Toward a Modern Last-Mile Delivery: Consequences and Obstacles of Intelligent Technology
Abstract
:1. Introduction
2. Toward Modernity
2.1. AI-Supported Intangible Technologies toward Modern LMD
2.2. AI-Supported Tangible Technologies toward Modern LMD
3. Feasibility of Modern LMD
4. Challenges of Modern LMD
4.1. Facilities
4.2. Feedbacks
4.3. Frames
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, K.-H.; Cheng, T.E. Just-in-Time Logistics; Routledge: London, UK, 2016. [Google Scholar]
- Sorooshian, S. Fuzzy approach to statistical control charts. J. Appl. Math. 2013, 2013, 745153. [Google Scholar] [CrossRef]
- Slabinac, M. Innovative Solutions for a Last Mile Delivery—A European Experience. 2015. Available online: https://hrcak.srce.hr/ojs/index.php/plusm/article/view/3876 (accessed on 19 September 2021).
- Correia, D.; Teixeira, L.; Marques, J. Last-mile-as-a-service (LMaaS): An innovative concept for the disruption of the supply chain. Sustain. Cities Soc. 2021, 75, 103310. [Google Scholar] [CrossRef]
- Devari, A.; Nikolaev, A.; He, Q. Crowdsourcing the last mile delivery of online orders by exploiting the social networks of retail store consumers. Transp. Res. Part E Logist. Transp. Rev. 2017, 105, 105–122. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Liu, Q.; Shen, F.; Lee, L.H. Towards enhancing the last-mile delivery: An effective crowd-tasking model with scalable solutions. Transp. Res. Part E Logist. Transp. Rev. 2016, 93, 279–293. [Google Scholar] [CrossRef]
- Balcik, B.; Beamon, B.; Smilowitz, K. Last Mile Distribution in Humanitarian Relief. J. Intell. Transp. Syst. 2008, 12, 51–63. [Google Scholar] [CrossRef]
- Tiwapat, N.; Pornsing, C.; Jomthong, P. Last Mile Delivery: Modes, Efficiencies, Sustainability, and Trends. In Proceedings of the 3rd International Conference on Intelligent Transportation Engineering, Singapore, 3–5 September 2018. [Google Scholar]
- Loan, N.T.C.; Huyen, N.T.; Loan, B.T.T.; Giang, T.T.T.; Trinh, H.T.; Dat, K.M.; Mai, P.T.N. Last–Mile Delivery in B2C E-Commerce–Common Practices in Some Countries, But What Do They Mean for Businesses in Vietnam? J. Hunan Univ. Nat. Sci. 2022, 49, 87–92. [Google Scholar] [CrossRef]
- Escudero-Santana, A.; Muñuzuri, J.; Lorenzo-Espejo, A.; Muñoz-Díaz, M.L. Improving E-Commerce Distribution through Last-Mile Logistics with Multiple Possibilities of Deliveries Based on Time and Location. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 507–521. [Google Scholar] [CrossRef]
- Pahwa, A.; Jaller, M. A cost-based comparative analysis of different last-mile strategies for e-commerce delivery. Transp. Res. Part E Logist. Transp. Rev. 2022, 164, 102783. [Google Scholar] [CrossRef]
- Evans, M. Five E-Commerce Trends That Will Change Retail in 2021. Forbes. 2021. Available online: https://www.forbes.com/sites/michelleevans1/2021/01/19/five-e-commerce-trends-that-will-change-retail-in-2021/?sh=3e63301e1435 (accessed on 30 July 2022).
- Bosona, T. Urban Freight Last Mile Logistics—Challenges and Opportunities to Improve Sustainability: A Literature Review. Sustainability 2020, 12, 8769. [Google Scholar] [CrossRef]
- Lindqvist, K.; Lindgren, M.; Arias, N. COVID-19 and Its Effect on Consumer Preference in the Last-Mile Delivery: A Study on Swedish Consumers and the Last-Mile Delivery Industry in Sweden. 2022. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1665028&dswid=-8343 (accessed on 30 July 2022).
- OECD. E-Commerce in the Times of COVID-19. 2020. Available online: https://read.oecd-ilibrary.org/view/?ref=137_137212-t0fjgnerdb&title=E-commerce-in-the-time-of-COVID-19&_ga=2.163882806.842985313.1632042260-595419267.1575664195 (accessed on 15 September 2021).
- Calabrò, G.; Le Pira, M.; Giuffrida, N.; Fazio, M.; Inturri, G.; Ignaccolo, M. Modelling the dynamics of fragmented vs. consolidated last-mile e-commerce deliveries via an agent-based model. Transp. Res. Procedia 2022, 62, 155–162. [Google Scholar] [CrossRef]
- Boysen, N.; Fedtke, S.; Schwerdfeger, S. Last-mile delivery concepts: A survey from an operational research perspective. OR Spectrum 2021, 43, 1–58. [Google Scholar] [CrossRef]
- Sorooshian, S. Delay-based reliability analysis on construction projects. Life Sci. J. 2014, 11, 104–113. [Google Scholar]
- Dolan, S. The Challenges of Last Mile Delivery Logistics and the Tech Solutions Cutting Costs in the Final Mile. Business Insider. 21 January 2021. Available online: https://www.businessinsider.com/last-mile-delivery-shipping-explained?r=US&IR=T (accessed on 30 July 2022).
- Macioszek, E. First and last mile delivery–problems and issues. In Scientific and Technical Conference Transport Systems Theory and Practice; Springer: Cham, Switzerland, 2017; pp. 147–154. [Google Scholar]
- Pannirselvan, M.D.; Bin Rahamaddulla, S.R.; Muuhamad, P.F.; Maarof, M.G.; Sorooshian, S. Innovative solution for barriers of green logistics in food manufacturing industries. Int. J. Appl. Eng. Res. 2016, 11, 9478–9487. [Google Scholar]
- Aziz, A.A.; Daud, S.; Sorooshian, S. Exploring quality influencing factors for frozen food industry. IOP Conf. Ser. Mater. Sci. Eng. 2019, 697, 012018. [Google Scholar] [CrossRef]
- Viu-Roig, M.; Alvarez-Palau, E.J. The impact of E-Commerce-related last-mile logistics on cities: A systematic literature review. Sustainability 2020, 12, 6492. [Google Scholar] [CrossRef]
- Cui, R.; Lu, Z.; Sun, T.; Golden, J. Sooner or Later? Promising Delivery Speed in Online Retail. Promising Delivery Speed in Online Retail. 29 March 2020. Available online: https://ssrn.com/abstract=3563404 (accessed on 31 July 2022).
- Sarker, V.K.; Gia, T.N.; Ben Dhaou, I.; Westerlund, T. Smart parking system with dynamic pricing, edge-cloud computing and lora. Sensors 2010, 20, 4669. [Google Scholar] [CrossRef] [PubMed]
- Falatoonitoosi, E.; Ahmed, S.; Sorooshian, S. A multicriteria framework to evaluate supplier’s greenness. Abstr. Appl. Anal. 2014, 2014, 396923. [Google Scholar] [CrossRef]
- Sorooshian, S.; Qi, L.C.; Li Fei, L. Characterization of ISO 14001 implementation. Environ. Qual. Manag. 2018, 27, 97–105. [Google Scholar] [CrossRef]
- Sorooshian, S.; Ting, K.C. Reasons for implementing ISO 14001 in malaysia. Environ. Qual. Manag. 2018, 27, 125–133. [Google Scholar] [CrossRef]
- Boysen, N.; Schwerdfeger, S.; Weidinger, F. Scheduling last-mile deliveries with truck-based autonomous robots. Eur. J. Oper. Res. 2018, 271, 1085–1099. [Google Scholar] [CrossRef]
- Mangano, G.; Zenezini, G.; Cagliano, A.C.; De Marco, A. The dynamics of diffusion of an electronic platform supporting City Logistics services. Oper. Manag. Res. 2019, 12, 182–198. [Google Scholar] [CrossRef]
- Vakulenko, Y.; Shams, P.; Hellström, D.; Hjort, K. Service innovation in e-commerce last mile delivery: Mapping the e-customer journey. J. Bus. Res. 2019, 101, 461–468. [Google Scholar] [CrossRef]
- Ranieri, L.; Digiesi, S.; Silvestri, B.; Roccotelli, M. A Review of Last Mile Logistics Innovations in an Externalities Cost Reduction Vision. Sustainability 2018, 10, 782. [Google Scholar] [CrossRef]
- Tumino, A.; Mangiaracina, R.; Perego, A.; Seghezzi, A. Innovative solutions to increase last-mile delivery efficiency in B2C e-commerce: A literature review. Int. J. Phys. Distrib. Logist. Manag. 2019, 49, 901–920. [Google Scholar]
- Vanelslander, T.; Deketele, L.; Van Hove, D. Commonly used e-commerce supply chains for fast moving consumer goods: Comparison and suggestions for improvement. Int. J. Logist. Res. Appl. 2013, 16, 243–256. [Google Scholar] [CrossRef]
- Schwab, K. The Fourth Industrial Revolution; Crown Business: New York, NY, USA, 2017. [Google Scholar]
- Jucha, P. Use of artificial intelligence in last mile delivery. SHS Web Conf. 2021, 92, 04011. [Google Scholar] [CrossRef]
- Simoni, M.D.; Kutanoglu, E.; Claudel, C.G. Optimization and analysis of a robot-assisted last mile delivery system. Transp. Res. Part E Logist. Transp. Rev. 2020, 142, 102049. [Google Scholar] [CrossRef]
- Zhu, F.; Liu, Q. Competing with complementors: An empirical look at Amazon.com. Strateg. Manag. J. 2018, 39, 2618–2642. [Google Scholar] [CrossRef]
- Hoffmann, T.; Prause, G. On the Regulatory Framework for Last-Mile Delivery Robots. Machines 2018, 6, 33. [Google Scholar] [CrossRef]
- Jennings, D.; Figliozzi, M. Study of Sidewalk Autonomous Delivery Robots and Their Potential Impacts on Freight Efficiency and Travel. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 317–326. [Google Scholar] [CrossRef]
- Chen, C.; Demir, E.; Huang, Y.; Qiu, R. The adoption of self-driving delivery robots in last mile logistics. Transp. Res. Part E Logist. Transp. Rev. 2021, 146, 102214. [Google Scholar] [CrossRef]
- Goel, R.; Gupta, P. Robotics and industry 4.0. In A Roadmap to Industry 4.0: Smart Production, Sharp Business and Sustainable Development. Advances in Science, Technology Innovation; Springer International Publishing: Cham, Switzerland, 2020; pp. 157–169. [Google Scholar]
- Asim, Z.; Sorooshian, S. Exploring the role of knowledge, innovation and technology management (KNIT) capabilities that influence research and development. J. Open Innov. Technol. Mark. Complex. 2019, 5, 21. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Sorooshian, S.; Mahmud, F.; Adeleke, A.Q. Barriers and benefits of ICT adoption in the nigerian construction industry. A comprehensive literature review. Appl. Syst. Innov. 2020, 3, 46. [Google Scholar] [CrossRef]
- Mckinsey. The State of AI in 2020: A Survey. 2020. Available online: https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/global-survey-the-state-of-ai-in-2020 (accessed on 15 September 2021).
- Wanganoo, L.; Patil, A. Preparing for the smart cities: IoT enabled last-mile delivery. In Proceedings of the 2020 Advances in Science and Engineering Technology International Conferences, Dubai, United Arab Emirates, 4 February–9 April 2020. [Google Scholar]
- Alkhalifah, A.; Alorini, F.; Alturki, R. Enhancement of E-commerce service by designing last mile delivery platform. Comput. Syst. Sci. Eng. 2022, 42, 49–67. [Google Scholar] [CrossRef]
- Bansal, S.; Goel, R.; Maini, R. Ground vehicle and UAV collaborative routing and scheduling for humanitarian logistics using random walk based ant colony optimization. Sci. Iran. 2022, 29, 632–644. [Google Scholar] [CrossRef]
- Campisi, T.; Severino, A.; Al-Rashid, M.A. Introducing the benefits of autonomous vehicles to logistics during the COVID-19 era. Int. Rev. Civ. Eng. 2022, 13, 83–90. [Google Scholar] [CrossRef]
- Giuffrida, N.; Fajardo-Calderin, J.; Masegosa, A.D.; Werner, F.; Steudter, M.; Pilla, F. Optimization and machine learning applied to last-mile logistics: A review. Sustainability 2022, 14, 5329. [Google Scholar] [CrossRef]
- Leung, E.K.H.; Lee, C.K.H.; Ouyang, Z. From traditional warehouses to physical internet hubs: A digital twin-based inbound synchronization framework for PI-order management. Int. J. Prod. Econ. 2022, 244, 108353. [Google Scholar] [CrossRef]
- Luo, R.; Ji, S.; Ji, Y. An active-learning pareto evolutionary algorithm for parcel locker network design considering accessibility of customers. Comput. Oper. Res. 2022, 141, 105677. [Google Scholar] [CrossRef]
- Moadab, A.; Farajzadeh, F.; Fatahi Valilai, O. Drone routing problem model for last-mile delivery using the public transportation capacity as moving charging stations. Sci. Rep. 2022, 12, 6361. [Google Scholar] [CrossRef]
- Peppel, M.; Ringbeck, J.; Spinler, S. How will last-mile delivery be shaped in 2040? A delphi-based scenario study. Technol. Forecast. Soc. Chang. 2022, 177, 121493. [Google Scholar] [CrossRef]
- Pinto, R.; Lagorio, A. Point-to-point drone-based delivery network design with intermediate charging stations. Transp. Res. Part C Emerg. Technol. 2022, 135, 103506. [Google Scholar] [CrossRef]
- Sorokin, M.; Tan, J.; Karen Liu, C.; Ha, S. Learning to navigate sidewalks in outdoor environments. IEEE Robot. Autom. Lett. 2022, 7, 3906–3913. [Google Scholar] [CrossRef]
- Rajendran, S.D.; Wahab, S.N. Investigating last-mile delivery options on online shoppers experience and repurchase intention. Int. J. Electron. Mark. Retail. 2022, 13, 224–241. [Google Scholar] [CrossRef]
- Woody, M.; Craig, M.T.; Vaishnav, P.T.; Lewis, G.M.; Keoleian, G.A. Optimizing future cost and emissions of electric delivery vehicles. J. Ind. Ecol. 2022, 26, 1108–1122. [Google Scholar] [CrossRef]
- Xu, J.; Liu, X.; Li, X.; Zhang, L.; Jin, J.; Yang, Y. Energy-aware computation management strategy for smart logistic system with MEC. IEEE Internet Things J. 2022, 9, 8544–8559. [Google Scholar] [CrossRef]
- Yan, Y.; Chow, A.H.F.; Ho, C.P.; Kuo, Y.H.; Wu, Q.; Ying, C. Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities. Transp. Res. Part E Logist. Transp. Rev. 2022, 162, 102712. [Google Scholar] [CrossRef]
- Zennaro, I.; Finco, S.; Calzavara, M.; Persona, A. Implementing E-commerce from logistic perspective: Literature review and methodological framework. Sustainability 2022, 14, 911. [Google Scholar] [CrossRef]
- Lang, V. Digital Fluency Understanding the Basic of Artificial Intelligence, Blockchain Technology, Quantum Computing and Their Applications for Digital Transformation; Apress: Pfaffenhofen, Germany, 2021. [Google Scholar]
- Haenlein, M.; Kaplan, A. A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. Calif. Manag. Rev. 2019, 61, 5–14. [Google Scholar] [CrossRef]
- Woschank, M.; Rauch, E.; Zsifkovits, H. A Review of Further Directions for Artificial Intelligence, Machine Learning, and Deep Learning in Smart Logistics. Sustainability 2020, 12, 3760. [Google Scholar] [CrossRef]
- Kreuzer, R.; Sirrenberg, M. Understanding Artificial Intelligence Fundamentals, Use Cases and Methods for a Corporate AI Journey; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Asim, Z.; Sarwat, S.; Sorooshian, S.; Shahid Ahmad, M. Overview on pakistan R&D sector in context adopting technological capabilities. Information 2017, 20, 7217–7226. [Google Scholar]
- Riahi, Y.; Saikouk, T.; Gunasekaran, A.; Badraoui, I. Artificial intelligence applications in supply chain: A descriptive bibliometric analysis and future research directions. Expert Syst. Appl. 2021, 173, 114702. [Google Scholar] [CrossRef]
- Modgil, S.; Singh, R.; Hannibal, C. Artificial intelligence for supply chain resilience: Learning from COVID-19. Int. J. Logist. Manag. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Borhan, R.I.; Fhang, O.W.; Sorooshian, S. Operations analysis: Practice on performance measurement in supply chain. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2013. [Google Scholar] [CrossRef]
- Nakaie, M.; Hau, G.Z.; Sorooshian, S. Operations analysis: A case for supply chain performance. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2013. [Google Scholar] [CrossRef]
- Dwivedi, Y.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A.; et al. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 2020, 57, 101994. [Google Scholar] [CrossRef]
- Chu, H.; Zhang, W.; Bai, P.; Chen, Y. Data-driven optimization for last-mile delivery. Complex Intell. Syst. 2021, 107, 1–14. [Google Scholar] [CrossRef]
- Gutierrez-Franco, E.; Mejia-Argueta, C.; Rabelo, L. Data-Driven Methodology to Support Long-Lasting Logistics and Decision Making for Urban Last-Mile Operations. Sustainability 2021, 13, 6230. [Google Scholar] [CrossRef]
- Barreto, L.; Amaral, A.; Pereira, T. Industry 4.0 implications in logistics: An overview. Procedia Manuf. 2017, 13, 1245–1252. [Google Scholar] [CrossRef]
- Kayikci, Y. Sustainability impact of digitization in logistics. Procedia Manuf. 2018, 21, 782–789. [Google Scholar] [CrossRef]
- Winkelhaus, S.; Grosse, E.H. Logistics 4.0: A systematic review towards a new logistics system. Int. J. Prod. Res. 2019, 58, 18–43. [Google Scholar] [CrossRef]
- Bányai, T. Real-Time Decision Making in First Mile and Last Mile Logistics: How Smart Scheduling Affects Energy Efficiency of Hyperconnected Supply Chain Solutions. Energies 2018, 11, 1833. [Google Scholar] [CrossRef]
- McLeod, F.; Cherrett, T. Loading bay booking and control for urban freight. Int. J. Logist. Res. Appl. 2011, 14, 385–397. [Google Scholar] [CrossRef]
- Bartodziej, C.J. The Concept Industry 4.0: An Empirical Analysis of Technologies and Applications in Production Logistics; Springer Gabler: Wiesbaden, Germany, 2017. [Google Scholar]
- Caccamo, S. Last Mile Delivery Robots. Univrses. Available online: https://univrses.com/case-study/last-mile-delivery-robots-new/ (accessed on 12 September 2021).
- Marr, B. Demand for These Autonomous Delivery Robots Is Skyrocketing during This Pandemic. Forbes. 2020. Available online: https://www.forbes.com/sites/bernardmarr/2020/05/29/demand-for-these-autonomous-delivery-robots-is-skyrocketing-during-this-pandemic/?sh=12318f547f3c (accessed on 9 September 2021).
- Agvnetwork. Autonomous Last Mile Delivery Robots Cut the Highest Cost of Shipment. Available online: https://www.agvnetwork.com/last-mile-delivery-robots (accessed on 29 September 2021).
- Appelbaum, D.; Nehmer, R.A. Using drones in internal and external audits: An exploratory framework. J. Emerg. Technol. Account. 2017, 14, 99–113. [Google Scholar] [CrossRef]
- Dalamagkidis, K. Classification of uavs. In Handbook of Unmanned Aerial Vehicles; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Kim, H.; Ben-Othman, J.; Mokdad, L.; Son, J.; Li, C. Research Challenges and Security Threats to AI-Driven 5G Virtual Emotion Applications Using Autonomous Vehicles, Drones, and Smart Devices. IEEE Netw. 2020, 34, 288–294. [Google Scholar] [CrossRef]
- Manyika, J.; Chui, M.; Buguin, J.; Dobbs, R.; Bisson, P.; Marrs, A. Disruptive Technologies: Advances That Will Transform Life, Business, and the Global Economy; McKinsey Global Institute: San Francisco, CA, USA, 2013. [Google Scholar]
- Sindi, S.; Woodman, R. Autonomous Goods Vehicles for Last-mile Delivery: Evaluation of Impact and Barriers. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020. [Google Scholar] [CrossRef]
- Jucha, P. Use of artificial intelligence in last mile delivery. In Proceedings of the Globalization and its Socio Economic Consequences, Rajecke Teplice, Slovak Republic, 21–22 October 2020. [Google Scholar]
- Fixlastmile. How Route Optimization Enhances Last Mile Delivery Operations. 2021. Available online: https://www.fixlastmile.com/route-optimization-enhances-last-mile-delivery-operations/ (accessed on 21 June 2022).
- Alfandari, L.; Ljubić, I.; De Melo da Silva, M. A tailored Benders decomposition approach for last-mile delivery with autonomous robots. Eur. J. Oper. Res. 2022, 299, 510–525. [Google Scholar] [CrossRef]
- Turi, J.A.; Sorooshian, S.; Mahmud, F.B.; Javed, Y. The cognitive, behavioral and social prospectives of organizational learning through information system. Malays. Online J. Educ. Manag. 2018, 6, 68–86. [Google Scholar] [CrossRef]
- Schaudt, S.; Clausen, U. Exact Approach for Last Mile Delivery with Autonomous Robots. In Operations Research Proceedings; Springer: Cham, Switzerland, 2020; pp. 405–411. [Google Scholar] [CrossRef]
- Janarden, M. Moving the goalposts: AI and logistics. Infosys Insights. 2017. Available online: https://www.infosys.com/insights/ai-automation/documents/moving-goalposts.pdf (accessed on 30 July 2022).
- Bonn. 2020. Available online: https://www.dhl.com/global-en/home/press/press-archive/2020/greenplan-the-best-way-logistics-experts-launch-powerful-algorithm-for-individual-route-optimization.html (accessed on 21 June 2022).
- Beckmann, C. The Right Balance. 2020. Available online: https://www.dhl.com/global-en/spotlight/sustainability/route-optimization-algorithm.html (accessed on 30 July 2022).
- Satalia, Route Optimisation for Tesco. Available online: https://www.satalia.com/clients/tesco (accessed on 31 July 2022).
- Electrek.Co. LA Auto Show: Meet the Tesla of Last-Mile Delivery Vehicles. 2019. Available online: https://electrek.co/2019/11/20/la-auto-show-meet-the-tesla-last-mile-delivery-vehicles-streetscooter/ (accessed on 8 September 2021).
- Rahul. The Recipe to Walmart’s Supply Chain Success. 2021. Available online: https://blog.route4me.com/walmart-supply-chain-management/ (accessed on 30 July 2022).
- Amazon. Amazon Prime Air. 2021. Available online: https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011 (accessed on 14 September 2021).
- Datex Corporation. Using Technology to Solve Last Mile Delivery Challenges. 2021. Available online: https://www.datexcorp.com/using-technology-solve-last-mile-delivery-challenges/ (accessed on 30 July 2022).
- Nentwich, M.; Horváth, D.M. The vision of delivery drones: Call for a technology assessment perspective. TATuP—Z. Tech. Theor. Prax. J. Technol. Assess. Theory Pract. 2018, 27, 46–52. [Google Scholar]
- Jain, A.K.; Svetlik, M.; Machak, N.; Sikand, K.S. An open-source framework for last mile delivery with heterogeneous robots. Good Syst. Publ. Res. 2021, 97–99. [Google Scholar]
- Casado-Vara, R.; Alonso, R.S.; García-Coria, J.A.; Rodríguez, S.; Prieto, J. Efficient collaborative strategy for last mile package delivery optimization: Salamanca case study. In Intelligent Environments; IOS Press: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Rashidzadeh, E.; Hadji Molana, S.M.; Soltani, R.; Hafezalkotob, A. Assessing the sustainability of using drone technology for last-mile delivery in a blood supply chain. J. Model. Manag. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Iyer, L.S. AI enabled applications towards intelligent transportation. Transp. Eng. 2021, 5, 100083. [Google Scholar] [CrossRef]
- Poeting, M.; Schaudt, S.; Clausen, U. Simulation of an Optimized Last-Mile Parcel Delivery Network Involving Delivery Robots. In Advances in Production, Logistics and Traffic; Springer: Cham, Switzerland, 2019; pp. 1–19. [Google Scholar] [CrossRef]
- Ostermeier, M.; Heimfarth, A.; Hübner, A. Cost-optimal truck-and-robot routing for last-mile delivery. Networks 2022, 79, 364–389. [Google Scholar] [CrossRef]
- Joshi, N. Using Robots for Last-Mile Delivery. 2020. Available online: https://www.bbntimes.com/technology/using-robots-for-last-mile-delivery (accessed on 31 July 2022).
- Aurambout, J.P.; Gkoumas, K.; Ciuffo, B. Last mile delivery by drones: An estimation of viable market potential and access to citizens across European cities. Eur. Transp. Res. Rev. 2019, 11, 30. [Google Scholar] [CrossRef]
- Tang, C.S.; Veelenturf, L.P. The strategic role of logistics in the industry 4.0 era. Transp. Res. Part E Logist. Transp. Rev. 2019, 129, 1–11. [Google Scholar] [CrossRef]
- Park, J.; Kim, S.; Suh, K. A Comparative Analysis of the Environmental Benefits of Drone-Based Delivery Services in Urban and Rural Areas. Sustainability 2018, 10, 888. [Google Scholar] [CrossRef]
- Du, D. Research on the application of “last-mile” autonomous delivery vehicles in the context of epidemic prevention and control. In Proceedings of the 2021 International Symposium on Artificial Intelligence and Its Application on Media (ISAIAM), Xi’an, China, 21–23 May 2021; pp. 74–77. [Google Scholar] [CrossRef]
- Conde, M.L.; Twinn, I. How Artificial Intelligence is Making Transport Safer, Cleaner, More Reliable and Efficient in Emerging Markets 8; World Bank Group: Washingto, DC, USA, 2019. [Google Scholar]
- van der Zande, J.; Teigland, K.; Siri, S.; Teigland, R. The Substitution of Labor: From technological feasibility to other factors influencing job automation. Stockh. Sch. Econ. Inst. Res. 2018, 11, 40. [Google Scholar]
- Vattapparamban, E.; Güvenç, İ.; Yurekli, A.İ.; Akkaya, K.; Uluağaç, S. Drones for smart cities: Issues in cybersecurity, privacy, and public safety. In Proceedings of the 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), Paphos, Cyprus, 5–9 September 2016. [Google Scholar] [CrossRef]
- Sudbury, A.W.; Hutchinson, E.B. A cost analysis of amazon prime air (drone delivery). J. Econ. Educ. 2016, 16, 1–12. [Google Scholar]
- Sah, B.; Gupta, R.; Bani-Hani, D. Analysis of barriers to implement drone logistics. Int. J. Logist. Res. Appl. 2020, 24, 531–550. [Google Scholar] [CrossRef]
- Feng, Z.; Guan, N.; Lv, M.; Liu, W.; Deng, Q.; Liu, X.; Yi, W. Efficient drone hijacking detection using two-step GA-XGBoost. J. Syst. Archit. 2020, 103, 101694. [Google Scholar] [CrossRef]
Authorship | Article Title |
---|---|
[47] | Enhancement of E-commerce service by designing last mile delivery platform. |
[48] | Ground vehicle and UAV collaborative routing and scheduling for humanitarian logistics using random walk-based ant colony optimization |
[49] | Introducing the benefits of autonomous vehicles to logistics during the COVID-19 era |
[50] | Optimization and machine learning applied to last-mile logistics: A review |
[51] | From traditional warehouses to physical internet hubs: A digital twin-based inbound synchronization framework for PI-order management |
[52] | An active-learning pareto evolutionary algorithm for parcel locker network design considering accessibility of customers |
[53] | Drone routing problem model for last-mile delivery using the public transportation capacity as moving charging stations |
[54] | How will last-mile delivery be shaped in 2040? A delphi-based scenario study |
[55] | Point-to-point drone-based delivery network design with intermediate charging stations |
[56] | Learning to navigate sidewalks in outdoor environments. |
[57] | Investigating last-mile delivery options on online shoppers experience and repurchase intention |
[58] | Optimizing future cost and emissions of electric delivery vehicles |
[59] | Energy-aware computation management strategy for smart logistic system with MEC |
[60] | Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities |
[61] | Implementing E-commerce from logistic perspective: Literature review and methodological framework |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorooshian, S.; Khademi Sharifabad, S.; Parsaee, M.; Afshari, A.R. Toward a Modern Last-Mile Delivery: Consequences and Obstacles of Intelligent Technology. Appl. Syst. Innov. 2022, 5, 82. https://doi.org/10.3390/asi5040082
Sorooshian S, Khademi Sharifabad S, Parsaee M, Afshari AR. Toward a Modern Last-Mile Delivery: Consequences and Obstacles of Intelligent Technology. Applied System Innovation. 2022; 5(4):82. https://doi.org/10.3390/asi5040082
Chicago/Turabian StyleSorooshian, Shahryar, Shila Khademi Sharifabad, Mehrdad Parsaee, and Ali Reza Afshari. 2022. "Toward a Modern Last-Mile Delivery: Consequences and Obstacles of Intelligent Technology" Applied System Innovation 5, no. 4: 82. https://doi.org/10.3390/asi5040082
APA StyleSorooshian, S., Khademi Sharifabad, S., Parsaee, M., & Afshari, A. R. (2022). Toward a Modern Last-Mile Delivery: Consequences and Obstacles of Intelligent Technology. Applied System Innovation, 5(4), 82. https://doi.org/10.3390/asi5040082