A Water Tank Level Control System with Time Lag Using CGSA and Nonlinear Switch Decoration
Abstract
:1. Introduction
2. Tank Level Model
3. Control System Structure Design
3.1. Introduction of the Closed-Loop Gain Shaping Algorithm
3.2. Controller Design
3.3. Improved Non-Linear Switch Modification
4. Stability Analysis
4.1. Improved Non-Linear Switch Modification
4.2. Control System Stability Analysis
5. Simulation Experiments
5.1. Design of Evaluation Indexes
5.2. Comparative Experiments
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, L.; Li, J.; Gu, J.; Hua, L. Research on PID Control of Double Tank Based on QPSO Algorithm. Control. Eng. China 2021, 28, 1553–1558. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, X. Robust PID Algorithm Based on Closed-Loop Gain Shaping and Its Application in Liquid level Control. Shipbuild. China 2000, 41, 37–41. [Google Scholar] [CrossRef]
- Zhao, K. Self-adaptive Fuzzy PID Control for Three-tank Water. In Proceedings of the 5th International Conference on Machine Vision (ICMV)-Algorithms, Pattern Recognition and Basic Technologies, Wuhan, China, 20–21 October 2012; p. 87841. [Google Scholar] [CrossRef]
- Cheng, Z.; Shi, Y.; Zhang, J.; Lv, C.; Qian, N.; Zhang, X.K. Research of liquid level control system based on fuzzy neural PID algorithm. Electron. Meas. Technol. 2019, 42, 29–34. [Google Scholar] [CrossRef]
- Olivas, E.L.; Castillo, O.; Soria, J.; Melin, P. A new methodology for membership function design using Ant Colony Optimization. In Proceedings of the IEEE Symposium on Swarm Intelligence (SIS), Singapore, 16–19 April 2013; pp. 40–47. [Google Scholar] [CrossRef]
- Young, K.D.; Utkin, V.I.; Ozguner, U. A control engineer’s guide to sliding mode control. IEEE Trans. Control. Syst. Technol. 1999, 7, 328–342. [Google Scholar] [CrossRef] [Green Version]
- Derdiyok, A.; Basci, A. The application of chattering-free sliding mode controller in coupled tank liquid-level control system. Korean J. Chem. Eng. 2013, 30, 540–545. [Google Scholar] [CrossRef]
- Mehri, E.; Tabatabaei, M. Control of quadruple tank process using an adaptive fractional-order sliding mode controller. J. Control. Autom. Electr. Syst. 2021, 32, 605–614. [Google Scholar] [CrossRef]
- Sekban, H.T.; Can, K.; Basci, A. Model-Based Dynamic Fractional-Order Sliding Mode Controller Design for Performance Analysis and Control of a Coupled Tank Liquid-Level System. Adv. Electr. Comput. Eng. 2020, 20, 93–100. [Google Scholar] [CrossRef]
- Moradi, H.; Saffar-Avval, M.; Bakhtiari-Nejad, F. Sliding mode control of drum water level in an industrial boiler unit with time varying parameters: A comparison with H-infinity-robust control approach. J. Process Control. 2012, 22, 1844–1855. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Zhang, X.K. Controller Design for MIMO System with Time Delay Using Closed-loop Gain Shaping Algorithm. Int. J. Control. Autom. Syst. 2019, 17, 1454–1461. [Google Scholar] [CrossRef]
- Guan, W.; Zhang, X.K. Concise Robust Control for Ship Roll Motion Using Active Fins. Adv. Manuf. Syst. 2011, 201–203, 2366–2374. [Google Scholar] [CrossRef]
- Jiang, R.F.; Zhang, X.K. Application of Wireless Network Control to Course-Keeping for Ships. IEEE Access 2020, 8, 31674–31683. [Google Scholar] [CrossRef]
- Gao, S.H.; Zhang, X.K. Course keeping control strategy for large oil tankers based on nonlinear feedback of swish function. Ocean. Eng. 2022, 244, 110385. [Google Scholar] [CrossRef]
- Min, B.X.; Zhang, X.K.; Wang, Q. Energy Saving of Course Keeping for Ships Using CGSA and Nonlinear Decoration. IEEE Access 2020, 8, 141622–141631. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Zhang, X.K.; Zhang, G.Q. ANFIS-based course-keeping control for ships using nonlinear feedback technique. J. Mar. Sci. Technol. 2019, 24, 1326–1333. [Google Scholar] [CrossRef]
- Zhang, X.K.; Yang, G.P.; Zhang, Q.; Zhang, G.Q.; Zhang, Y.Q. Improved Concise Backstepping Control of Course Keeping for Ships Using Nonlinear Feedback Technique. J. Navig. 2017, 70, 1401–1414. [Google Scholar] [CrossRef]
- Zhao, B.G.; Zhang, X.K.; Liang, C.L. A novel path-following control algorithm for surface vessels based on global course constraint and nonlinear feedback technology. Appl. Ocean. Res. 2021, 111, 102635. [Google Scholar] [CrossRef]
- Min, B.X.; Zhang, X.K. Concise robust fuzzy nonlinear feedback track keeping control for ships using multi-technique improved LOS guidance. Ocean. Eng. 2021, 224, 108734. [Google Scholar] [CrossRef]
- Su, Z.J.; Zhang, X.K. Nonlinear Feedback-Based Path Following Control for Underactuated Ships via an Improved Compound Line-of-Sight Guidance. IEEE Access 2021, 9, 81535–81545. [Google Scholar] [CrossRef]
- Cao, J.H.; Zhang, X.K.; Zou, X. Pressure Control of Insulation Space for Liquefied Natural Gas Carrier with Nonlinear Feedback Technique. J. Mar. Sci. Eng. 2018, 6, 133. [Google Scholar] [CrossRef] [Green Version]
- Song, C.Y.; Zhang, X.K.; Zhang, G.Q. Nonlinear innovation identification of ship response model via the hyperbolic tangent function. Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. 2021, 235, 977–983. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, X.K. Inverse Tangent Functional Nonlinear Feedback Control and Its Application to Water Tank Level Control. Processes 2020, 8, 347. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhang, X.K.; Chen, Y.L.; Wang, P.R. Using Sine Function-Based Nonlinear Feedback to Control Water Tank Level. Energies 2021, 14, 7602. [Google Scholar] [CrossRef]
- Zhang, X.K.; Song, C.Y. Robust Controller Decorated by Nonlinear S Function and Its Application to Water Tank. Appl. Syst. Innov. 2021, 4, 64. [Google Scholar] [CrossRef]
- Zhao, Z.J.; Zhang, X.K.; Li, Z. Tank-Level Control of Liquefied Natural Gas Carrier Based on Gaussian Function Nonlinear Decoration. J. Mar. Sci. Eng. 2020, 8, 695. [Google Scholar] [CrossRef]
- Zhang, X.K.; Zhang, G.Q. Nonlinear Feedback Theory and Its Application to Ship Motion Control; Dalian Maritime University Press: Dalian, China, 2000; pp. 135–136. [Google Scholar]
Notations | Descriptions |
---|---|
Steady-state value of input water flow | |
Increment of input water flow | |
Steady-state value of output water flow | |
Increment of output water flow | |
Liquid level height | |
Steady-state value of the liquid level | |
Increment of liquid level | |
Regulating the opening of valves | |
Cross-sectional area of the water tank | |
Resistance of load valves at the outflow end | |
Change in opening of control valve |
Control Method | MAE | MIA | MTV |
---|---|---|---|
Second order CGSA + Gaussian function trim | 0.7347 | 0.0566 | 0.0009 |
Third order CGSA + Gaussian function trim | 0.3107 | 0.0260 | 0.0009 |
Third order CGSA + Switching nonlinear trim | 0.1167 | 0.0049 | 0.0003 |
Control Method | MAE | MIA | MTV |
---|---|---|---|
Second order CGSA + Gaussian function trim | 0.5121 | 0.1452 | 0.0049 |
Third order CGSA + Gaussian function trim | 0.0795 | 0.0129 | 0.0015 |
Third order CGSA + Switching nonlinear trim | 0.0956 | 0.0039 | 0.0004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Zhang, X.; Wang, H. A Water Tank Level Control System with Time Lag Using CGSA and Nonlinear Switch Decoration. Appl. Syst. Innov. 2023, 6, 12. https://doi.org/10.3390/asi6010012
Xu W, Zhang X, Wang H. A Water Tank Level Control System with Time Lag Using CGSA and Nonlinear Switch Decoration. Applied System Innovation. 2023; 6(1):12. https://doi.org/10.3390/asi6010012
Chicago/Turabian StyleXu, Weifeng, Xianku Zhang, and Haoze Wang. 2023. "A Water Tank Level Control System with Time Lag Using CGSA and Nonlinear Switch Decoration" Applied System Innovation 6, no. 1: 12. https://doi.org/10.3390/asi6010012
APA StyleXu, W., Zhang, X., & Wang, H. (2023). A Water Tank Level Control System with Time Lag Using CGSA and Nonlinear Switch Decoration. Applied System Innovation, 6(1), 12. https://doi.org/10.3390/asi6010012