framework of the coastland of Mondragone, southern Italy. Quat. Int. 2018, 493, 70–85. [Google Scholar] [CrossRef]
- Corrado, G.; Amodio, S.; Aucelli, P.P.C.; Pappone, G.; Schiattarella, M. The subsurface geology and landscape evolution of the Volturno coastal plain, Italy: Interplay between tectonics and sea-level changes during the quaternary. Water 2020, 12, 3386. [Google Scholar] [CrossRef]
- Rolandi, G.; Di Lascio, M.; Rolandi, R. The Neapolitan Yellow Tuff eruption as the source of the Campi Flegrei caldera. In Vesuvius, Campi Flegrei, and Campanian Volcanism; De Vivo, B., Belkin, H.E., Rolandi, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 273–296. [Google Scholar] [CrossRef]
- Ruberti, D.; Buffardi, C.; Sacchi, M.; Vigliotti, M. The late Pleistocene-Holocene changing morphology of the Volturno delta and coast (northern Campania, Italy): Geological architecture and human influence. Quat. Int. 2022, 625, 14–28. [Google Scholar] [CrossRef]
- Ruberti, D.; Vigliotti, M.; Marzaioli, R.; Pacifico, A.; Ermice, A. Stratigraphic Architecture and Anthropic Impacts on Subsoil to Assess the Intrinsic Potential Vulnerability of Groundwater: The Northeastern Campania Plain Case Study, Southern Italy. Environ. Earth Sci. 2014, 71, 319–339. [Google Scholar] [CrossRef]
- De Vivo, B.; Rolandi, G.; Gans, P.B.; Calvert, A.; Bohrson, W.A.; Spera, F.J.; Belkin, H.E. New Constraints on the Pyroclastic Eruptive History of the Campanian Volcanic Plain (Italy). Mineral. Petrol. 2001, 73, 47–65. [Google Scholar] [CrossRef]
- Gebauer, S.K.; Schmitt, A.K.; Pappalardo, L.; Stockli, D.F.; Lovera, O.M. Crystallization and Eruption Ages of Breccia Museo (Campi Flegrei Caldera, Italy) Plutonic Clasts and Their Relation to the Campanian Ignimbrite. Contrib. Miner. Petrol. 2014, 167, 953. [Google Scholar] [CrossRef]
- Rolandi, G.; De Natale, G.; Kilburn, C.R.J.; Troise, C.; Somma, R.; Di Lascio, M.; Fedele, A.; Rolandi, R. The 39 Ka Campanian Ignimbrite Eruption: New Data on Source Area in the Campanian Plain. In Vesuvius, Campi Flegrei, and Campanian Volcanism; De Vivo, B., Belkin, H.E., Rolandi, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 175–205. [Google Scholar]
- Cappelletti, P.; Cerri, G.; Colella, A.; de’Gennaro, M.; Langella, A.; Perrotta, A.; Scarpati, C. Post-Eruptive Processes in the Campanian Ignimbrite. Miner. Pet. 2003, 79, 79–97. [Google Scholar] [CrossRef]
- Ruberti, D.; Vigliotti, M.; Rolandi, R.; Di Lascio, M. Effect of Paleomorphology on Facies Distribution of the Campania Ignimbrite in the Northern Campania Plain, Southern Italy. In Vesuvius, Campi Flegrei, and Campanian Volcanism; De Vivo, B., Belkin, H.E., Rolandi, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 207–229. [Google Scholar]
- Albert, P.G.; Giaccio, B.; Isaia, R.; Costa, A.; Niespolo, E.M.; Nomade, S.; Pereira, A.; Renne, P.R.; Hinchliffe, A.; Mark, D.F.; et al. Evidence for a Large-Magnitude Eruption from Campi Flegrei Caldera (Italy) at 29 Ka. Geology 2019, 47, 595–599. [Google Scholar] [CrossRef]
- Vingiani, S.; Buonanno, M.; D’Antonio, A.; De Mascellis, R.; di Gennaro, A.; Iamarino, M.; Lagella, G.; Manna, P.; Moretto, P.; Terribile, F. Soil of the Aversa Plain (Southern Italy). J. Maps 2018, 14, 312–320. [Google Scholar] [CrossRef]
- Vigliotti, M.; Busico, G.; Ruberti, D. Assessment of the Vulnerability to Agricultural Nitrate in Two Highly Diversified Environmental Settings. Environments 2020, 7, 80. [Google Scholar] [CrossRef]
- Schoeneberger, P.J.; DAWysocki, E.C. Benham, and Soil Survey Staff. Field Book for Describing and Sampling Soils; Version 3.0; Natural Resources Conservation Service, National Soil Survey Center: Lincoln, NE, USA, 2012. [Google Scholar]
- Ciolkosz, E.J.; Waltman, W.J. Cambic Horizons in Pennsylvania Soils; Agronomy Series Number 133; Agronomy Department The Pennsylvania State University: University Park, PA, USA, 1995; pp. 75–91. [Google Scholar]
- Ermice, A. A Pedological Case Study of Volcanoclastically Impacted Landscapes: The Vesuvian Avellino Air-Fall Deposits, Southern Italy. Catena 2017, 149, 241–252. [Google Scholar] [CrossRef]
- Di Girolamo, P.; Lirer, L.; Porcelli, C.; Stanzione, D. Correlazioni stratigrafiche fra le principali formazioni piroclastiche della Campania. Rend. Della Soc. Ital. Mineral. Petrol. 1972, 28, 75–123. [Google Scholar]
- Bellucci, F.; Santangelo, N.; Santo, A. Segnalazione Di Nuovi Depositi piroclastici intercalati alle successioni continentali del Pleistocene Superiore-Olocene della porzione Nord-Orientale della Piana Campana. Alp. Mediterr. Quat. 2003, 16, 279–287. [Google Scholar]
- Deino, A.L.; Orsi, G.; de Vita, S.; Piochi, M. The Age of the Neapolitan Yellow Tuff Caldera-Forming Eruption (Campi Flegrei Caldera—Italy) Assessed by 40Ar/39Ar Dating Method. J. Volcanol. Geotherm. Res. 2004, 133, 157–170. [Google Scholar] [CrossRef]
- Scarpati, C.; Cole, P.; Perrotta, A. The Neapolitan Yellow Tuff—A Large Volume Multiphase Eruption from Campi Flegrei, Southern Italy. Bull. Volcanol. 1993, 55, 343–356. [Google Scholar] [CrossRef]
- Wohletz, K.; Orsi, G.; de Vita, S. Eruptive Mechanisms of the Neapolitan Yellow Tuff Interpreted from Stratigraphie, Chemical, and Granulometric Data. J. Volcanol. Geotherm. Res. 1995, 67, 263–290. [Google Scholar] [CrossRef]
- Barberi, F.; Innocenti, F.; Lirer, L.; Munno, R.; Pescatore, T.; Santacroce, R. The Campanian Ignimbrite: A Major Prehistoric Eruption in the Neapolitan Area (Italy). Bull. Volcanol. 1978, 41, 1–22. [Google Scholar] [CrossRef]
- Scandone, R.; Bellucci, F.; Lirer, L.; Rolandi, G. The Structure of the Campanian Plain and the Activity of the Neapolitan Volcanoes (Italy). J. Volcanol. Geotherm. Res. 1991, 48, 1–31. [Google Scholar] [CrossRef]
- Shoji, S.; Dahlgren, R.; Nanzyo, M. Chapter 3 Genesis of Volcanic Ash Soils. In Volcanic Ash Soils. Genesis, Properties and Utilization; Shoji, S., Ed.; Development in Soil Science; Elsevier Science Publisher: Amsterdam, The Netherlands, 1993; pp. 37–72. [Google Scholar] [CrossRef]
- Terribile, F.; Basile, A.; De Mascellis, R.; Iamarino, M.; Magliulo, P.; Pepe, S.; Vingiani, S. Landslide processes and Andosols: The case study of the Campania region, Italy. In Soils of Volcanic Regions in Europe; Arnalds, Ó., Óskarsson, H., Bartoli, F., Buurman, P., Stoops, G., García-Rodeja, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Lowe, D.J.; Lanigan, K.M.; Palmer, D.J. Where geology meets pedology: Late Quaternary tephras, loess, and paleosols in the Mamaku Plateau and Lake Rerewhakaaitu areas. In Field Trip Guides, Proceedings of the Geosciences 2012 Conference, Hamilton, New Zealand, 25–28 November 2012; Pittari, A. (Compiler) Geoscience Society of New Zealand Miscellaneous Publication 134B; Geoscience Society of New Zealand: Wellington, New Zealand, 2012; pp. 2.1–2.45. [Google Scholar]
- Uwitonze, P.; Msanya, B.M.; Mtakwa, P.W.; Uwingabire, S.; Sirikare, S. Pedological Characterization of Soils Developed from Volcanic Parent Materials of Northern Province of Rwanda Agric. For. Fish. 2016, 5, 225–236. [Google Scholar] [CrossRef]
- Anda, M.; Purwanto, S.; Dariah, A.; Watanabe, T.; Dahlgren, R.A. A 200-year snapshot of soil development in pyroclastic deposits derived from the 1815 super explosive eruption of Mount Tambora in Indonesia. Geoderma 2023, 433, 116554. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA-Natural Resources Consevation Service: Washington, DC, USA, 2022; 402p. [Google Scholar]
- Scarciglia, F.; Sauer, D.; Zerboni, A. Pleistocene paleosols of Italy: Pedostratigraphy, genesis, paleoclimate and geoarchaeology. Alp. Mediterr. Quat. 2023, 36, 1–35. [Google Scholar] [CrossRef]
- Phillips, J.D.; Lorz, C. Origins and Implications of Soil Layering. Earth Sci. Rev. 2008, 89, 144–155. [Google Scholar] [CrossRef]
- Phillips, J.D.; Luckow, K.; Marion, D.A.; Adams, K.R. Rock Fragment Distributions and Regolith Evolution in the Ouachita Mountains, Arkansas, USA. Earth Surf. Process. Landforms 2005, 30, 429–442. [Google Scholar] [CrossRef]
- Lowe, J.J.; Rasmussen, S.O.; Bjeorck, S.; Hoek, W.Z.; Steffensen, J.P.; Walker, M.J.C.; Yu, Z.C.; INTIMATE Members. Synchronisation of palaeoenvironmental events in the north Atlantic region during the Last Termination: A revised protocol recommended by the INTIMATE group. Quat. Sci. Rev. 2008, 27, 6–17. [Google Scholar] [CrossRef]
- Abrook, A.M.; Matthews, I.P.; Candy, I.; Palmer, A.P.; Francis, C.P.; Turner, L.; Brooks, S.J.; Self, A.E.; Milner, A.M. Complexity and asynchrony of climatic drivers and environmental responses during the Last Glacial-Interglacial Transition (LGIT) in north-west Europe. Quat. Sci. Rev. 2020, 250, 106634. [Google Scholar] [CrossRef]
- Rasmussen, S.O.; Bigler, M.; Blockley, S.P.; Blunier, T.; Buchardt, S.L.; Clausen, H.B.; Cvijanovic, I.; Dahl-Jensen, D.; Johnsen, S.J.; Fischer, H.; et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 2014, 106, 14.e28. [Google Scholar] [CrossRef]
- Santangelo, N.; Romano, P.; Ascione, A.; Russo Ermolli, E. Quaternary evolution of the southern Apennines coastal plains: A review. Geol. Carpathica 2017, 68, 43–56. [Google Scholar] [CrossRef]
- Buffardi, C.; Barbato, R.; Vigliotti, M.; Mandolini, A.; Ruberti, D. The Holocene Evolution of the Volturno Coastal Plain (Northern Campania, Southern Italy): Implications for the Understanding of Subsidence Patterns. Water 2021, 13, 2692. [Google Scholar] [CrossRef]
- Ruberti, D.; Sacchi, M.; Pepe, F.; Vigliotti, M. LGM Incised Valley in a volcanic setting. The Northern Campania Plain (SouthernItaly). Alp. Mediterr. Quat. 2018, 31, 35–38. [Google Scholar]
- Borzenkova, I.; Zorita, E.; Borisova, O.; Kalniņa, L.; Kisielienė, D.; Koff, T.; Kuznetsov, D.; Lemdahl, G.; Sapelko, T.; Stančikaitė, M.; et al. Climate Change During the Holocene (Past 12,000 Years). In Second Assessment of Climate Change for the Baltic Sea Basin; Regional Climate Studies; The BACC II Author Team, Ed.; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Damiano, E. Effects of layering on triggering mechanisms of rainfall-induced landslides in unsaturated pyroclastic granular soils. Can. Geotech. J. 2018, 56, 1278–1290. [Google Scholar] [CrossRef]
- Basile, A.; Mele, G.; Terribile, F. Soil hydraulic behaviour of a selected benchmark soil involved in the landslide of Sarno 1998. Geoderma 2003, 117, 331–346. [Google Scholar] [CrossRef]
- Mirus, B.B. Evaluating the importance of characterizing soil structure and horizons in parameterizing a hy-drologic process model. Hydrol. Process. 2015, 29, 4611–4623. [Google Scholar] [CrossRef]
- Damiano, E.; Greco, R.; Guida, A.; Olivares, L.; Picarelli, L. Investigation on rainwater infiltration into layered shallow covers in pyroclastic soils and its effect on slope stability. Eng. Geol. 2017, 220, 208–218. [Google Scholar] [CrossRef]
- Fusco, F.; Allocca, V.; De Vita, P. Hydro-geomorphological modelling of ash-fall pyroclastic soils for debris flow initiation and groundwater recharge in Campania (southern Italy). Catena 2017, 158, 235–249. [Google Scholar] [CrossRef]
- Hübner, R.; Günther, T.; Heller, K.; Noell, U.; Kleber, A. Impacts of a capillary barrier on infiltration and sub-surface stormflow in layered slope deposits monitored with 3-D ERTand hydrometric measurements. Hydrol. Earth Syst. Sci. 2017, 21, 5181–5199. [Google Scholar] [CrossRef]
- Fusco, F.; Mirus, B.B.; Baum, R.L.; Calcaterra, D.; De Vita, P. Incorporating the Effects of Complex Soil Layering and Thickness Local Variability into Distributed Landslide Susceptibility Assessments. Water 2021, 13, 713. [Google Scholar] [CrossRef]
Label | Location | Elevation (m a.s.l.) | Geographic Coordinates | Soil Use | |||
---|---|---|---|---|---|---|---|
Easting (m) | Northing (m) | Long. Est | Lat. Nord | ||||
Soil | |||||||
SP1 | Recale | 37.0 | 441,749 | 4,544,607 | 14°18′24″ | 41°3′2″ | Meadow grass cultivation |
SP2 | San Nicola | 41.8 | 442,629 | 4,544,393 | 14°19′2″ | 41°2′55″ | Plants for sod production |
SP3 | Maddaloni | 41.9 | 448,553 | 4,541,219 | 14°23′17″ | 41°1′14″ | Sparse shrub vegetation |
SP4 | Maddaloni | 41.7 | 448,536 | 4,541,208 | 14°23′16″ | 41°1′13″ | Sparse shrub vegetation |
SP5 | Caserta | 43 | 445,213 | 4,545,418 | 14°20′52″ | 41°3′29″ | Sparse shrub vegetation |
Outcrop | |||||||
OC1 | S. Marco Evangelista | 58 | 445,214 | 4,545,426 | 14°20′52″ | 41°3′29″ | Sparse shrub vegetation |
OC2 | Maddaloni | 46 | 447,048 | 4,542,290 | 14°22′12″ | 41°1′48″ | Sparse shrub vegetation |
OC3 | Caserta | 43 | 445,214 | 4,545,426 | 14°20′52″ | 41°3′29″ | Sparse shrub vegetation |
Borehole | |||||||
BH1 | Maddaloni | 47.9 | 447,048 | 4,542,290 | 14°22′12″ | 41°1′48″ | Sparse shrub vegetation |
Soil | Unit | Horizon | Depth (cm) | Dry Munsell Color | >2 Mmfragments a and Texture b | Structure c | Consistency d | Boundary e | >2 mm Fragments (% vol) | |
---|---|---|---|---|---|---|---|---|---|---|
SP1 | I | A | 0–27 | 2.5Y 4/4 | fg ls | 4 m/c abk | mfi/fi | cw | 24 | |
2Bw1 | 27–82 | 2.5YR 5/4 | f/vf sl | 3 m/c abk/sbk | mfi | cw | 14 | |||
3Bw2 | 82–117 | 2.5Y 5/6 | f/m l | 2/1/0 m/f sbk/abk | fr | cs | 7.3 | |||
3Bw3 | 117–170 | 2.5Y 5/4 | c/m/fg sl | 1/2 f/msbk/abk | vfr | cs | 16.6 | |||
II | 3C1 | 170–191 | 2.5 Y 7/2 | m/c/fg sl | 0/2 | lo/mfi | as | 20 | ||
4C2 | 191–195 | 10YR 7/2 | f/m vg sl | 0 | lo | as | 50 | |||
5C3 | 195–215 | 2.5Y 7/2 | m/c vg l | 0/1 ma | lo/vfr | as | 46.0 | |||
III | 6Bwb1 | 215–230 | 2.5Y 4/4 | m/f sl | 2 f/m/c sbk | vfr | cs | 13 | ||
7Bwb2 | 230–245 | 2.5Y 5/4 | m/f l | 1/2 f/m sbk | vfr | as | 7.4 | |||
8Bwb3 | 245–285+ | 2.5Y 4/4 | f sl | 1/2 m/f sbk | vfr | - | 3.7 | |||
SP2 | I | A1 | 0–20 | 2.5Y5/4 | vf/f ls | 3/4 f/m/vc sbk/abk | fr/mfi/fi | cs | 3.7 | |
A2/2Bw1 | 20–77.5 | 2.5Y 4/2 | vf/f/ls- | 3/1/2 c/vc/f sbk/abk | lo/mfr/mfi | cw | 7.6–4.5 | |||
2.5Y4/4 | f/m/vf sl | |||||||||
2Bw2 | 77.5–101.5 | 2.5Y 5/6 | f/m/vf/sl | 2 c/m/f abk/sbk | mfr | cw | 4.2 | |||
2Bw3 | 101.5–125 | 2.5Y 5/4 | m/f sl | 1 f/m abk/sbk | lo/vfr | cs | 9.3 | |||
2BC | 125–135 | 2.5Y 7/4 | f/m/cg sl | 0/1/2 f/m sbk | lo/vfr | as | 25 | |||
II | 2C1 | 135–160 | 10YR 7/2 | f/m/c eg sl | 0 | lo | as | 62.5 | ||
3C2 | 160–195 | 2.5Y 7/2 | m/f vg l | 0/1 ma | lo/vfr | as | 55 | |||
III | 4Bwb | 195–210+ | 2.5Y 4/4 | m/f sl | 2 m/c sbk/abk | mmi | - | 14 | ||
SP3 | I | A | 0–10 | 2.5Y 4/4 | vf/f sl | 0/2 vf/f sbk/gr | lo/vfr | cs | 10 | |
Bw1 | 10–50 | 2.5Y 5/4 | vf sl | 4/3 m sbk | mfi | as | 12 | |||
2Bw2 | 50–90 | 2.5Y 5/6 | vf/f l | 3 c/m sbk/abk | mfi | cs | 4 | |||
2Bw3 | 90–120 | 10YR 6/6 | vf/f/m l | 2 m/c abk/sbk | mfi | cs | 8 | |||
2Bw4 | 120–140 | 10YR 6/4 | f/m vg l | 1 m/c/vc abk/sbk | mfr | cs | 36 | |||
II | 2C1 | 140–160 | 10YR 7/3 | m/f/c gr sl | 0 | lo | as | 92 | ||
3C2 | 160–180 | 10YR 7/2 | m/f l | 0/1 ma | lo/fr | as | 8 | |||
III | 4Ab | 180–220 | 10YR 6/3 | f vg ls | 2 m/f abk/sbk | fr | cs | 48 | ||
4Bwb1 | 220–245 | 10YR 5/4 | f/vf vg sl | 2 m/f abk | fr | cw | 52 | |||
5Bwb2 | 245–270 | 10YR 6/3 | f/vf g l | 2 m abk | mfr/fr | as | 23 | |||
6Bwb3 | 270–300 | 10YR 6/4 | vf/f sl | vf/f 2 m abk/sbk | mfr/fr | cs | 14 | |||
IV | (7)R | 300–350+ | - | - | - | - | - | - | ||
SP4 | I | A | 0–10 | 2.5Y 4/4 | vf/f sl | 0/1/2 f sbk/gr | vfr | cs | 10 | |
Bw1 | 10–50 | 2.5Y 5/4 | vf g sl | 3/4 m sbk | mfi | as | 15 | |||
2Bw2 | 50–90 | 2.5Y 5/6 | vf/f l | 3 m sbk/abk | mfi | cs | 5 | |||
2Bw3 | 90–120 | 2.5Y 6/6 | vf/f/m l | 2 m/c abk/sbk | mfi | cs | 8 | |||
2Bw4 | 120–160 | 2.5Y 6/4 | m/f/vf g l | 2/1 m/c/vc abk/sbk | mfr/mfi | cs | 30 | |||
II | IIa | 2C1 | 160–170 | 10YR 7/3 | m/f/c eg sl | 0 | lo | as | 90 | |
3C2 | 170–220 | 10YR 7/2 | m/f l | 0/1 ma | lo/vfr | as | 10 | |||
IIb | 4C3 | 220–230 | - | vf/f s | 0 | lo | as | abs 1 | ||
5C4 | 230–250 | - | vf/f s | 0 | lo | as | abs 1 | |||
III | 6Ab | 250–270 | 10YR 6/3 | f vg ls | 2 m/f abk/sbk | fr | cs | 45 | ||
6Bwb1 | 270–295 | 10YR 5/4 | f/vf vg sl | 2/3 m sbk | fr | cw | 54 | |||
7Bwb2 | 295–320 | 10YR 6/3 | f/vf g | 2/3 m abk/sbk | mfr/fr | as | 25 | |||
8Bwb3 | 320–345 | 10YR 6/4 | vf/f sl | 2/3 abk | mfr/fr | cs | 12 | |||
IV | (9)R | 345–380+ | - | - | - | - | - | - | ||
SP5 | I | A | 0–40 | 2.5Y 3/4 | vfg ls | 2 m/f abk/sbk | fr | cs | - | |
2Bw1 | 40–50 | 2.5YR 4/4 | f ls | 2 m/f sbk/abk | mfr | cs | - | |||
2Bw2 | 50–75 | 2.5Y 4/5 | f/m ls | 2 m/f/c sbk | fr | cs | - | |||
2Bw3 | 75–100 | 2.5Y 5/4 | f/m ls | 2 m/c sbk | fr | cs | - | |||
3Bw4 | 100–130 | 2.5 Y 6/2 | m/fg sl | 2/1 c/m sbk | fr/mfr | cs | - | |||
II | 3C1 | 130–140 | 10YR 6/2 | m/fg sl | 0/1 m/f sbk | fr | as | - | ||
4C2 | 140–160 | 2.5Y 7/2 | c/m/fg l | 0/1 m/f/c ma | lo/vf/mfi | as | - | |||
III | 5Bwb | 160–215 | 2.5Y 3/4 | f/m ls | 2 m/f sbk/abk | fr | cs | - | ||
5CB | 215–240 | 2.5Y 4/4 | m/f vg s | 0/1 f/m sbk | lo/vf | cs | - | |||
6Bwb1 | 240–300 | 2.5Y 3/4 | vf ls | 1 m/f sbk/abk | fr | cw | - | |||
6Bwb2 | 300–345 | 10YR 3/4 | f sl | 1 m/f abk/sbk | fr | gw | - | |||
6CB1 | 345–400 | 10YR 5/4 | fg s | 1 m/f abk | fr/mfr | cs | - | |||
IV | 7CB2 | 400–410 | 10YR 6/3 | m/fg s | 1 m/f abk | mfr | cs | - | ||
(7)C1 | 410–470 | - | - | - | - | - | - | |||
(7)C2 | 470–600+ | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ermice, A.; Marzaioli, R.; Vigliotti, M.; Lamberti, P.; Ruberti, D. Soils in Understanding Land Surface Construction: An Example from Campania Plain, Southern Italy. Quaternary 2024, 7, 39. https://doi.org/10.3390/quat7030039
Ermice A, Marzaioli R, Vigliotti M, Lamberti P, Ruberti D. Soils in Understanding Land Surface Construction: An Example from Campania Plain, Southern Italy. Quaternary. 2024; 7(3):39. https://doi.org/10.3390/quat7030039
Chicago/Turabian StyleErmice, Antonella, Rossana Marzaioli, Marco Vigliotti, Pierferdinando Lamberti, and Daniela Ruberti. 2024. "Soils in Understanding Land Surface Construction: An Example from Campania Plain, Southern Italy" Quaternary 7, no. 3: 39. https://doi.org/10.3390/quat7030039
APA StyleErmice, A., Marzaioli, R., Vigliotti, M., Lamberti, P., & Ruberti, D. (2024). Soils in Understanding Land Surface Construction: An Example from Campania Plain, Southern Italy. Quaternary, 7(3), 39. https://doi.org/10.3390/quat7030039