Estimating Weibull Parameters Using Mabchour’s Method (MMab) for Wind Power at RAWA City, Iraq
Abstract
:1. Introduction
2. Methodology
2.1. Mean of Wind Speed
2.2. Standard Deviation of Wind Speed
2.3. Coefficient of Variation (COV)
2.4. Weibull Distribution
2.5. Wind Power Density
2.6. Error in Estimating Wind Power Density
2.7. Case Study (Selection the Optimal Site)
3. Results and Discussions
4. Conclusions and Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IEA. Global Energy Review 2020, IEA, Paris. Available online: https://www.iea.org/reports/global-energy-review-2020 (accessed on 22 April 2021).
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Shaban, A.H.; Resen, A.K.; Bassil, N. Weibull parameters evaluation by different methods for windmills farms. Energy Rep. 2019, 6, 188–199. [Google Scholar] [CrossRef]
- Altmimi, A.; Ceekhan, A. Calculate and compare five of Weibull distribution parameters to estimate wind power in Iraq. In Proceedings of the 2017 8th International Renewable Energy Congress (IREC), Amman, Jordan, 21–23 March 2017; pp. 1–5. [Google Scholar]
- Resen, A.K.; Mahmood, A.A.; Nmr, J.S. Statistical calculations of wind data utilizing WAsP model. AIP Conf. Proc. 2019, 2123, 020029. [Google Scholar] [CrossRef]
- Akdağ, S.A.; Dinler, A. A new method to estimate Weibull parameters for wind energy applications. Energy Convers. Manag. 2009, 50, 1761–1766. [Google Scholar] [CrossRef]
- Asghar, A.B.; Liu, X. Estimation of wind speed probability distribution and wind energy potential using adaptive neuro-fuzzy methodology. Neurocomputing 2018, 287, 58–67. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Mahammed, H. A statistical analysis of wind power density based on the Weibull and Ralyeigh models of “Penjwen Region” Sulaimani/Iraq. Jordan J. Mech. Ind. Eng. 2012, 6, 135–140. [Google Scholar]
- Davis, C.J. Computational modeling of wind turbine wake interactions. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 2012. [Google Scholar]
- Azad, K.; Rasul, M.; Alam, M.; Uddin, S.A.; Mondal, S.K. Analysis of Wind Energy Conversion System Using Weibull Distribution. Procedia Eng. 2014, 90, 725–732. [Google Scholar] [CrossRef]
- Tong, W. Wind Power Generation and Wind Turbine Design; WIT Press: Southampton, UK, 2010. [Google Scholar]
- Sukkiramathi, K.; Seshaiah, C. Analysis of wind power potential by the three-parameter Weibull distribution to install a wind turbine. Energy Explor. Exploit. 2019, 38, 158–174. [Google Scholar] [CrossRef] [Green Version]
- Tizgui, I.; El Guezar, F.; Bouzahir, H.; Benaid, B. Comparison of methods in estimating Weibull parameters for wind energy applications. Int. J. Energy Sect. Manag. 2017, 11, 650–663. [Google Scholar] [CrossRef]
- Solar radiation Data, Merra-2 Meteorological Re-analysis. Available online: http://www.soda-pro.com/web-services/meteo-data/merra (accessed on 10 March 2021).
Site | Lat. (°) | Lon. (°) | Elev. (m) | T (°C) | RH (%) | v (m/s) |
---|---|---|---|---|---|---|
Talafar | 36.35 | 42.35 | 348 | 20.44 | 42.05 | 3.15 |
Nasiriyah | 30.84 | 46.06 | 6 | 27.24 | 44.31 | 3.91 |
Baghdad | 33.44 | 44.31 | 35 | 25.29 | 36.1 | 3.41 |
RAWA | 34.46 | 41.92 | 160 | 21.4 | 40.47 | 4.14 |
Month | H =10 m | H = 50 m | ||||||
---|---|---|---|---|---|---|---|---|
c (m/s) | Diff% | k | Diff% | c (m/s) | Diff% | k | Diff% | |
Jan. | 3.38 | 2.45 | 2.08 | 1.65 | 4.247 | 1.96 | 1.983 | 1.18 |
Feb. | 3.45 | 2.09 | 1.85 | 2.37 | 4.268 | 2.97 | 1.749 | 1.89 |
Mar. | 3.99 | 2.46 | 2.2 | 1.82 | 5.199 | 2.25 | 2.295 | 1.80 |
Apr. | 4.3 | 0.99 | 1.92 | 1.23 | 5.370 | 1.08 | 1.809 | 1.74 |
May | 5.2 | 1. | 2.74 | 1.70 | 6.472 | 1.43 | 2.590 | 2.37 |
Jun. | 5.53 | 2.52 | 3.3 | 1.93 | 6.981 | 1.56 | 3.218 | 1.63 |
Jul. | 6.1 | 1.27 | 4.09 | 1.56 | 7.655 | 0.88 | 4.074 | 2.04 |
Aug. | 4.98 | 1.87 | 3.65 | 2.19 | 6.297 | 0.74 | 3.690 | 1.12 |
Sept. | 4.17 | 2.59 | 2.27 | 0.70 | 5.219 | 2.46 | 2.193 | 2.70 |
Oct. | 3.98 | 2.68 | 2.45 | 0.65 | 5.092 | 0.41 | 2.367 | 2.75 |
Nov. | 3.35 | 2.44 | 1.82 | 0.55 | 4.158 | 3.12 | 1.792 | 0.99 |
Dec. | 3.87 | 1.27 | 2.1 | 1.20 | 4.798 | 2.08 | 1.890 | 2.16 |
Height 10 m | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Yearly Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N(h) | 744.0 | 672.0 | 744.0 | 720.0 | 744.0 | 720.0 | 744.0 | 744.0 | 720.0 | 744.0 | 720.0 | 744.0 | 8760 |
v mean (m/s) | 3.03 | 3.11 | 3.61 | 3.80 | 4.64 | 5.08 | 5.62 | 4.58 | 3.78 | 3.59 | 3.02 | 3.46 | 3.94 |
v max. (m/s) | 10.96 | 11.06 | 9.22 | 12.57 | 10.97 | 9.57 | 9.22 | 8.21 | 8.2 | 11.95 | 9.3 | 11.17 | 10.2 |
v min. (m/s) | 0.13 | 0.17 | 0.23 | 0.08 | 0.72 | 0.99 | 1.97 | 0.72 | 0.12 | 0.16 | 0.02 | 0.27 | 0.465 |
σ (m/s) | 1.6491 | 1.86 | 1.8432 | 1.94 | 1.98 | 1.75 | 1.56 | 1.33 | 1.68 | 1.66 | 1.5 | 1.88 | 1.724 |
PM | 17.03 | 18.5 | 28.81 | 33.8 | 61.18 | 80.2 | 108.7 | 58.84 | 33.08 | 28.3 | 16.8 | 25.3 | 42.5 |
COV (%) | 54.31 | 60.01 | 51.02 | 51.08 | 42.75 | 34.63 | 27.84 | 29.21 | 44.59 | 46.36 | 49.63 | 54.38 | 45.48 |
Height 50 m | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Yearly Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N(h) | 744.0 | 672.0 | 744.0 | 720.0 | 744.0 | 720.0 | 744.0 | 744.0 | 720.0 | 744.0 | 720.0 | 744.0 | 8760 |
v mean (m/s) | 3.78 | 3.52 | 4.5 | 4.76 | 5.8 | 6.34 | 7.02 | 5.72 | 4.72 | 4.49 | 3.77 | 4.3 | 4.9 |
v max. (m/s) | 13.7 | 13.82 | 11.5 | 15.71 | 13.71 | 11.96 | 11.52 | 10.26 | 10.25 | 14.93 | 11.6 | 13.96 | 12.75 |
v min. (m/s) | 0.16 | 0 | 0.28 | 0.1 | 0.9 | 1.2 | 2.4 | 0.9 | 0.15 | 0.2 | 0.02 | 0.33 | 0.56 |
σ (m/s) | 2.05 | 2.49 | 2.3 | 2.43 | 2.48 | 2.19 | 1.95 | 1.67 | 2.1 | 2.08 | 1.87 | 2.35 | 2.16 |
PM | 33.08 | 26.71 | 56.18 | 13.48 | 119.5 | 156.08 | 211.8 | 114.6 | 64.4 | 55.4 | 32.8 | 49.7 | 77.8 |
COV (%) | 54.25 | 70.6 | 51.02 | 51.08 | 42.75 | 34.63 | 27.8 | 29.21 | 44.58 | 46.36 | 49.63 | 54.4 | 46.36 |
Height 10 m | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Yearly Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N(h) | 744.0 | 672.0 | 744.0 | 720.0 | 744.0 | 720.0 | 744.0 | 744.0 | 720.0 | 744.0 | 720.0 | 744.0 | 8760 |
v mean | 3.66 | 3.02 | 4.39 | 3.33 | 3.86 | 5.29 | 6.25 | 5.58 | 3.75 | 4.7 | 2.91 | 3.45 | 4.18 |
v max. | 9.72 | 7.94 | 11.06 | 8.89 | 13.38 | 10.57 | 10.24 | 9.56 | 8.05 | 12.99 | 10.73 | 10.11 | 10.27 |
v min. | 0.15 | 0.25 | 0.34 | 0.03 | 0.11 | 0.22 | 1.62 | 2 | 0.15 | 0.09 | 0.02 | 0.18 | 0.43 |
σ | 1.75 | 1.67 | 2.09 | 1.76 | 1.91 | 2.05 | 1.64 | 1.68 | 1.53 | 2.15 | 1.95 | 1.64 | 1.82 |
PM | 30.02 | 16.87 | 51.82 | 22.61 | 35.22 | 90.67 | 149.53 | 106.41 | 32.29 | 63.59 | 25.15 | 53.27 | 56.45 |
COV (%) | 47.7 | 55.30 | 47.66 | 52.92 | 49.37 | 38.91 | 26.25 | 30.17 | 40.80 | 45.89 | 67.04 | 47.53 | 45.79 |
Height 50 m | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Yearly Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N(h) | 744.0 | 672.0 | 744.0 | 720.0 | 744.0 | 720.0 | 744.0 | 744.0 | 720.0 | 744.0 | 720.0 | 744.0 | 8760 |
v mean | 4.58 | 3.78 | 5.49 | 4.15 | 4.83 | 6.61 | 7.82 | 6.98 | 4.69 | 5.87 | 3.63 | 4.31 | 5.25 |
v max. | 12.15 | 9.92 | 13.82 | 11.11 | 16.72 | 13.2 | 12.8 | 11.95 | 10.06 | 16.23 | 12.78 | 12.63 | 12.78 |
v min. | 0.18 | 0.31 | 0.42 | 0.03 | 0.13 | 0.27 | 2.02 | 2.5 | 0.18 | 0.11 | 0.02 | 0.22 | 0.53 |
σ | 2.19 | 2.09 | 2.61 | 2.2 | 2.36 | 2.57 | 2.05 | 2.1 | 1.91 | 2.7 | 2.41 | 2.05 | 2.27 |
PM | 58.84 | 33.08 | 101.34 | 43.77 | 69.01 | 176.89 | 292.9 | 208.29 | 63.18 | 123.88 | 29.29 | 49.03 | 104.12 |
COV (%) | 47.89 | 55.34 | 47.67 | 53.12 | 48.84 | 38.92 | 26.23 | 30.17 | 40.82 | 45.92 | 66.58 | 47.53 | 45.75 |
Height 10 m | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Yearly Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N(h) | 744.0 | 672.0 | 744.0 | 720.0 | 744.0 | 720.0 | 744.0 | 744.0 | 720.0 | 744.0 | 720.0 | 744.0 | 8760 |
v mean | 3.91 | 3.5 | 4.23 | 3.88 | 4.16 | 4.93 | 5.54 | 5.09 | 4.11 | 3.04 | 3.13 | 3.59 | 4.09 |
v max. | 13.87 | 9.76 | 14.2 | 10.89 | 9.93 | 13.78 | 9.47 | 10.17 | 8.47 | 8.01 | 9.45 | 8.62 | 10.5 |
v min. | 0.08 | 0.2 | 0.17 | 0.16 | 0.14 | 0.2 | 0.12 | 0.29 | 0.77 | 0.99 | 0.09 | 0.09 | 0.27 |
2.32 | 1.88 | 2.47 | 1.89 | 2.04 | 1.81 | 1.6 | 2.17 | 1.52 | 1.4 | 1.57 | 1.72 | 1.86 | |
PM | 36.61 | 26.26 | 69.06 | 35.77 | 44.09 | 73.39 | 104.1 | 126.4 | 42.52 | 25.81 | 18.78 | 28.33 | 52.29 |
COV (%) | 59.39 | 53.75 | 58.34 | 48.82 | 48.97 | 36.66 | 28.94 | 42.79 | 36.94 | 45.93 | 50.28 | 48.0 | 46.56 |
Height 50 m | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Yearly Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N(h) | 744.0 | 672.0 | 744.0 | 720.0 | 744.0 | 720.0 | 744.0 | 744.0 | 720.0 | 744.0 | 720.0 | 744.0 | 8760 |
v mean | 4.89 | 4.37 | 5.29 | 4.85 | 5.21 | 6.17 | 6.92 | 6.27 | 5.14 | 3.81 | 3.91 | 4.49 | 5.11 |
v max. | 17.33 | 12.2 | 17.75 | 13.61 | 12.41 | 17.22 | 11.83 | 12.71 | 10.58 | 10.01 | 11.81 | 10.77 | 13.18 |
v min. | 0.1 | 0.25 | 0.21 | 0.2 | 0.17 | 0.25 | 0.15 | 0 | 0.96 | 0.11 | 0.11 | 0.11 | 0.21 |
2.9 | 2.35 | 3.09 | 2.36 | 2.55 | 2.26 | 2.0 | 2.64 | 1.89 | 1.75 | 1.97 | 2.15 | 2.33 | |
PM | 71.61 | 51.11 | 90.67 | 69.87 | 86.62 | 143.8 | 202.9 | 150.9 | 83.17 | 33.87 | 54.75 | 55.44 | 91.22 |
COV (%) | 59.27 | 53.7 | 58.38 | 48.82 | 48.95 | 36.68 | 28.93 | 42.21 | 36.96 | 45.95 | 50.33 | 48.03 | 46.52 |
Month | H = 10 m | H = 50 m | ||||||
---|---|---|---|---|---|---|---|---|
c (m/s) | k | R2 | PW (W/m2) | c (m/s) | k | R2 | PW (W/m2) | |
Jan. | 3.396 | 1.7004 | 0.9837 | 18.1 | 4.332 | 2.115 | 0.9837 | 35.05 |
Feb. | 3.524 | 1.895 | 0.9892 | 19.1 | 4.399 | 1.896 | 0.9890 | 27.1 |
Mar. | 4.091 | 2.241 | 0.9890 | 29.2 | 5.319 | 2.332 | 0.9883 | 58.25 |
Apr. | 4.343 | 1.944 | 0.9853 | 35.3 | 5.429 | 1.944 | 0.9853 | 14.05 |
May | 5.253 | 2.694 | 0.9883 | 64.5 | 6.566 | 2.694 | 0.9883 | 123.8 |
Jun. | 5.673 | 3.365 | 0.9903 | 84.6 | 7.092 | 3.365 | 0.9903 | 160.8 |
Jul. | 6.179 | 4.155 | 0.9834 | 113.2 | 7.723 | 4.155 | 0.9834 | 222.2 |
Aug. | 5.075 | 3.732 | 0.9903 | 60.2 | 6.344 | 3.732 | 0.9903 | 118.8 |
Sept. | 4.281 | 2.254 | 0.9920 | 34.8 | 5.351 | 2.254 | 0.9920 | 67.2 |
Oct. | 4.09 | 2.434 | 0.9852 | 29.8 | 5.113 | 2.434 | 0.9852 | 58.2 |
Nov. | 3.434 | 1.81 | 0.9721 | 17.2 | 4.292 | 1.81 | 0.9721 | 34.3 |
Dec. | 3.92 | 2.075 | 0.9875 | 26.3 | 4.9 | 2.075 | 0.9875 | 51.2 |
Month | H = 10 m | H = 50 m | ||||||
---|---|---|---|---|---|---|---|---|
c (m/s) | k | R2 | Pw (W/m2) | c (m/s) | k | R2 | PW (W/m2) | |
Jan. | 4.185 | 2.249 | 0.9868 | 31.8 | 5.233 | 2.248 | 0.9869 | 62.3 |
Feb. | 3.406 | 2.005 | 0.9876 | 17.85 | 4.258 | 2.004 | 0.9876 | 34.5 |
Mar. | 5.003 | 2.426 | 0.9852 | 54.6 | 6.255 | 2.425 | 0.9853 | 105.2 |
Apr. | 3.799 | 1.863 | 0.9853 | 23.1 | 4.749 | 1.862 | 0.9853 | 46.2 |
May | 4.38 | 2.265 | 0.9919 | 37.1 | 5.476 | 2.263 | 0.9919 | 72.3 |
Jun. | 6.018 | 2.404 | 0.9740 | 95.1 | 7.524 | 2.402 | 0.9740 | 182.2 |
Jul. | 6.854 | 4.307 | 0.9950 | 155.2 | 8.571 | 4.307 | 0.9951 | 305 |
Aug. | 6.163 | 3.889 | 0.9732 | 110.3 | 7.706 | 3.887 | 0.9732 | 215.3 |
Sept. | 4.27 | 2.307 | 0.9768 | 33.2 | 5.336 | 2.306 | 0.9768 | 66.3 |
Oct. | 5.386 | 2.098 | 0.9689 | 66.2 | 6.733 | 2.096 | 0.9690 | 126.35 |
Nov. | 3.261 | 1.576 | 0.9917 | 26.1 | 4.062 | 1.58 | 0.9919 | 30.85 |
Dec. | 3.907 | 2.26 | 0.9971 | 55.7 | 4.888 | 2.259 | 0.9971 | 51.52 |
Month | H = 10 m | H = 50 m | ||||||
---|---|---|---|---|---|---|---|---|
c (m/s) | k | R2 | PW (W/m2) | c (m/s) | k | R2 | PW (W/m2) | |
Jan. | 4.412 | 1.891 | 0.9923 | 37.2 | 5.518 | 1.89 | 0.9930 | 75.75 |
Feb. | 3.974 | 2.011 | 0.9863 | 27.2 | 4.96 | 2.013 | 0.9923 | 54.09 |
Mar. | 4.815 | 1.989 | 0.9940 | 70.85 | 6.025 | 1.991 | 0.9863 | 95.35 |
Apr. | 4.402 | 2.179 | 0.9901 | 36.3 | 5.503 | 2.178 | 0.9940 | 73.64 |
May | 4.742 | 2.037 | 0.9609 | 45.2 | 5.93 | 2.036 | 0/9902 | 90.2 |
Jun. | 5.573 | 3.078 | 0.9239 | 77.2 | 6.964 | 3.077 | 0.9608 | 148.55 |
Jul. | 6.231 | 3.403 | 0.9906 | 105.9 | 7.791 | 3.401 | 0.9239 | 214.3 |
Aug. | 5.667 | 2.638 | 0.9884 | 128.2 | 7.078 | 2.619 | 0/9910 | 155.84 |
Sept. | 4.624 | 2.968 | 0.9917 | 43.82 | 5.786 | 2.972 | 0.9881 | 87.32 |
Oct. | 3.468 | 2.255 | 0.9903 | 28.2 | 4.335 | 2.254 | 0.9918 | 35.2 |
Nov. | 3.568 | 2.063 | 0.9937 | 19.2 | 4.458 | 2.062 | 0.9903 | 56.3 |
Dec. | 4.072 | 2.048 | 0.9937 | 30.2 | 5.091 | 2.046 | 0.9912 | 57.2 |
Year | 2017 | 2018 | 2019 | ||||
---|---|---|---|---|---|---|---|
Height | 10 m | 50 m | 10 m | 50 m | 10 m | 50 m | |
Power density (W/m2) | PW | 44.35 | 80.91 | 58.85 | 108.16 | 54.12 | 95.31 |
PM | 42.5 | 77.82 | 56.45 | 104.12 | 52.59 | 91.22 | |
Error (%) | 4.35 | 3.97 | 4.25 | 3.88 | 2.9 | 4.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altmimi, A.I.; Al-Swaiedi, S.J.; Abdullah, O.I. Estimating Weibull Parameters Using Mabchour’s Method (MMab) for Wind Power at RAWA City, Iraq. Appl. Syst. Innov. 2022, 5, 14. https://doi.org/10.3390/asi5010014
Altmimi AI, Al-Swaiedi SJ, Abdullah OI. Estimating Weibull Parameters Using Mabchour’s Method (MMab) for Wind Power at RAWA City, Iraq. Applied System Innovation. 2022; 5(1):14. https://doi.org/10.3390/asi5010014
Chicago/Turabian StyleAltmimi, Amani I., Safaa J. Al-Swaiedi, and Oday Ibraheem Abdullah. 2022. "Estimating Weibull Parameters Using Mabchour’s Method (MMab) for Wind Power at RAWA City, Iraq" Applied System Innovation 5, no. 1: 14. https://doi.org/10.3390/asi5010014
APA StyleAltmimi, A. I., Al-Swaiedi, S. J., & Abdullah, O. I. (2022). Estimating Weibull Parameters Using Mabchour’s Method (MMab) for Wind Power at RAWA City, Iraq. Applied System Innovation, 5(1), 14. https://doi.org/10.3390/asi5010014