Recent Trends of Authentication Methods in Extended Reality: A Survey
Abstract
:1. Introduction
- An in-depth exploration of recent research on authentication aspects in XR.
- An overview of various authentication approaches used within XR.
- A taxonomy outlining the diverse authentication techniques applied in XR.
- A critical analysis of recent research outcomes and evaluation of usability and security studies regarding authentication systems in XR
2. Methods
3. Related Work
Ref. | Year | Contribution/Title |
---|---|---|
Authentication | ||
[34] | 2022 | SoK: Authentication in augmented and virtual reality |
[35] | 2022 | SoK: A Systematic Literature Review of Knowledge-Based Authentication on Augmented Reality Head-Mounted Displays |
[36] | 2022 | A literature review on virtual reality authentication |
[37] | 2022 | Security of Virtual Reality Authentication Methods in Metaverse: An Overview |
[38] | 2023 | Biometric as Secure Authentication for Virtual Reality Environment: A Systematic Literature Review |
[39] | 2021 | Recent advances in biometrics-based user authentication for wearable devices: A contemporary survey |
[40] | 2018 | A Review of multimodal facial biometric authentication methods in mobile devices and their application in Head mounted displays |
[41] | 2020 | Gaze-based authentication in virtual reality |
Security & Privacy | ||
[43] | 2023 | A Survey on metaverse: fundamentals, security, and privacy |
[44] | 2023 | Security and privacy in metaverse: A comprehensive survey |
[45] | 2023 | Identity Threats in the Metaverse and Future Research Opportunities |
[46] | 2022 | Visualization and cybersecurity in the metaverse: A Survey |
[47] | 2022 | Cybersecurity in the AI-based metaverse: A Survey |
[48] | 2022 | Metaverse security and privacy: An overview |
[49] | 2021 | Metaverse: Security and privacy issues |
[50] | 2022 | Vision: Usable privacy for XR in the era of the metaverse |
[51] | 2022 | Implications of XR on privacy, security, and behaviour: Insights from experts |
[52] | 2019 | Security and privacy approaches in mixed reality: A literature survey |
[53] | 2023 | Security and Privacy Evaluation of Popular Augmented and Virtual Reality Technologies |
[54] | 2022 | A systematic literature review on Virtual Reality and Augmented Reality in terms of privacy, authorization, and data-leaks |
[55] | 2022 | Overview of vulnerabilities of decision support interfaces based on virtual and augmented reality technologies |
[56] | 2023 | SoK, Data Privacy in Virtual Reality |
[57] | 2022 | Security and privacy in virtual reality—A literature survey |
[58] | 2022 | Security and privacy in virtual reality: A literature review |
[59] | 2022 | Virtually secure: A taxonomic assessment of cybersecurity challenges in virtual reality environments |
[60] | 2022 | Digital body, identity, and privacy in social virtual reality: A systematic review |
[61] | 2014 | Security and privacy for augmented reality systems |
Technology | ||
[62] | 2022 | Artificial intelligence for the metaverse: A survey |
[63] | 2022 | The Eye in Extended Reality: A Survey on Gaze Interaction and Eye Tracking in Head-worn Extended Reality |
[64] | 2022 | Eye tracking in virtual reality: A broad review of applications and challenges |
[65] | 2017 | Hand posture and gesture recognition techniques for virtual reality applications: a survey |
4. Authentication Methods in XR
4.1. Knowledge-Based Authentication
4.2. Inherence-Based (Biometric) Authentication
4.2.1. Physical Biometrics
4.2.2. Behavioral Biometrics
Eye Tracking Sensors
Biomechanics
Electrical Bio-Signals
4.3. Ownership-Based (Possession) Authentication
4.4. Multifactor and Multimodal Authentication
5. XR for Usability Studies & Device Pairing
5.1. Cyber-Security Usability Studies Using VR
Concept | Ref. | Year | Scheme Name | Input Method | HMD | US | SS | A%, SUS |
---|---|---|---|---|---|---|---|---|
[193] | 2022 | Traditional | Traditional keypad | OQ-1 OQ-2 | 25 | 84.5 (SUS) 70.2 (SUS) 90.5 (SUS) 50.3 (SUS) | ||
Glass UnlockAR * | AR private keypad layout/traditional keypad | |||||||
Hand MenuAR * | Hand-attached AR keypad/mid-air input | |||||||
TapAR * | Fingertips-attached AR digits/pinch and tap gestures | |||||||
[191] | 2022 | RepliATM/ColorPin * | Keyboard/keypad | OQ-2 | 20 | |||
[190] | 2022 | KeypadAuth * | Keypad, controller’s laser for pointing and trigger for selection | HTC-V | 13 | |||
Floor FeetAuth | Heel rotations for pointing, toe taps for selection, and heel taps for deletion | |||||||
Spatial FeetAuth | ||||||||
Egocentric FeetAuth | ||||||||
[189] | 2021 | RepliCueAuth | Touch gestures | HTC-V | 20 | 22 | 89.97 | |
Mid-air gestures | 80.42 | |||||||
Eye gaze pursuits | 83.75 |
5.2. Device Pairing in XR
6. Discussions and Future Research Directions
- Addressing Imbalances: There exists an imbalance in survey research dedicated to security, privacy, and authentication in the metaverse in comparison with its subfields. We motivate researchers to contribute more review papers targeting authentication in AR, VR, XR, and MR individually. Additionally, detailed surveys on knowledge-based and biometric-based authentication methods and their applications in XR are encouraged.
- Focus on Biometrics: There is a lack of surveys investigating technologies, techniques, and mechanisms specific to each biometric authentication method. We suggest focusing on XR authentication by considering individual biometric factors such as eye tracking, bio-signals, etc.
- Explore Portability: We encourage researchers to explore the transferability, security, and usability of well-established authentication techniques from devices like smartphones and ATMs to XR environments and devices.
- Include Essential Metrics: Accuracy and usability metrics such as EER, F1 score, etc. are essential in determining the success of an authentication system. We highlight the absence of such important measures in many papers and suggest their inclusion in future research for a better understanding of the proposed systems’ feasibility.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghafourian, M.; Sumer, B.; Vera-Rodriguez, R.; Fierrez, J.; Tolosana, R.; Moralez, A.; Kindt, E. Combining Blockchain and Biometrics: A Survey on Technical Aspects and a First Legal Analysis. arXiv 2023, arXiv:2302.10883. [Google Scholar] [CrossRef]
- Chenchev, I.; Aleksieva-Petrova, A.; Petrov, M. Authentication Mechanisms and Classification: A Literature Survey. In Intelligent Computing; Arai, K., Ed.; Lecture Notes in Networks and Systems; Springer International Publishing: Cham, Switzerland, 2021; Volume 285, pp. 1051–1070. ISBN 978-3-030-80128-1. [Google Scholar]
- Albalawi, S.; Alshahrani, L.; Albalawi, N.; Kilabi, R.; Alhakamy, A. A Comprehensive Overview on Biometric Authentication Systems Using Artificial Intelligence Techniques. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 1–10. [Google Scholar] [CrossRef]
- Samatas, G.G.; Papakostas, G.A. Biometrics: Going 3D. Sensors 2022, 22, 6364. [Google Scholar] [CrossRef]
- Wang, X.; Yan, Z.; Zhang, R.; Zhang, P. Attacks and Defenses in User Authentication Systems: A Survey. J. Netw. Comput. Appl. 2021, 188, 103080. [Google Scholar] [CrossRef]
- Siddiqui, N.; Pryor, L.; Dave, R. User Authentication Schemes Using Machine Learning Methods—A Review. In Proceedings of the International Conference on Communication and Computational Technologies; Kumar, S., Purohit, S.D., Hiranwal, S., Prasad, M., Eds.; Springer: Singapore, 2021; pp. 703–723. [Google Scholar]
- Alharbi, E.H.; Alahrbi, M.M. Biometric Authentication Systems Towards Secure and Privacy Identification: A Review. CIMJ 2020, 23, 1–16. [Google Scholar]
- Kaushik, V.R.; Dabade, T.; Patil, N.V. Process of Biometric Authentication and Its Application-A Review. J. Emerg. Technol. Innov. Res. 2019, 6, 1021–1025. [Google Scholar]
- Rui, Z.; Yan, Z. A Survey on Biometric Authentication: Toward Secure and Privacy-Preserving Identification. IEEE Access 2019, 7, 5994–6009. [Google Scholar] [CrossRef]
- Ometov, A.; Bezzateev, S.; Mäkitalo, N.; Andreev, S.; Mikkonen, T.; Koucheryavy, Y. Multi-Factor Authentication: A Survey. Cryptography 2018, 2, 1. [Google Scholar] [CrossRef]
- Emewu, B.M.; Eke, V.O.C. Biometric Authentication Technologies and Applications. IJISET—Int. J. Innov. Sci. Eng. Technol. 2016, 3, 245–250. [Google Scholar]
- Shrivastava, S. Biometric: Types and Its Applications. IEEE Commun. Surv. Tutor. 2013, 17, 1268–1293. [Google Scholar]
- Meng, W.; Wong, D.S.; Furnell, S.; Zhou, J. Surveying the Development of Biometric User Authentication on Mobile Phones. IEEE Commun. Surv. Tutor. 2015, 17, 1268–1293. [Google Scholar] [CrossRef]
- Rayani, P.K.; Changder, S. Continuous User Authentication on Smartphone via Behavioral Biometrics: A Survey. Multimed. Tools Appl. 2023, 82, 1633–1667. [Google Scholar] [CrossRef]
- Stylios, I.C.; Thanou, O.; Androulidakis, I.; Zaitseva, E. A Review of Continuous Authentication Using Behavioral Biometrics. In Proceedings of the SouthEast European Design Automation, Computer Engineering, Computer Networks and Social Media Conference, Kastoria, Greece, 25 September 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 72–79. [Google Scholar]
- Stylios, I.; Kokolakis, S.; Thanou, O.; Chatzis, S. Behavioral Biometrics & Continuous User Authentication on Mobile Devices: A Survey. Inf. Fusion 2021, 66, 76–99. [Google Scholar] [CrossRef]
- Mahfouz, A.; Mahmoud, T.M.; Eldin, A.S. A Survey on Behavioral Biometric Authentication on Smartphones. J. Inf. Secur. Appl. 2018, 37, 28–37. [Google Scholar] [CrossRef]
- Dos Santos, C.F.G.; Oliveira, D.D.S.; Passos, L.A.; Pires, R.G.; Santos, D.F.S.; Valem, L.P.; Moreira, T.P.; Santana, M.C.S.; Roder, M.; Papa, J.P.; et al. Gait Recognition Based on Deep Learning: A Survey. ACM Comput. Surv. 2023, 55, 1–34. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Vo, B.; Ghafour, M.Y.; Naghipour, S. Electrocardiogram Signals-Based User Authentication Systems Using Soft Computing Techniques. Artif. Intell. Rev. 2021, 54, 667–709. [Google Scholar] [CrossRef]
- Lakhani, V.; Baxi, V. User Authentication and Cryptography Using Brain Signals—A Systematic Review. Reliab. Theory Appl. 2021, 16, 359–368. [Google Scholar]
- Gui, Q.; Ruiz-Blondet, M.V.; Laszlo, S.; Jin, Z. A Survey on Brain Biometrics. ACM Comput. Surv. 2019, 51, 1–38. [Google Scholar] [CrossRef]
- Katsini, C.; Abdrabou, Y.; Raptis, G.E.; Khamis, M.; Alt, F. The Role of Eye Gaze in Security and Privacy Applications: Survey and Future HCI Research Directions. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 21 April 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–21. [Google Scholar]
- Galdi, C.; Nappi, M.; Riccio, D.; Wechsler, H. Eye Movement Analysis for Human Authentication: A Critical Survey. Pattern Recognit. Lett. 2016, 84, 272–283. [Google Scholar] [CrossRef]
- Sadikan, S.F.N.; Ramli, A.A.; Fudzee, M.F.M. A Survey Paper on Keystroke Dynamics Authentication for Current Applications. In Proceedings of the International Conference of Electrical and Electronic Engineering (ICon3E 2019), Putrajaya, Malaysia, 11 November 2019; pp. 1–12. [Google Scholar] [CrossRef]
- Omotoye, K.A.; Misra, S.; Garg, L. Facial Liveness Detection in Biometrics: A Multivocal Literature Review. In Information Systems and Management Science; Garg, L., Sisodia, D.S., Kesswani, N., Vella, J.G., Brigui, I., Xuereb, P., Misra, S., Singh, D., Eds.; Lecture Notes in Networks and Systems; Springer International Publishing: Cham, Switzerland, 2023; Volume 521, pp. 195–209. ISBN 978-3-031-13149-3. [Google Scholar]
- Taskiran, M.; Kahraman, N.; Erdem, C.E. Face Recognition: Past, Present and Future (a Review). Digit. Signal Process. 2020, 106, 102809. [Google Scholar] [CrossRef]
- Winston, J.J.; Hemanth, D.J. A Comprehensive Review on Iris Image-Based Biometric System. Soft Comput. 2019, 23, 9361–9384. [Google Scholar] [CrossRef]
- Alausa, D.W.S.; Adetiba, E.; Badejo, J.A.; Davidson, I.E.; Obiyemi, O.; Buraimoh, E.; Abayomi, A.; Oshin, O. Contactless Palmprint Recognition System: A Survey. IEEE Access 2022, 10, 132483–132505. [Google Scholar] [CrossRef]
- Shahadha, I.H.; Bin Shahibuddin, S.; Sjarif, N.N.A. The Fundamentals of Unimodal Palmprint Authentication Based on a Biometric System: A Review. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 325–335. [Google Scholar] [CrossRef]
- Krishnan, A.; Thomas, T. A Survey of Mathematical Techniques in Finger Vein Biometrics. J. Theor. Comput. Math. 2015, 1, 66–73. [Google Scholar]
- Debnath, S.; Ramalakshmi, K.; Senbagavalli, M. Multimodal Authentication System Based on Audio-Visual Data: A Review. In Proceedings of the 2022 International Conference for Advancement in Technology (ICONAT), Goa, India, 21 January 2022; IEEE: New York, NY, USA, 2022; pp. 1–5. [Google Scholar]
- Awan, K.A.; Ud Din, I.; Almogren, A.; Kumar, N.; Almogren, A. A Taxonomy of Multimedia-Based Graphical User Authentication for Green Internet of Things. ACM Trans. Internet Technol. 2022, 22, 1–28. [Google Scholar] [CrossRef]
- Yusuf, N.; Marafa, K.A.; Shehu, K.L.; Mamman, H.; Maidawa, M. A Survey of Biometric Approaches of Authentication. Int. J. Adv. Comput. Res. 2020, 10, 96–104. [Google Scholar] [CrossRef]
- Stephenson, S.; Pal, B.; Fan, S.; Fernandes, E.; Zhao, Y.; Chatterjee, R. SoK: Authentication in Augmented and Virtual Reality. In Proceedings of the 2022 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 22–26 May 2022; IEEE: New York, NY, USA, 2022; pp. 267–284. [Google Scholar]
- Duezguen, R.; Noah, N.; Mayer, P.; Das, S.; Volkamer, M. SoK: A Systematic Literature Review of Knowledge-Based Authentication on Augmented Reality Head-Mounted Displays. In Proceedings of the 17th International Conference on Availability, Reliability and Security, Vienna, Austria, 23 August 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1–12. [Google Scholar]
- Jones, J.M.; Duezguen, R.; Mayer, P.; Volkamer, M.; Das, S. A Literature Review on Virtual Reality Authentication. In Proceedings of the Fifteenth International Symposium on Human Aspects of Information Security & Assurance (HAISA 2021), Virtual, 7–9 July 2021; pp. 1–10. [Google Scholar]
- Kürtünlüoğlu, P.; Akdik, B.; Karaarslan, E. Security of Virtual Reality Authentication Methods in Metaverse: An Overview. arXiv 2022, arXiv:2209.06447. [Google Scholar] [CrossRef]
- Heruatmadja, C.H.; Meyliana; Hidayanto, A.N.; Prabowo, H. Biometric as Secure Authentication for Virtual Reality Environment: A Systematic Literature Review. In Proceedings of the 2023 International Conference for Advancement in Technology (ICONAT), Goa, India, 24 January 2023; IEEE: New York, NY, USA, 2023; pp. 1–7. [Google Scholar]
- Liu, S.; Shao, W.; Li, T.; Xu, W.; Song, L. Recent Advances in Biometrics-Based User Authentication for Wearable Devices: A Contemporary Survey. Digit. Signal Process. 2022, 125, 103120. [Google Scholar] [CrossRef]
- Olade, I.; Liang, H.; Fleming, C. A Review of Multimodal Facial Biometric Authentication Methods in Mobile Devices and Their Application in Head Mounted Displays. In Proceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Guangzhou, China, 8–12 October 2018; IEEE: New York, NY, USA, 2018; pp. 1997–2004. [Google Scholar] [CrossRef]
- Liebers, J.; Schneegass, S. Gaze-Based Authentication in Virtual Reality. In Proceedings of the ACM Symposium on Eye Tracking Research and Applications, Stuttgart, Germany, 2 June 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–2. [Google Scholar]
- Chan, P.; Halevi, T.; Memon, N. Glass OTP: Secure and Convenient User Authentication on Google Glass. In Proceedings of the Financial Cryptography and Data Security: FC 2015 International Workshops, BITCOIN, WAHC, and Wearable, San Juan, Puerto Rico, 30 January 2015; Brenner, M., Christin, N., Johnson, B., Rohloff, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 8976, pp. 298–308. [Google Scholar]
- Wang, Y.; Su, Z.; Zhang, N.; Xing, R.; Liu, D.; Luan, T.H.; Shen, X. A Survey on Metaverse: Fundamentals, Security, and Privacy. IEEE Commun. Surv. Tutor. 2023, 25, 319–352. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y.J.; Cai, Z. Security and Privacy in Metaverse: A Comprehensive Survey. Big Data Min. Anal. 2023, 6, 234–247. [Google Scholar] [CrossRef]
- Awadallah, A.M.; Damiani, E.; Zemerly, J.; Yeun, C.Y. Identity Threats in the Metaverse and Future Research Opportunities. In Proceedings of the 2023 International Conference on Business Analytics for Technology and Security (ICBATS), Dubai, United Arab Emirates, 7 March 2023; IEEE: New York, NY, USA, 2023; pp. 1–6. [Google Scholar]
- Chow, Y.-W.; Susilo, W.; Li, Y.; Li, N.; Nguyen, C. Visualization and Cybersecurity in the Metaverse: A Survey. J. Imaging 2022, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Pooyandeh, M.; Han, K.-J.; Sohn, I. Cybersecurity in the AI-Based Metaverse: A Survey. Appl. Sci. 2022, 12, 12993. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, J.; Gan, W.; Qi, Z. Metaverse Security and Privacy: An Overview. In Proceedings of the 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan, 17 December 2022; IEEE: New York, NY, USA, 2022; pp. 2950–2959. [Google Scholar]
- Di Pietro, R.; Cresci, S. Metaverse: Security and Privacy Issues. In Proceedings of the 2021 Third IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), Atlanta, GA, USA, 13–15 December 2021; IEEE: New York, NY, USA, 2021; pp. 281–288. [Google Scholar]
- Warin, C.; Reinhardt, D. Vision: Usable Privacy for XR in the Era of the Metaverse. In Proceedings of the 2022 European Symposium on Usable Security, Karlsruhe, Germany, 29 September 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 111–116. [Google Scholar]
- Abraham, M.; Saeghe, P.; Mcgill, M.; Khamis, M. Implications of XR on Privacy, Security and Behaviour: Insights from Experts. In Proceedings of the Nordic Human-Computer Interaction Conference, Aarhus, Denmark, 8 October 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1–12. [Google Scholar]
- De Guzman, J.A.; Thilakarathna, K.; Seneviratne, A. Security and Privacy Approaches in Mixed Reality: A Literature Survey. ACM Comput. Surv. 2020, 52, 1–37. [Google Scholar] [CrossRef]
- Noah, N.; Shearer, S.; Das, S. Security and Privacy Evaluation of Popular Augmented and Virtual Reality Technologies. In Proceedings of the 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), Rome, Italy, 26–28 October 2022. [Google Scholar] [CrossRef]
- Patel, P.D.; Trivedi, P. A Systematic Literature Review on Virtual Reality and Augmented Reality in Terms of Privacy, Authorization and Data-Leaks. arXiv 2022, arXiv:2212.04621. [Google Scholar] [CrossRef]
- Zhernova, K.; Chechulin, A. Overview of Vulnerabilities of Decision Support Interfaces Based on Virtual and Augmented Reality Technologies. In Proceedings of the Fifth International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’21), Sirius, Russia, 30 September–4 October 2021; Kovalev, S., Tarassov, V., Snasel, V., Sukhanov, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; Volume 330, pp. 400–409. [Google Scholar]
- Garrido, G.M.; Nair, V.; Song, D. SoK: Data Privacy in Virtual Reality. Proc. Priv. Enhancing Technol. 2024, 2024, 21–40. [Google Scholar] [CrossRef]
- Giaretta, A. Security and Privacy in Virtual Reality—A Literature Survey. arXiv 2022, arXiv:2205.00208. [Google Scholar] [CrossRef]
- Kulal, S.; Li, Z.; Tian, X. Security and privacy in virtual reality: A literature review. Issues Inf. Syst. 2022, 23, 185–192. [Google Scholar] [CrossRef]
- Odeleye, B.; Loukas, G.; Heartfield, R.; Sakellari, G.; Panaousis, E.; Spyridonis, F. Virtually Secure: A Taxonomic Assessment of Cybersecurity Challenges in Virtual Reality Environments. Comput. Secur. 2023, 124, 102951. [Google Scholar] [CrossRef]
- Lin, J.; Latoschik, M.E. Digital Body, Identity and Privacy in Social Virtual Reality: A Systematic Review. Front. Virtual Real. 2022, 3, 974652. [Google Scholar] [CrossRef]
- Roesner, F.; Kohno, T.; Molnar, D. Security and Privacy for Augmented Reality Systems. Commun. ACM 2014, 57, 88–96. [Google Scholar] [CrossRef]
- Huynh-The, T.; Pham, Q.-V.; Pham, X.-Q.; Nguyen, T.T.; Han, Z.; Kim, D.-S. Artificial Intelligence for the Metaverse: A Survey. Eng. Appl. Artif. Intell. 2023, 117, 105581. [Google Scholar] [CrossRef]
- Plopski, A.; Hirzle, T.; Norouzi, N.; Qian, L.; Bruder, G.; Langlotz, T. The Eye in Extended Reality: A Survey on Gaze Interaction and Eye Tracking in Head-Worn Extended Reality. ACM Comput. Surv. 2023, 55, 1–39. [Google Scholar] [CrossRef]
- Adhanom, I.B.; MacNeilage, P.; Folmer, E. Eye Tracking in Virtual Reality: A Broad Review of Applications and Challenges. Virtual Real. 2023, 27, 1481–1505. [Google Scholar] [CrossRef] [PubMed]
- Sagayam, K.M.; Hemanth, D.J. Hand Posture and Gesture Recognition Techniques for Virtual Reality Applications: A Survey. Virtual Real. 2017, 21, 91–107. [Google Scholar] [CrossRef]
- Abdelrahman, Y.; Mathis, F.; Knierim, P.; Kettler, A.; Alt, F.; Khamis, M. CueVR: Studying the Usability of Cue-Based Authentication for Virtual Reality. In Proceedings of the 2022 International Conference on Advanced Visual Interfaces, Frascati, Italy, 6–10 June 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1–9. [Google Scholar]
- Mathis, F.; Williamson, J.H.; Vaniea, K.; Khamis, M. Fast and Secure Authentication in Virtual Reality Using Coordinated 3D Manipulation and Pointing. ACM Trans. Comput.-Hum. Interact. 2021, 28, 1–44. [Google Scholar] [CrossRef]
- Mathis, F.; Williamson, J.; Vaniea, K.; Khamis, M. RubikAuth: Fast and Secure Authentication in Virtual Reality. In Proceedings of the Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25 April 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–9. [Google Scholar]
- Li, Y.; Cheng, Y.; Meng, W.; Li, Y.; Deng, R.H. Designing Leakage-Resilient Password Entry on Head-Mounted Smart Wearable Glass Devices. IEEE Trans. Inform. Forensic Secur. 2021, 16, 307–321. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, Y.; Li, Y.; Deng, R.H. What You See Is Not What You Get: Leakage-Resilient Password Entry Schemes for Smart Glasses. In Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, Abu Dhabi, United Arab Emirates, 2 April 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 327–333. [Google Scholar]
- Khamis, M.; Oechsner, C.; Alt, F.; Bulling, A. VRpursuits: Interaction in Virtual Reality Using Smooth Pursuit Eye Movements. In Proceedings of the 2018 International Conference on Advanced Visual Interfaces, Castiglione della Pescaia Grosseto, Italy, 29 May 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–8. [Google Scholar]
- Zhang, R.; Zhang, N.; Du, C.; Lou, W.; Hou, Y.T.; Kawamoto, Y. AugAuth: Shoulder-Surfing Resistant Authentication for Augmented Reality. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; IEEE: New York, NY, USA, 2017; pp. 1–6. [Google Scholar]
- Seo, H.; Kim, J.; Kim, H.; Liu, Z. Personal Identification Number Entry for Google Glass. Comput. Electr. Eng. 2017, 63, 160–167. [Google Scholar] [CrossRef]
- George, C.; Khamis, M.; Von Zezschwitz, E.; Schmidt, H.; Burger, M.; Alt, F.; Hussmann, H. Seamless and Secure VR: Adapting and Evaluating Established Authentication Systems for Virtual Reality. In Proceedings of the 2017 Workshop on Usable Security, San Diego, CA, USA, 26 February 2017; Internet Society: San Diego, CA, USA, 2017; pp. 1–12. [Google Scholar] [CrossRef]
- Gheorghe, G.; Louveton, N.; Martin, B.; Viraize, B.; Mougin, L.; Faye, S.; Engel, T. Heat Is in the Eye of the Beholder: Towards Better Authenticating on Smartglasses. In Proceedings of the 2016 9th International Conference on Human System Interactions (HSI), Portsmouth, UK, 6–8 July 2016; IEEE: New York, NY, USA, 2016; pp. 490–496. [Google Scholar]
- Yu, Z.; Liang, H.-N.; Fleming, C.; Man, K.L. An Exploration of Usable Authentication Mechanisms for Virtual Reality Systems. In Proceedings of the 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Jeju, Republic of Korea, 25–28 October 2016; IEEE: New York, NY, USA, 2016; pp. 458–460. [Google Scholar]
- Yadav, D.K.; Ionascu, B.; Krishna Ongole, S.V.; Roy, A.; Memon, N. Design and Analysis of Shoulder Surfing Resistant PIN Based Authentication Mechanisms on Google Glass. In Financial Cryptography and Data Security; Brenner, M., Christin, N., Johnson, B., Rohloff, K., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2015; Volume 8976, pp. 281–297. ISBN 978-3-662-48050-2. [Google Scholar]
- Winkler, C.; Gugenheimer, J.; De Luca, A.; Haas, G.; Speidel, P.; Dobbelstein, D.; Rukzio, E. Glass Unlock: Enhancing Security of Smartphone Unlocking through Leveraging a Private Near-Eye Display. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Republic of Korea, 18 April 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 1407–1410. [Google Scholar]
- Bailey, D.V.; Dürmuth, M.; Paar, C. “Typing” Passwords with Voice Recognition: How to Authenticate to Google Glass. In Proceedings of the Symposium on Usable Privacy and Security (SOUPS 14), Menlo Park, CA, USA, 9–11 July 2014; pp. 1–2. [Google Scholar]
- Olade, I.; Liang, H.-N.; Fleming, C.; Champion, C. Exploring the Vulnerabilities and Advantages of SWIPE or Pattern Authentication in Virtual Reality (VR). In Proceedings of the 2020 4th International Conference on Virtual and Augmented Reality Simulations, Sydney, NSW, Australia, 14 February 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 45–52. [Google Scholar]
- Düzgün, R.; Mayer, P.; Volkamer, M. Shoulder-Surfing Resistant Authentication for Augmented Reality. In Proceedings of the Nordic Human-Computer Interaction Conference, Aarhus, Denmark, 8 October 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1–13. [Google Scholar]
- Mayer, P.; Volkamer, M.; Kauer, M. Authentication Schemes—Comparison and Effective Password Spaces. In Information Systems Security; Prakash, A., Shyamasundar, R., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2014; Volume 8880, pp. 204–225. ISBN 978-3-319-13840-4. [Google Scholar]
- Hadjidemetriou, G.; Belk, M.; Fidas, C.; Pitsillides, A. Picture Passwords in Mixed Reality: Implementation and Evaluation. In Proceedings of the Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 2 May 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1–6. [Google Scholar]
- Funk, M.; Marky, K.; Mizutani, I.; Kritzler, M.; Mayer, S.; Michahelles, F. LookUnlock: Using Spatial-Targets for User-Authentication on HMDs. In Proceedings of the Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 2 May 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1–6. [Google Scholar]
- Turkmen, R.; Nwagu, C.; Rawat, P.; Riddle, P.; Sunday, K.; Machuca, M.B. Put Your Glasses on: A Voxel-Based 3D Authentication System in VR Using Eye-Gaze. In Proceedings of the 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Shanghai, China, 25–29 March 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 947–948. [Google Scholar]
- Han, I.X. Ninja Locker: A Hand-Gesture-Enabled Knowledge-Based VR Authentication Interface. In Proceedings of the 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Shanghai, China, 25–29 March 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 943–944. [Google Scholar]
- Bologna, D.; Micciché, V.; Violo, G.; Visconti, A.; Cannavò, A.; Lamberti, F. SPHinX Authentication Technique: Secure Painting autHentication in eXtended Reality. In Proceedings of the 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Shanghai, China, 25–29 March 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 941–942. [Google Scholar]
- George, C.; Buschek, D.; Ngao, A.; Khamis, M. GazeRoomLock: Using Gaze and Head-Pose to Improve the Usability and Observation Resistance of 3D Passwords in Virtual Reality. In Augmented Reality, Virtual Reality, and Computer Graphics; De Paolis, L.T., Bourdot, P., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12242, pp. 61–81. ISBN 978-3-030-58464-1. [Google Scholar]
- George, C.; Khamis, M.; Buschek, D.; Hussmann, H. Investigating the Third Dimension for Authentication in Immersive Virtual Reality and in the Real World. In Proceedings of the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 23–27 March 2019; IEEE: New York, NY, USA, 2019; pp. 277–285. [Google Scholar]
- Gurary, J.; Zhu, Y.; Fu, H. Leveraging 3D Benefits for Authentication. Int. J. Commun. Netw. Syst. Sci. 2017, 10, 324–338. [Google Scholar] [CrossRef]
- Yu, Z.; Olade, I.; Liang, H.-N.; Fleming, C. Usable Authentication Mechanisms for Mobile Devices: An Exploration of 3D Graphical Passwords. In Proceedings of the 2016 International Conference on Platform Technology and Service (PlatCon), Jeju, Republic of Korea, 15–17 February 2016; IEEE: New York, NY, USA, 2016; pp. 1–3. [Google Scholar]
- Wazir, W.; Khattak, H.A.; Almogren, A.; Khan, M.A.; Ud Din, I. Doodle-Based Authentication Technique Using Augmented Reality. IEEE Access 2020, 8, 4022–4034. [Google Scholar] [CrossRef]
- Islam, M.R.; Lee, D.; Jahan, L.S.; Oakley, I. GlassPass: Tapping Gestures to Unlock Smart Glasses. In Proceedings of the 9th Augmented Human International Conference, Seoul, Republic of Korea, 6 February 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–8. [Google Scholar]
- Hutchins, B.; Reddy, A.; Jin, W.; Zhou, M.; Li, M.; Yang, L. Beat-PIN: A User Authentication Mechanism for Wearable Devices Through Secret Beats. In Proceedings of the 2018 on Asia Conference on Computer and Communications Security, Incheon, Republic of Korea, 29 May 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 101–115. [Google Scholar]
- Duezguen, R.; Mayer, P.; Das, S.; Volkamer, M. Towards Secure and Usable Authentication for Augmented and Virtual Reality Head-Mounted Displays. In Proceedings of the Who Are You?! Adventures in Authentication (WAY), Virtual, 7 August 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Gutmann, A.; Renaud, K.; Maguire, J.; Mayer, P.; Volkamer, M.; Matsuura, K.; Muller-Quade, J. ZeTA-Zero-Trust Authentication: Relying on Innate Human Ability, Not Technology. In Proceedings of the 2016 IEEE European Symposium on Security and Privacy (EuroS&P), Saarbrucken, Germany, 21–24 March 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 357–371. [Google Scholar]
- Li, J.; Arora, S.S.; Fawaz, K.; Kim, Y.; Liu, C.; Meiser, S.; Minaei, M.; Shirvanian, M.; Wagner, K. “I Want the Payment Process to Be Cool”: Understanding How Interactions Influence Users’ Security Perception of Virtual Reality Authentication. arXiv 2023, arXiv:2303.11575. [Google Scholar]
- Boutros, F.; Damer, N.; Raja, K.; Ramachandra, R.; Kirchbuchner, F.; Kuijper, A. Iris and Periocular Biometrics for Head Mounted Displays: Segmentation, Recognition, and Synthetic Data Generation. Image Vis. Comput. 2020, 104, 104007. [Google Scholar] [CrossRef]
- Boutros, F.; Damer, N.; Raja, K.; Ramachandra, R.; Kirchbuchner, F.; Kuijper, A. Fusing Iris and Periocular Region for User Verification in Head Mounted Displays. In Proceedings of the 2020 IEEE 23rd International Conference on Information Fusion (FUSION), Rustenburg, South Africa, 6–9 July 2020; IEEE: New York, NY, USA, 2020; pp. 1–8. [Google Scholar]
- Boutros, F.; Damer, N.; Raja, K.; Ramachandra, R.; Kirchbuchner, F.; Kuijper, A. On Benchmarking Iris Recognition within a Head-Mounted Display for AR/VR Applications. In Proceedings of the 2020 IEEE International Joint Conference on Biometrics (IJCB), Houston, TX, USA, 28 September 2020; IEEE: New York, NY, USA, 2020; pp. 1–10. [Google Scholar]
- Boutros, F.; Damer, N.; Raja, K.; Ramachandra, R.; Kirchbuchner, F.; Kuijper, A. Periocular Biometrics in Head-Mounted Displays: A Sample Selection Approach for Better Recognition. In Proceedings of the 2020 8th International Workshop on Biometrics and Forensics (IWBF), Porto, Portugal, 29–30 April 2020; IEEE: New York, NY, USA, 2020; pp. 1–6. [Google Scholar]
- Boutros, F.; Damer, N.; Kirchbuchner, F.; Kuijper, A. Eye-MMS: Miniature Multi-Scale Segmentation Network of Key Eye-Regions in Embedded Applications. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Republic of Korea, 27–28 October 2019; IEEE: New York, NY, USA, 2019; pp. 3665–3670. [Google Scholar]
- Kim, S.; Lee, E. Periocular Biometric Authentication Methods in Head Mounted Display Device. Int. J. Eng. Technol. 2018, 7, 22522. [Google Scholar]
- Varkarakis, V.; Bazrafkan, S.; Corcoran, P. Deep Neural Network and Data Augmentation Methodology for Off-Axis Iris Segmentation in Wearable Headsets. Neural Netw. 2020, 121, 101–121. [Google Scholar] [CrossRef] [PubMed]
- Varkarakis, V.; Bazrafkan, S.; Corcoran, P. A Deep Learning Approach to Segmentation of Distorted Iris Regions in Head-Mounted Displays. In Proceedings of the 2018 IEEE Games, Entertainment, Media Conference (GEM), Galway, Ireland, 15–17 August 2018; IEEE: New York, NY, USA, 2018; pp. 1–9. [Google Scholar]
- John, B.; Jorg, S.; Koppal, S.; Jain, E. The Security-Utility Trade-off for Iris Authentication and Eye Animation for Social Virtual Avatars. IEEE Trans. Visual. Comput. Graph. 2020, 26, 1880–1890. [Google Scholar] [CrossRef]
- John, B.; Koppal, S.; Jain, E. EyeVEIL: Degrading Iris Authentication in Eye Tracking Headsets. In Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications, Denver, CO, USA, 25 June 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1–5. [Google Scholar]
- Li, Y.H.; Huang, P.J. An Accurate and Efficient User Authentication Mechanism on Smart Glasses Based on Iris Recognition. Mob. Inf. Syst. 2017, 2017, 1281020. [Google Scholar] [CrossRef]
- Zhu, H.; Xiao, M.; Sherman, D.; Li, M. SoundLock: A Novel User Authentication Scheme for VR Devices Using Auditory-Pupillary Response. In Proceedings of the 2023 Network and Distributed System Security Symposium, San Diego, CA, USA, 27 February–3 March 2023; Internet Society: San Diego, CA, USA, 2023. [Google Scholar]
- Yan, S.; Chang, S.; Wang, J.; Azhar, S. Using Pupil Light Reflex for Fast Biometric Authentication. In Proceedings of the ACM Turing Celebration Conference—China, Hefei, China, 22 May 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 139–143. [Google Scholar]
- Gao, Y.; Wang, W.; Phoha, V.V.; Sun, W.; Jin, Z. EarEcho: Using Ear Canal Echo for Wearable Authentication. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 1–24. [Google Scholar] [CrossRef]
- Lin, F.; Cho, K.W.; Song, C.; Jin, Z.; Xu, W. Exploring a Brain-Based Cancelable Biometrics for Smart Headwear: Concept, Implementation, and Evaluation. IEEE Trans. Mob. Comput. 2020, 19, 2774–2792. [Google Scholar] [CrossRef]
- Lin, F.; Cho, K.W.; Song, C.; Xu, W.; Jin, Z. Brain Password: A Secure and Truly Cancelable Brain Biometrics for Smart Headwear. In Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, Munich, Germany, 10 June 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 296–309. [Google Scholar]
- Schneegass, S.; Oualil, Y.; Bulling, A. SkullConduct: Biometric User Identification on Eyewear Computers Using Bone Conduction Through the Skull. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7 May 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 1379–1384. [Google Scholar]
- Zhang, Z.; Zhang, M.; Chang, Y.; Esche, S.K.; Chassapis, C. A Virtual Laboratory Combined with Biometric Authentication and 3D Reconstruction. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Phoenix, AZ, USA, 11–17 November 2016; pp. 1–10. [Google Scholar]
- Zhang, Z.; Zhang, M.; Chang, Y.; Esche, S.; Chassapis, C. A Virtual Laboratory System with Biometric Authentication and Remote Proctoring Based on Facial Recognition. In Proceedings of the 2016 ASEE Annual Conference & Exposition Proceedings, New Orleans, LA, USA, 26–28 June 2016; ASEE Conferences: New Orleans, LA, USA, 2016; pp. 74–84. [Google Scholar]
- Tran, N.C.; Wang, J.; Vu, T.H.; Tai, T.-C.; Wang, J.-C. Anti-Aliasing Convolution Neural Network of Finger Vein Recognition for Virtual Reality (VR) Human–Robot Equipment of Metaverse. J. Supercomput. 2023, 79, 2767–2782. [Google Scholar] [CrossRef] [PubMed]
- Bader, S.; Amara, N.E.B. Design of a 3D Virtual World to Implement a Logical Access Control Mechanism Based on Fingerprints. In Proceedings of the 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), Hammamet, Tunisia, 30 October–3 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1239–1246. [Google Scholar]
- Chen, Y.; Yang, Z.; Abbou, R.; Lopes, P.; Zhao, B.Y.; Zheng, H. User Authentication via Electrical Muscle Stimulation. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 6 May 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1–15. [Google Scholar]
- Li, F.; Zhao, J.; Yang, H.; Yu, D.; Zhou, Y.; Shen, Y. VibHead: An Authentication Scheme for Smart Headsets through Vibration. ACM Trans. Sens. Netw. 2023, 37, 1–21. [Google Scholar] [CrossRef]
- Bianco, S.; Napoletano, P. Biometric Recognition Using Multimodal Physiological Signals. IEEE Access 2019, 7, 83581–83588. [Google Scholar] [CrossRef]
- Liebers, J.; Schneegass, S. Introducing Functional Biometrics: Using Body-Reflections as a Novel Class of Biometric Authentication Systems. In Proceedings of the Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25 April 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–7. [Google Scholar]
- Lohr, D.; Johnson, S.; Aziz, S.; Komogortsev, O. Demonstrating Eye Movement Biometrics in Virtual Reality. In Proceedings of the 2023 Symposium on Eye Tracking Research and Applications, Tübingen, Germany, 30 May–2 June 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Lohr, D.; Komogortsev, O.V. Eye Know You Too: Toward Viable End-to-End Eye Movement Biometrics for User Authentication. IEEE Trans. Inform. Forensic Secur. 2022, 17, 3151–3164. [Google Scholar] [CrossRef]
- Lohr, D.; Komogortsev, O.V. Eye Know You Too: A DenseNet Architecture for End-to-End Eye Movement Biometrics. arXiv 2022, arXiv:2201.02110. [Google Scholar] [CrossRef]
- Lohr, D.J.; Aziz, S.; Komogortsev, O. Eye Movement Biometrics Using a New Dataset Collected in Virtual Reality. In Proceedings of the ACM Symposium on Eye Tracking Research and Applications, Stuttgart, Germany, 2 June 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–3. [Google Scholar]
- Lohr, D.; Berndt, S.H.; Komogortsev, O. An Implementation of Eye Movement-Driven Biometrics in Virtual Reality. In Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications, Warsaw, Poland, 14 June 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–3. [Google Scholar]
- Zhang, Y.; Hu, W.; Xu, W.; Chou, C.T.; Hu, J. Continuous Authentication Using Eye Movement Response of Implicit Visual Stimuli. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 1, 1–22. [Google Scholar] [CrossRef]
- Asish, S.M.; Kulshreshth, A.K.; Borst, C.W. User Identification Utilizing Minimal Eye-Gaze Features in Virtual Reality Applications. Virtual Worlds 2022, 1, 42–61. [Google Scholar] [CrossRef]
- Friström, E.; Lius, E.; Ulmanen, N.; Hietala, P.; Kärkkäinen, P.; Mäkinen, T.; Sigg, S.; Findling, R.D. Free-Form Gaze Passwords from Cameras Embedded in Smart Glasses. In Proceedings of the 17th International Conference on Advances in Mobile Computing & Multimedia, Munich, Germany, 2 December 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 136–144. [Google Scholar]
- Peng, S.; Al Madi, N. An Eye Opener on the Use of Machine Learning in Eye Movement Based Authentication. In Proceedings of the 2022 Symposium on Eye Tracking Research and Applications, Seattle, WA, USA, 8 June 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1–2. [Google Scholar]
- Iskander, J.; Abobakr, A.; Attia, M.; Saleh, K.; Nahavandi, D.; Hossny, M.; Nahavandi, S. A K-NN Classification Based VR User Verification Using Eye Movement and Ocular Biomechanics. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; IEEE: New York, NY, USA, 2019; pp. 1844–1848. [Google Scholar]
- Ahuja, K.; Islam, R.; Parashar, V.; Dey, K.; Harrison, C.; Goel, M. EyeSpyVR: Interactive Eye Sensing Using Off-the-Shelf, Smartphone-Based VR Headsets. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 1–10. [Google Scholar] [CrossRef]
- Mai, Z.; He, Y.; Feng, J.; Tu, H.; Weng, J.; Gao, B. Behavioral Authentication with Head-Tilt Based Locomotion for Metaverse. In Proceedings of the 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Shanghai, China, 25–29 March 2023; IEEE: New York, NY, USA, 2023; pp. 949–950. [Google Scholar]
- Shen, Y.; Wen, H.; Luo, C.; Xu, W.; Zhang, T.; Hu, W.; Rus, D. GaitLock: Protect Virtual and Augmented Reality Headsets Using Gait. IEEE Trans. Dependable Secur. Comput. 2019, 16, 484–497. [Google Scholar] [CrossRef]
- Pfeuffer, K.; Geiger, M.J.; Prange, S.; Mecke, L.; Buschek, D.; Alt, F. Behavioural Biometrics in VR: Identifying People from Body Motion and Relations in Virtual Reality. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 2 May 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1–12. [Google Scholar]
- Sivasamy, M.; Sastry, V.N.; Gopalan, N.P. VRCAuth: Continuous Authentication of Users in Virtual Reality Environment Using Head-Movement. In Proceedings of the 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020; IEEE: New York, NY, USA, 2020; pp. 518–523. [Google Scholar]
- Mustafa, T.; Matovu, R.; Serwadda, A.; Muirhead, N. Unsure How to Authenticate on Your VR Headset?: Come on, Use Your Head! In Proceedings of the Fourth ACM International Workshop on Security and Privacy Analytics, Tempe, AZ, USA, 21 March 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 23–30. [Google Scholar]
- Li, S.; Ashok, A.; Zhang, Y.; Xu, C.; Lindqvist, J.; Gruteser, M. Whose Move Is It Anyway? Authenticating Smart Wearable Devices Using Unique Head Movement Patterns. In Proceedings of the 2016 IEEE International Conference on Pervasive Computing and Communications (PerCom), Sydney, Australia, 14–18 March 2016; IEEE: New York, NY, USA, 2016; pp. 1–9. [Google Scholar]
- Liebers, J.; Brockel, S.; Gruenefeld, U.; Schneegass, S. Identifying Users by Their Hand Tracking Data in Augmented and Virtual Reality. Int. J. Hum.-Comput. Interact. 2024, 40, 409–424. [Google Scholar] [CrossRef]
- Chauhan, J.; Asghar, H.J.; Kaafar, M.A.; Mahanti, A. Gesture-Based Continuous Authentication for Wearable Devices: The Google Glass Case. arXiv 2016, arXiv:1412.2855. [Google Scholar]
- Lu, D.; Huang, D.; Rai, A. FMHash: Deep Hashing of In-Air-Handwriting for User Identification. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; IEEE: New York, NY, USA, 2019; pp. 1–7. [Google Scholar]
- Lu, Y.; Gao, B.; Long, J.; Weng, J. Hand Motion with Eyes-Free Interaction for Authentication in Virtual Reality. In Proceedings of the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Atlanta, GA, USA, 27 March–3 April 2020; IEEE: New York, NY, USA, 2020; pp. 714–715. [Google Scholar]
- Peng, G.; Zhou, G.; Nguyen, D.T.; Qi, X.; Yang, Q.; Wang, S. Continuous Authentication with Touch Behavioral Biometrics and Voice on Wearable Glasses. IEEE Trans. Hum.-Mach. Syst. 2017, 47, 404–416. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y. Nod to Auth: Fluent AR/VR Authentication with User Head-Neck Modeling. In Proceedings of the Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8 May 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1–7. [Google Scholar]
- Miller, M.R.; Han, E.; DeVeaux, C.; Jones, E.; Chen, R.; Bailenson, J.N. A Large-Scale Study of Personal Identifiability of Virtual Reality Motion Over Time. arXiv 2023, arXiv:2303.01430. [Google Scholar]
- Miller, M.R.; Herrera, F.; Jun, H.; Landay, J.A.; Bailenson, J.N. Personal Identifiability of User Tracking Data during Observation of 360-Degree VR Video. Sci. Rep. 2020, 10, 17404. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, A.; Sluganovic, I.; Krawiecka, K.; Martinovic, I. MoveAR: Continuous Biometric Authentication for Augmented Reality Headsets. In Proceedings of the 7th ACM Cyber-Physical System Security Workshop (CPSS ’21), Hong Kong, China, 7 June 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1–12. [Google Scholar]
- Nair, V.; Guo, W.; Mattern, J.; Wang, R.; O’Brien, J.F.; Rosenberg, L.; Song, D. Unique Identification of 50,000+ Virtual Reality Users from Head & Hand Motion Data. In Proceedings of the 32nd USENIX Conference on Security Symposium, Anaheim, CA, USA, 9–11 August 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 895–910. [Google Scholar]
- Kupin, A.; Moeller, B.; Jiang, Y.; Banerjee, N.K.; Banerjee, S. Task-Driven Biometric Authentication of Users in Virtual Reality (VR) Environments. In MultiMedia Modeling; Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2019; Volume 11295, pp. 55–67. ISBN 978-3-030-05709-1. [Google Scholar]
- Ajit, A.; Banerjee, N.K.; Banerjee, S. Combining Pairwise Feature Matches from Device Trajectories for Biometric Authentication in Virtual Reality Environments. In Proceedings of the 2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), San Diego, CA, USA, 9–11 December 2019; IEEE: New York, NY, USA, 2019; pp. 9–97. [Google Scholar]
- Miller, R.; Ajit, A.; Kholgade Banerjee, N.; Banerjee, S. Realtime Behavior-Based Continual Authentication of Users in Virtual Reality Environments. In Proceedings of the 2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), San Diego, CA, USA, 9–11 December 2019; IEEE: New York, NY, USA, 2019; pp. 253–2531. [Google Scholar]
- Miller, R.; Banerjee, N.K.; Banerjee, S. Within-System and Cross-System Behavior-Based Biometric Authentication in Virtual Reality. In Proceedings of the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Atlanta, GA, USA, 27 March–3 April 2020; IEEE: New York, NY, USA, 2020; pp. 311–316. [Google Scholar]
- Miller, R.; Banerjee, N.K.; Banerjee, S. Using Siamese Neural Networks to Perform Cross-System Behavioral Authentication in Virtual Reality. In Proceedings of the 2021 IEEE Virtual Reality and 3D User Interfaces (VR), Lisbon, Portugal, 27 March–1 April 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 140–149. [Google Scholar]
- Miller, R.; Banerjee, N.K.; Banerjee, S. Combining Real-World Constraints on User Behavior with Deep Neural Networks for Virtual Reality (VR) Biometrics. In Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Christchurch, New Zealand, 12–16 March 2022; IEEE: New York, NY, USA, 2022; pp. 409–418. [Google Scholar]
- Liebers, J.; Horn, P.; Burschik, C.; Gruenefeld, U.; Schneegass, S. Using Gaze Behavior and Head Orientation for Implicit Identification in Virtual Reality. In Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology, Osaka, Japan, 8 December 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1–9. [Google Scholar]
- Liebers, J.; Abdelaziz, M.; Mecke, L.; Saad, A.; Auda, J.; Gruenefeld, U.; Alt, F.; Schneegass, S. Understanding User Identification in Virtual Reality Through Behavioral Biometrics and the Effect of Body Normalization. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 6 May 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1–11. [Google Scholar]
- Mathis, F.; Fawaz, H.I.; Khamis, M. Knowledge-Driven Biometric Authentication in Virtual Reality. In Proceedings of the Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25 April 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–10. [Google Scholar]
- Miller, R.; Banerjee, N.K.; Banerjee, S. Temporal Effects in Motion Behavior for Virtual Reality (VR) Biometrics. In Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Christchurch, New Zealand, 12–16 March 2022; IEEE: New York, NY, USA, 2022; pp. 563–572. [Google Scholar]
- Liu, X.; Feng, X.; Pan, S.; Peng, J.; Zhao, X. Skeleton Tracking Based on Kinect Camera and the Application in Virtual Reality System. In Proceedings of the 4th International Conference on Virtual Reality, Hong Kong, China, 24 February 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 21–25. [Google Scholar]
- Wierzbowski, M.; Pochwatko, G.; Borkiewicz, P.; Cnotkowski, D.; Pabis-Orzeszyna, M.; Kobylinski, P. Behavioural Biometrics in Virtual Reality: To What Extent Can We Identify a Person Based Solely on How They Watch 360-Degree Videos? In Proceedings of the 2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Singapore, 17–21 October 2022; IEEE: New York, NY, USA, 2022; pp. 417–422. [Google Scholar]
- Rogers, C.E.; Witt, A.W.; Solomon, A.D.; Venkatasubramanian, K.K. An Approach for User Identification for Head-Mounted Displays. In Proceedings of the 2015 ACM International Symposium on Wearable Computers—ISWC ’15, Osaka, Japan, 7–11 September 2015; ACM: New York, NY, USA, 2015; pp. 143–146. [Google Scholar]
- Olade, I.; Fleming, C.; Liang, H.N. BioMove: Biometric User Identification from Human Kinesiological Movements for Virtual Reality Systems. Sensors 2020, 20, 2944. [Google Scholar] [CrossRef] [PubMed]
- Schell, C.; Kobs, K.; Fernando, T.; Hotho, A.; Latoschik, M.E. Extensible Motion-Based Identification of XR Users Using Non-Specific Motion Data. arXiv 2023, arXiv:2302.07517. [Google Scholar] [CrossRef]
- Moore, A.G.; McMahan, R.P.; Dong, H.; Ruozzi, N. Personal Identifiability and Obfuscation of User Tracking Data from VR Training Sessions. In Proceedings of the 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Bari, Italy, 4–8 October 2021; IEEE: New York, NY, USA, 2021; pp. 221–228. [Google Scholar]
- Pleva, M.; Korecko, S.; Hladek, D.; Bours, P.; Skudal, M.H.; Liao, Y.F. Biometric User Identification by Forearm EMG Analysis. In Proceedings of the 2022 IEEE International Conference on Consumer Electronics—Taiwan, Taipei, Taiwan, 6 July 2022; IEEE: New York, NY, USA, 2022; pp. 607–608. [Google Scholar]
- Sun, L.; Zhong, Z.; Qu, Z.; Xiong, N. PerAE: An Effective Personalized AutoEncoder for ECG-Based Biometric in Augmented Reality System. IEEE J. Biomed. Health Inform. 2022, 26, 2435–2446. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Nguyen, A.; Song, C.; Lin, F.; Xu, W.; Yan, Z. OcuLock: Exploring Human Visual System for Authentication in Virtual Reality Head-Mounted Display. In Proceedings of the 2020 Network and Distributed System Security Symposium, San Diego, CA, USA, 23–26 February 2020; Internet Society: San Diego, CA, USA, 2020. [Google Scholar]
- Li, S.; Savaliya, S.; Marino, L.; Leider, A.M.; Tappert, C.C. Brain Signal Authentication for Human-Computer Interaction in Virtual Reality. In Proceedings of the 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), New York, NY, USA, 1–3 August 2019; IEEE: New York, NY, USA, 2019; pp. 115–120. [Google Scholar]
- Fourkas, J.; Khatri, A.; Abel, R.; Savaliya, S.; Ikke, M.B.; Li, S.; Leider, A.; Tappert, C.C. Human-Computer Interaction with Virtual Reality Using Brain Signals Computing. pp. 1–7. Available online: http://csis.pace.edu/~aleider/it691-19spring/BCI-VR.pdf (accessed on 13 March 2023).
- Bonneau, J.; Herley, C.; Oorschot, P.C.V.; Stajano, F. The Quest to Replace Passwords: A Framework for Comparative Evaluation of Web Authentication Schemes. In Proceedings of the 2012 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 24–25 May 2012; IEEE: New York, NY, USA, 2012; pp. 553–567. [Google Scholar]
- Grandi, J.G.; Terrell, J.; Lofca, K.; Ruizvalencia, C.; Kopper, R. A Continuous Authentication Technique for XR Utilizing Time-Based One Time Passwords, Haptics, and Kinetic Activity. In Proceedings of the 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Shanghai, China, 25–29 March 2023; IEEE: New York, NY, USA, 2023; pp. 959–960. [Google Scholar]
- Andrade, T.M.; Roscoe, J.F.; Smith-Creasey, M. Security of Input for Authentication in Extended Reality Environments. In Proceedings of the Eighth International Congress on Information and Communication Technology (ICICT 2023), London, UK, 20–23 February 2023; Yang, X.-S., Sherratt, R.S., Dey, N., Joshi, A., Eds.; Lecture Notes in Networks and Systems. Springer Nature: Singapore, 2023; Volume 693, pp. 859–865, ISBN 978-981-9932-42-9. [Google Scholar]
- Mircea, M.M.; Boian, R.; Czibula, G. A Machine Learning Approach for Data Protection in Virtual Reality Therapy Applications. In Proceedings of the 2021 IEEE 17th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 28 October 2021; IEEE: New York, NY, USA, 2021; pp. 367–374. [Google Scholar]
- Lu, D.; Deng, Y.; Huang, D. Global Feature Analysis and Comparative Evaluation of Freestyle In-Air-Handwriting Passcode for User Authentication. In Proceedings of the Annual Computer Security Applications Conference, Virtual, 6 December 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 468–481. [Google Scholar]
- Zhu, H.; Jin, W.; Xiao, M.; Murali, S.; Li, M. BlinKey: A Two-Factor User Authentication Method for Virtual Reality Devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 1–29. [Google Scholar] [CrossRef]
- Findling, R.D.; Quddus, T.; Sigg, S. Hide My Gaze with EOG!: Towards Closed-Eye Gaze Gesture Passwords That Resist Observation-Attacks with Electrooculography in Smart Glasses. In Proceedings of the 17th International Conference on Advances in Mobile Computing & Multimedia, Munich, Germany, 2 December 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 107–116. [Google Scholar]
- Allawadhi, S.; Kumar, N.; Sahu, S.K. Virtual Consciousness from 3D to 4D Password: A Next Generation Security System Inspiration. In Data Science and Analytics; Panda, B., Sharma, S., Roy, N.R., Eds.; Communications in Computer and Information Science; Springer: Singapore, 2018; Volume 799, pp. 579–586. ISBN 978-981-10-8526-0. [Google Scholar]
- Azimpourkivi, M.; Topkara, U.; Carbunar, B. Camera Based Two Factor Authentication Through Mobile and Wearable Devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017, 1, 1–37. [Google Scholar] [CrossRef]
- Jain, K.M.; Pherwani, N.A. Virtual Reality Based User Authentication System. Int. J. Sci. Technol. Eng. 2017, 4, 49–53. [Google Scholar]
- Lee, D.; Myung, K. Read My Lips, Login to the Virtual World. In Proceedings of the 2017 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 8–10 January 2017; IEEE: New York, NY, USA, 2017; pp. 434–435. [Google Scholar]
- Yi, S.; Qin, Z.; Novak, E.; Yin, Y.; Li, Q. GlassGesture: Exploring Head Gesture Interface of Smart Glasses. In Proceedings of the IEEE INFOCOM 2016–The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016; IEEE: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Salian, N.; Godbole, S.; Wagh, S. Advanced Authentication Using 3D Passwords in Virtual World. Int. J. Eng. Tech. Res. 2015, 3, 120–125. [Google Scholar]
- Lu, D.; Huang, D.; Deng, Y.; Alshamrani, A. Multifactor User Authentication with In-Air-Handwriting and Hand Geometry. In Proceedings of the 2018 International Conference on Biometrics (ICB), Gold Coast, QLD, Australia, 20–23 February 2018; IEEE: New York, NY, USA, 2018; pp. 255–262. [Google Scholar]
- Cheng, R.; Chen, S.; Han, B. Towards Zero-Trust Security for the Metaverse. IEEE Commun. Mag. 2023, 62, 156–162. [Google Scholar] [CrossRef]
- Turki, E.M.; Mahmood, M.; Alabboodi, R. A Proposed Hybrid Biometric Technique for Patterns Distinguishing. J. Inf. Sci. Eng. 2020, 36, 337–345. [Google Scholar] [CrossRef]
- Smith, S.M.; Aloba, A.; Lu, H.; Benda, B.; Esmaeili, S.; Flores, G.; Smith, J.; Soni, N.; Wang, I.; Joy, R.; et al. MMGatorAuth: A Novel Multimodal Dataset for Authentication Interactions in Gesture and Voice. In Proceedings of the 2020 International Conference on Multimodal Interaction, Virtual, 21 October 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 370–377. [Google Scholar]
- Krishna, V.; Ding, Y.; Xu, A.; Höllerer, T. Multimodal Biometric Authentication for VR/AR Using EEG and Eye Tracking. In Proceedings of the Adjunct of the 2019 International Conference on Multimodal Interaction, Suzhou, China, 14–18 October 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1–5. [Google Scholar]
- Mathis, F.; Vaniea, K.; Khamis, M. RepliCueAuth: Validating the Use of a Lab-Based Virtual Reality Setup for Evaluating Authentication Systems. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 6 May 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1–18. [Google Scholar]
- Watson, K.; Bretin, R.; Khamis, M.; Mathis, F. The Feet in Human-Centred Security: Investigating Foot-Based User Authentication for Public Displays. In Proceedings of the CHI Conference on Human Factors in Computing Systems Extended Abstracts, New Orleans, LA, USA, 27 April 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1–9. [Google Scholar]
- Mathis, F.; Vaniea, K.; Khamis, M. Can I Borrow Your ATM? Using Virtual Reality for (Simulated) In Situ Authentication Research. In Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Christchurch, New Zealand, 12–16 March 2022; IEEE: New York, NY, USA, 2022; pp. 301–310. [Google Scholar]
- De Luca, A.; Hertzschuch, K.; Hussmann, H. ColorPIN: Securing PIN Entry through Indirect Input. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Atlanta, GA, USA, 10 April 2010; Association for Computing Machinery: New York, NY, USA, 2010; pp. 1103–1106. [Google Scholar]
- Mathis, F.; O’Hagan, J.; Vaniea, K.; Khamis, M. Stay Home! Conducting Remote Usability Evaluations of Novel Real-World Authentication Systems Using Virtual Reality. In Proceedings of the 2022 International Conference on Advanced Visual Interfaces, Frascati, Italy, 6 June 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1–9. [Google Scholar]
- Gaebel, E.; Zhang, N.; Lou, W.; Hou, Y.T. Looks Good to Me: Authentication for Augmented Reality. In Proceedings of the 6th International Workshop on Trustworthy Embedded Devices, Vienna, Austria, 28 October 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 57–67. [Google Scholar]
- Sluganovic, I.; Serbec, M.; Derek, A.; Martinovic, I. HoloPair: Securing Shared Augmented Reality Using Microsoft HoloLens. In Proceedings of the 33rd Annual Computer Security Applications Conference, Orlando, FL, USA, 4 December 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 250–261. [Google Scholar]
- Sluganovic, I.; Liskij, M.; Derek, A.; Martinovic, I. Tap-Pair: Using Spatial Secrets for Single-Tap Device Pairing of Augmented Reality Headsets. In Proceedings of the Tenth ACM Conference on Data and Application Security and Privacy, New Orleans, LA, USA, 16 March 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 61–72. [Google Scholar]
- Corbett, M.; Shang, J.; Ji, B. GazePair: Efficient Pairing of Augmented Reality Devices Using Gaze Tracking. IEEE Trans. Mob. Comput. 2024, 23, 2407–2421. [Google Scholar] [CrossRef]
Biometric Authentication | ||||
---|---|---|---|---|
Ref. | Year | Biometrics | Title | Contribution |
[1] | 2023 | Various Blockchain | Combining blockchain and biometrics: A survey on technical aspects and a first legal analysis | Provides a survey of the technical literature on the integration of blockchain and biometrics including a first legal analysis. |
[2] | 2021 | Various Blockchain | Authentication mechanisms and classification: A literature survey | Surveys and classifies various methods of authentication based on particular criteria. |
[3] | 2022 | Various | A Comprehensive overview on biometric authentication systems using artificial intelligence techniques | Discusses the different Artificial Intelligence techniques used in biometric user authentication. |
[4] | 2022 | Various | Biometrics: Going 3D | Provides a taxonomy of 3D biometrics since 2011, presents the related work, the hardware used, and the available datasets. |
[5] | 2021 | Various | Attacks and defenses in user authentication systems: A survey | Reviews attacks and corresponding defense mechanisms in authentication systems. |
[6] | 2021 | Various | User authentication schemes using machine learning methods—A review | Examines the different machine learning user authentication schemes proposed to increase the security of different devices. |
[7] | 2020 | Various | Biometric authenticztion systems towards secure and privacy identifIcation: A review | Indicates the types of biometric authentication measurements, and their applications. |
[8] | 2019 | Various | Process of biometric authentication and its application—A review | Presents a review on many biometric authentication processes and devices. |
[9] | 2018 | Various | A Survey on Biometric Authentication: Toward ecure and Privacy-Preserving Identification | Classifies the existing biometric authentication systems by focusing on the security and privacy solutions. |
[10] | 2018 | Various | Multi-factor authentication: A survey | Sheds the light on the evolution of multi-factor authentication and the emerging sensors used for authenticating a user. |
[11] | 2016 | Various | Biometric authentication technologies and applications | Investigates biometric authentication technologies, their utilization, and their underlying issues. |
[12] | 2015 | Various | Biometric: Types and its applications | Classifies biometric authentication factors and applications. |
[13] | 2015 | Various | Surveying the development of biometric user authentication on mobile phones | Creates a taxonomy of existing biometric authentication techniques on mobile phones. |
[14] | 2022 | Behavioural Continuous | Continuous user authentication on smartphone via behavioral biometrics: A survey | Systematizes literature and public datasets in continuous authentication using behavioral biometrics for smartphones. |
[15] | 2016 | Behavioural Continuous | A review of continuous authentication using behavioral biometrics | Presents a literature review on the topic of Continuous Authentication using behavioral biometrics. |
[16] | 2021 | Behavioural | Behavioral biometrics & continuous user authentication on mobile devices: A survey | Surveys on behavioral biometrics and continuous authentication technologies for mobile devices. |
[17] | 2017 | Behavioural | A survey on behavioral biometric authentication on smartphones | Overviews the behavioral biometric traits used to develop active authentication systems for smartphones. |
[18] | 2022 | Gait | Gait recognition based on deep learning: A survey | Summarizes gait recognition with a focus on deep learning approaches, their architectures, and available datasets. |
[19] | 2021 | ECG | Electrocardiogram signals-based user authentication systems using soft computing techniques. | Presents a taxonomy of ECG-based authentication, its key contributions, applied algorithms, and possible drawbacks. |
[20] | 2021 | EEG | User authentication and cryptography using brain signals—A systematic review | Examines the need for a bio-cryptographic system for user authentication and data security through brainwave signals. |
[21] | 2019 | EEG | A Survey on brain biometrics | Provides a detailed survey of the current literature and scientific work conducted on brain biometric systems. |
[22] | 2020 | Eye gaze | The role of eye gaze in security and privacy applications: Survey and future HCI research directions | Presents a holistic view on gaze-based security applications and discusses the opportunities and challenges of eye tracking. |
[23] | 2016 | Eye gaze | Eye movement analysis for human authentication: A critical survey | Reviews gaze analysis methods for biometric identification when behavioral, and dynamic biometrics are warranted. |
[24] | 2019 | Keystroke | A survey paper on keystroke dynamics authentication for current applications | Investigates keystroke dynamics authentication systems, their applications, and benchmarking datasets for current applications to improve security in online learning environment. |
[25] | 2022 | Facial | Facial liveness detection in biometrics: A multivocal literature review | Examines the importance, advantages, and limitations of liveness facial detection using a multivocal literature review. |
[26] | 2020 | Facial | Face recognition: Past, present, and future | Systematizes image/video/deep learning-based face recognition methods and facial biometric data classification. |
[27] | 2019 | Iris | A comprehensive review on iris image-based biometric system | Reviews iris biometric systems and their segments, features, approaches, and techniques. |
[28] | 2022 | Palmprint | Contactless palmprint recognition system: A survey | Overviews and evaluates contactless palmprint recognition systems, their performance, and algorithms. |
[29] | 2018 | Palmprint | The fundamentals of unimodal palmprint authentication based on a biometric system: A review | Investigates palmprint biometric systems and technology with existing recognition approaches and datasets. |
[30] | 2015 | Finger vein | A survey of mathematical techniques in finger vein biometric | Presents a survey of important mathematical techniques used in finger vein biometrics. |
[31] | 2022 | Audiovisual | Multimodal authentication system based on audio-visual data: A review | Examines recent advancements in multimodal identification systems based on auditory and visual input. |
[32] | 2021 | Graphical passwords | A taxonomy of multimedia-based graphical user authentication for green internet of things | Summarizes existing approaches of graphical password authentication to highlight Green IoT challenges. |
[33] | 2019 | Fingerprint Password | A survey of biometric approaches of authentication | Presents fingerprint and password biometric authentication approaches. |
Concept | Ref. | Year | Scheme Name | Input Method/Equip. | Equip. | US | SS | A% (EER) |
---|---|---|---|---|---|---|---|---|
Password type: Alpha-numerical password | ||||||||
[66] | 2022 | CueVR | Lasepointer Trackpad Motion controller | HTC-V | 20 | |||
[67] [68] | 2021 2020 | RubikAuth RubikAuth | Eye gaze Head pose Tapping | HTC-V | 23 | 15 | ||
[69] [70] | 2020 2017 | gTapper | Touch pad | GG | 57 | 98.3 | ||
gRotator | Touch pad, gyroscope | 98.2 | ||||||
gTalker | Speech recognition | 98.2 | ||||||
[71] | 2017 | VRPursuits | Eye smooth pursuits | HTC-V PLab | 26 | 79 | ||
[72] | 2017 | AugAuth | Gesture recognition armband | MYO | 8 | 86 | ||
[73] | 2017 | MaskedVoice * | Speech recognition | GG | 10 | 100 | ||
MaskedTouch * | Touch pad | 100 | ||||||
[74] | 2017 | PinVR * | Pointers Tapping VR Stylus | HTC-V | 30 # | 30 | ||
[75] | 2016 | ThermalTouch * | Thermal touch front camera | |||||
[76] | 2016 | PinSystem * | Touch pad Hand tracking/Leap Motion | OR-DK2 | 15 # | 15 | ||
[77] | 2015 | VoicePIN * (VBP) | Speech recognition | GG | 30 # | 30 | 83 | |
TouchPIN *(TBP) | Touch pad | 87 | ||||||
[78] | 2015 | Glass Unlock | Tapping & swiping on an empty button lock screen | GG | 18 | |||
[79] | 2014 | SecretRandomPIN * | Speech recognition | GG | ||||
HiddenRandomPIN * | ||||||||
HiddenTextPWD * | ||||||||
Password type: Graphical password | ||||||||
[80] | 2020 | SwipeVR * | Hand-Held-Controller Head-Mounted-Display Hand tracking/Leap Motion Eye tracking/aGlass | HTC-V | 15 # | 15 | ||
[74] | 2017 | PatternVR * | Pointers Tapping VR Stylus | HTC-V | 30 # | 30 | ||
[76] | 2016 | PatternLock * | Touch pad Hand tracking/Leap Motion | OR-DK2 | 15 # | 15 | ||
[81] | 2022 | PictureAR * | Gesture recognition | MH | 16 # | 16 | ||
[83] | 2019 | HoloPass | Gesture tracking | MH | 15 # | 15 | ||
[84] | 2019 | LookUnlock | Head gaze tracking | MH | 15 | |||
[79] | 2014 | HiddenPictureAR * | Speech recognition Gesture recognition/blinking Gesture recognition/tapping Head movements recognition | GG | ||||
[85] | 2023 | VoxAuth | Gaze pointing/Controller trigger | MQ-P | ||||
[86] | 2023 | Ninja Locker | Hand gesture recognition | MQ-2 | ||||
[87] | 2023 | SPHinX | Controller’s trigger button | SG | 16 | |||
[88] | 2021 | GazeRoomLock | Gaze pointing & dwelling Gaze pointing & controller’s trigger Head pose pointing & dwelling Head pose pointing & controller’s trigger | HTC-V | 48 | 26 | ||
[89] | 2019 | RoomLock | Laser pointing & HHC’ trackpad and trigger press | HTC-V | 48 | 75 | ||
[90] | 2017 | 3DPass | Xbox 360 controller Head tracking | OR | 20 | |||
[76] | 2016 | 3DPassword * | Touch pad Hand tracking/Leap Motion | HTC-V | 30 # | 30 | ||
[91] | 2016 | 3DCubePWD * | Hand tracking/Leap Motion | |||||
[92] | 2020 | DoodleAR * | Smartphone touch gesture recognition | 20 # | 20 | |||
Password type: Haptic pattern password | ||||||||
[93] | 2018 | Standard Glass pass | Tapping on a special touch pad | EM | 33 | 12 | 93–96 | |
Disclosed Glass pass | 96 | |||||||
[94] | 2018 | Beat-PIN | Touch pad | 124 | 49 | (7.2) | ||
[77] | 2015 | Built-In-Mechanism | Touch pad | GG | 30 # | 30 | ||
Password type: Semantic password | ||||||||
[95] | 2020 | Zeta | Touch pad Speech recognition Gyroscope | GG OR | ||||
[97] | 2023 | ProbeVR * | Hand-Held-Controller Head-Mounted-Display | OQ | 24 # | 24 |
Concept | Ref. | Year | Scheme Name | Classifier | Features | Equip. | Sample | A% (EER) |
---|---|---|---|---|---|---|---|---|
[98] | 2020 | DenseNet-201-Iris | CNNs | Handcrafted and DL features | HMD | 123 | (6.35) | |
DenseNetBC-100-Iris | (7.25) | |||||||
DCT-SHD-Iris | (31.13) | |||||||
LG-SHD-Iris | (31.78) | |||||||
CSBCA-Iris | (34.34) | |||||||
DCT-HD-Iris | (36.44) | |||||||
LG-HD-Iris | (34.80) | |||||||
DenseNet-201-Peri | (5.86) | |||||||
DenseNetBC-100-Peri | (12.33) | |||||||
BSIF-Peri | (34.77) | |||||||
LBP-Peri | (35.58) | |||||||
TreeLBP-Peri | (31.27) | |||||||
HOG-Peri | (28.51) | |||||||
[99] | 2020 | DeepIrisNet-Iris | CNNs | Handcrafted and DL features | HMD | 123 | (17.42) | |
MobileNetV3-Iris | (16.18) | |||||||
MobileNetV3-Peri | (9.40) | |||||||
ResNet-Peri | (12.79) | |||||||
Fusion | (6.98) | |||||||
[100] | 2020 | DeepIrisNet | CNNs | Handcrafted and DL features | HMD | 123 | (12.48) | |
DenseNet | (5.80) | |||||||
MobileNet | (13.32) | |||||||
ResNet | (7.74) | |||||||
DCT-SHD | (31.66) | |||||||
LG-SHD | (31.32) | |||||||
CSBCA | (34.58) | |||||||
DCT-HD | (34.97) | |||||||
LG-HD | (33.47) | |||||||
[101] | 2020 | VGG19 | CNNs | Handcrafted and DL features | HMD | 123 | (9.18) | |
VGG19-SS | (7.06) | |||||||
MobileNetV3 | (10.44) | |||||||
MobileNetV3-SS | (9.84) | |||||||
BSIF | (23.80) | |||||||
BSIF-SS | (22.25) | |||||||
Tree.LBP | (27.38) | |||||||
Tree.LBP-SS | (24.97) | |||||||
[102] | 2019 | Eye-MM | CNNs | 256 features 32 features | HMD | 152 | 92.75 | |
Eye-MMS80 | 90.68 | |||||||
[103] | 2018 | Peri-BIO * | L1 LBP SIFT | HMD | (6.83) | |||
[104] [105] | 2020 | CASIA Thousand | CNNs | Iris patterns | HMD | 1000 | 99.13 | |
Bath800 | 800 | 99.50 | ||||||
UBIRIS-v2 | 261 | 98.92 | ||||||
[106] | 2020 | Iris-Focus * | GK LG HD | Iris patterns Glint Pupil edge | PLab MH-2 | 15 | 79 (CRR) | |
Iris-Defocus * | 7 (CRR) | |||||||
[107] | 2019 | EyeVEIL-Focus | GK LG HD | Iris patterns Glint Pupil edge | PLab HMD | 5 | 91 (CRR) | |
EyeVEIL-Defocus | 0 (CRR) | |||||||
[108] | 2017 | RB-HD-Collect | RB-HD GMM-HD PGM | Haar features | SG-D | 62 | 98.54 (4.6) | |
GMM-HD-Collect | 98.54 (3.2) | |||||||
PGM-Collect | 98.54 (1.5) | |||||||
RB-HD-MICHE | (19) | |||||||
GMM-HD-MICHE | (19) | |||||||
PGM-MICHE | (14.5) | |||||||
[109] | 2023 | SoundLock | k-NN SVMs LR GNB RF | 60 features reduced to 20: Morphological features (dilation rates, peak & 2nd valley magnitude), Statistical features (pupil size) | HTC-V | 76 ~ | (0.84, 1.5) (3.4, 4.3) (4.6) (7.8) (3.6) | |
[110] | 2020 | LightLock * (PLR) | SVMs | Pupil contraction Pupil recovery Inverse magnitude Mean, variance, Standard Deviation | SM-VR | 20 | 99 (3.43) | |
[111] | 2019 | EarEcho | SVMs k-NN DT NB MLP | Ear acoustics data features (output sound, echo) | BSS | 20 | 97.57 | |
[112] [113] | 2019 2018 | Brain password | SVMs | 840 features | HMD EEG | 177 | 95.46 (2.503) | |
[114] | 2016 | SkullConduct | 1-NN | (MFCC) data features | GG | 10 | 97 (6.9) | |
[115] [116] | 2016 2016 | VirtualLAB * VirtualLAB * | Haar-C k-NN | Haar features (6000 features) | Kinect | 108 | 91 | |
30 | ||||||||
[117] | 2022 | DenseNET-FVUSM * | CNNs | Vein patterns data features | HTC-V | 123 | 97.66 (2.03) | |
DenseNET-SDUMLA * | 106 | 99.94 (0.24) | ||||||
DenseNET-THUFV2 * | 610 | 88.19 (12.61) | ||||||
[118] | 2017 | 3DVR-Fingerprint * | Proposal | |||||
[119] | 2021 | ElectricAuth | CNNs VAE | Finger’s inertial movements data features (acceleration, rotation) | EMS 9-IMU D435 OQ | 13 | 99.78–99.89 | |
[120] | 2023 | VibHead | CNNs SVMs RF | IMU data features (MFCC) data features | MH-2 IMU PICO-3 | 20 | 92–100 <80 <80 | |
[121] | 2019 | MultiSignal * | 1D-CNN k-NN ANN SVMs STACK | 21 statistical features from HR, BR, P-EDA, & PER-EDA | DS | 37 | 90.54–99.69 78.97–94.80 82.90–98.24 82.74–97.02 85.50–98.17 | |
[122] | 2020 | BodyReflect * | Proposal |
Concept | Ref. | Year | Scheme Name | Classifier | Features | HMD | S | A% (EER) |
---|---|---|---|---|---|---|---|---|
[123] | 2022 | Eye Know You Too | DenseNet-CNN | Horizontal and vertical velocities | HTC-VP | 5 | (20) | |
[124] [125] | 2022 | Eye Know You Too | DenseNet-CNN | Horizontal and vertical velocities | EL1000 HTC-VP | 472 | (3.66) | |
[126] | 2020 | STAT-VREM-R1 | CD + SWT | Over 1000 features (fixations, saccades, oscillations) dimensionally reduced using PCA | HTC-VP | 356 | (9.98) | |
STAT-SBA-ST | 208 | (2.04) | ||||||
RBFN-VREM-R1 | RBF | 12 features from each fixation and 46 features from each saccade | 356 | (14.37) | ||||
RBFN-SBA-ST | 208 | (5.12) | ||||||
[127] | 2018 | EyeMoveBio * | CVM + SWM | Fixation features (start time, duration, centroid), saccades features (start time, duration, amplitude, mean velocity, max velocity) 12 CEM-B features in all. | FOVE | |||
[128] | 2017 | VisualStimuli-SRC | SRC | 8 fixation features (pupil diameter and pairwise velocity), saccades (horizontal and vertical velocities) | VM100 | 30 | (6.7–9.7) | |
VisualStimuli-SVMs | SVMs | (11.1–14.1) | ||||||
VisualStimuli-k-NN | k-NN | (15.8–18.8) | ||||||
[129] | 2022 | MinimalGaze-CNN | CNNs | 12 features ((Left-eye diameter, Right-eye diameter, Left-eye openness, Right-eye openness, Left-eye wideness, Right-eye wideness) + 6 features below). | HTC-VP | 34 | 98.57 | |
MinimalGaze-LSTM | LSTM | 98.58 | ||||||
MinimalGaze-RF | RF | 98.96 | ||||||
MinimalGaze-k-NN | k-NN | 99.62 | ||||||
MinimalGaze-CNN | CNNs | 6 features (Left-eye gaze origin(X,Y,Z), Right-eye gaze origin(X,Y,Z)) | 98.29 | |||||
MinimalGaze-LSTM | LSTM | 98.34 | ||||||
MinimalGaze-RF | RF | 98.41 | ||||||
MinimalGaze-k-NN | k-NN | 98.46 | ||||||
[130] | 2019 | SmartGlass * | DTW | Gaze direction and pupil movements timeseries. | SG PLab | 25 | (16) | |
[131] | 2022 | LinguisticsEyeAuth * | k-NN Linear-SVMs RBF-SVMs GP DT RF NN AdaBoost NB | 8 eye movement features, duration metrics (single fixation duration, first fixation duration, total time, gaze duration), probability features (fixation probability, probability of making exactly one fixation, probability of making two or more fixations, probability of skipping), Linguistics features (reading rate, word length, and word frequency) | EL1000 | 322 | ≈60, ≈55 ≈58, ≈75 ≈60, ≈70 ≈45, ≈50 ≈55, ≈55 61, ≈75 ≈60, ≈70 ≈55, 76.4 ≈60, ≈75 | |
[132] | 2019 | EyeBiomechanics * | ED-k-NN WED-k-NN CD-k-NN ED-k-NN WED-k-NN CD-k-NN | 11 features (3 joint angles of the eye + 9 features below) | HTC-V | 26 | 89.4 (9.79) 89.3 (9.78) 89 (9.977) 76.9 (9.79) 78 (9.78) 77.2 (9.97) | |
9 features (Cube ID, Cube Depth, (lateral rectus, medial rectus, superior rectus, inferior rectus, superior oblique, and inferior oblique muscle activations)) | ||||||||
[133] | 2018 | EyeSpyVR-Identify | CNNs | Gaze angles features | VR-BH iPhone7 | 60 | 81.4 | |
EyeSpyVR-Verify | 20.9 23.6 |
Concept | Ref. | Year | Scheme Name | Classifier | Activity/Task, Features | Equip. | S | A% (EER) | |
---|---|---|---|---|---|---|---|---|---|
[134] | 2023 | Head-Tilt * | RF DT | Freely move in VR space, Head Tilt Head angular velocity, head rotation angle, headset position, head motion distance, virtual point speed | HTC-V | 10 | 94.633 98.023 | ||
[137] | 2020 | VRCAuth | NB PART LF MLP LMT | 1. VR driving simulator 2. VR spherical video streaming Head movement direction, head movement magnitude, movement duration (90 features reduced to 3 categories) | HMD | 40/48 | 78 99 80 92 99 | 99 99 99 99 99 | |
[138] | 2018 | HeadVR * | LR SVMs | Freely interacting with a moving ball in a VR game Head movements (178 features dimensionally reduced to 70) | GC | 23 | (7.39) (10) | ||
[139] | 2016 | Headbanger | (DTW) (Built) | Nodding after an audio stimulus (music cue) Head movement patterns | GG | 95 ~ | (4.43) 95.57 | ||
[140] | 2022 | FingerAR-VR *-button | RF | Hand interaction with 8 interfaces: Button, slider, slate, context menu, reposition, rescale, unimanual keyboard, bimanual keyboard Rotational and positional coordinates for all fingers, palm, and wrists 12 feature sets | MQ MH | 16 | 63, 64 | ||
FingerAR-VR *-slider | 53, 57 | ||||||||
FingerAR-VR *-slate | 72, 51 | ||||||||
FingerAR-VR *-menu | 51, 69 | ||||||||
FingerAR-VR *-reposi | 55, 64 | ||||||||
FingerAR-VR *-rescale | 61,66 | ||||||||
FingerAR-VR*-uni-key | 73, 64 | ||||||||
FingerAR-VR *-bi-key | 95, 88 | ||||||||
[150] | 2019 | ThrowTraject * | S-NN (matching) | Ball throwing VR game Dominant hand trajectories | HTC-V | 14 | 92.86 | ||
[141] | 2016 | GlassTouch * | Chebyshev SVMs | Tap or swipe gesture on touch pad 13 Tap features (point (x,y) coordinates, downward force, duration) and swipe features (start point (x,y) coordinates, end point (x,y) coordinates, angle, downward force, planar force, duration, and length) | GG | 30 | 99 | ||
[142] | 2019 | FMHash | CNNs | In air handwriting of an ID string 3D velocity, 3D acceleration, position, hand pose, and amplitude | LM | 100 | ≥99.5 | ||
[143] | 2020 | HandMotion * | SVMs | Draw a define trajectory as a password 2 features (trajectory, distance) | HHC | 10 | |||
[144] | 2017 | GlassGuard-Tap | SVMs TRW | 1. Swipe to view the application list one by one, 2. Swipe to view the options in the settings menu one by one 3. Take pictures with touch gestures 4. Take pictures with voice commands 5. Google search with voice commands 6. Delete pictures one by one 7. Use an app to asks the user to perform a series of randomly selected touch gestures Duration, distance, speed, pressure, min, max, median, and standard deviation 99 features for one-finger touch gestures, 156 features for two-finger touch gestures (81 sensor data, 75 touch data) 19 voice features for user voice commands. | GG | 32 | ≈93 (≈16) | ||
GlassGuard-Swipe-F | ≈94 (≈15) | ||||||||
GlassGuard-Swipe-B | ≈93 (≈15) | ||||||||
GlassGuard-Swipe-D | ≈95.5 (≈12) | ||||||||
GlassGuard-2F-Swipe-F | ≈96.5 (≈8) | ||||||||
GlassGuard-2F-Swipe-B | ≈97(≈10) | ||||||||
GlassGuard-Voice | ≈99.8 (4.88) | ||||||||
GlassGuard-All-Touch | 98.7 | ||||||||
GlassGuard-Touch-Voice | 99.2 | ||||||||
Average EER: 16.43 (11 Features), 16.56 (9 Features) | |||||||||
[145] | 2021 | Nod to Auth-Nodding | RF | 1. Nodding, 2. Turning, 3. Tilting. Head-Neck radius, angular velocity magnitude, irrelevant orientation changes, properties of trajectory projections, power spectral density of linear acceleration magnitude (Mean, pitch, roll, yaw, skewness, kurtosis, and Std.Dev) | GC IMU H-WEI | 10 | 98 | ||
Nod to Auth-Turning | 98 | ||||||||
Nod to Auth-Tilting | >98 | ||||||||
[146] | 2023 | BodyVR *-within | RF | Virtual group discussions in VR while walking, creating 3D drawings and writing Body–space coordinates and speed, 840 features | OQ-2 | 232 | 98.43 | ||
BodyVR *-between | 85.48 | ||||||||
[147] | 2020 | MotionVR * | RF k-NN GBM | 1. A 360-degree video observation task 2. A questionnaire-answering task Statistic (maximum, minimum, median, mean, and standard deviation), body part (head, left hand, right hand), and dimension (x, y, z, yaw, pitch, and roll) | HTC-V | 511 | 90.7 85.6 61.8 | 91.1 92.7 65.3 | |
[148] | 2021 | MoveAR-TimeSeries-RF | RF k-NN SVMs BOSS AdaBoost | Perform a “spatial interaction task” typing the word: “Apple” using a holographic keyboard. Roll, yaw, and pitch Head gaze distance and position Max, mean, and Std.Dev | MH | 5 | 78.293 | ||
MoveAR-TimeSeries-k-NN | 74.326 | ||||||||
MoveAR-TimeSeries-SVMs | 76.776 | ||||||||
MoveAR-TimeSeries-BOSS | 83.526, 9.2 | ||||||||
MoveAR-Features-Ada-RF | 92.675 (11) | ||||||||
MoveAR-Features-Others | 88–93 (11–12) | ||||||||
MoveAR-Features-PCA | 90–93 (11–12) | ||||||||
MoveAR-Features-RMI | |||||||||
[149] | 2023 | Single-L-GBM | LightGBM | Beat Saber game where players slice musical beats blocks with a pair of sabers 22 context features ((position, orientation, type, and color of the block), (the angle, speed, location, and accuracy of the cut), and (the relative error of the cut in both space and time)), 105 motion features (min, max, mean, median, and Std.Dev) | HMD HHC | 55,541 | 100 | ||
Hierarchical-L-GBM | 94.3 | ||||||||
[159] | 2022 | TrajectVR *-short | SNN | Ball throwing Position and orientation of time trajectories from headset and controllers | OQ HTC-V HTC-VC | 74 | 80.62–100 (0.05–3.86) | ||
TrajectVR *-medium | 91.25–100 (0.14–1.85) | ||||||||
TrajectVR *-long | 31.25–100 (0.06–29.25) | ||||||||
[155] | 2022 | TrajectVR *-within | SNN FCNs | Ball throwing Normalized position and orientation, displacement vectors 128 features | OQ HTC-V HTC-VC | 41 | 98.05 (1.75) 97.56 (1.3) | ||
TrajectVR *-across | 87.81 (3.38) 82.02 (9.68) | ||||||||
[154] | 2021 | TrajectVR * | SNN | Ball throwing Positions, orientations, linear & angular velocities, and trigger grab or release for headset and controllers | OQ HTC-V HTC-VC | 46 | 87.82–98.53 (1.38–3.86) | ||
[153] | 2020 | TrajectVR *-within | SSD PNN | Ball throwing Positions, orientations, linear & angular velocities, and trigger grab or release for headset and controllers, 5 features, 8192 (213) subsets of 13 feature matches | OQ HTC-V HTC-VC | 46 | 58–85 | ||
TrajectVR *-across | 91–97 | ||||||||
[152] | 2019 | ThrowVR * | PNN | Ball throwing Position and orientation of headset and controllers | HTC-V | 33 | |||
[151] | 2019 | ThrowVR * | PNN | Ball throwing Position and orientation of headset and controllers, 21 feature sets | HTC-V | 33 | 93.03 | ||
[135] | 2019 | GaitLock-DTW-SRC | DTW-SRC | Indoor controlled walking and outdoor uncontrolled walking Unique gait patterns from walking inertial signals | GG | 20 | >98 | ||
SRC-SF | SRC-SF | ≈95 | |||||||
SRC-MV | SRC-MV | ≈93 | |||||||
SRC-ZP | SRC-ZP | ≈93 | |||||||
DTW-k-NN | DTW-NN | ≈85 | |||||||
TDE-TM | TDE-TM | ≈93 | |||||||
k-NN | k-NN | ≈77 | |||||||
[160] | 2018 | SkeletonVR * | SVMs | HOG features, joint angle features | HTC-V Kinect | ||||
[161] | 2022 | Identify-360 * | GMM CNNs | Freely watch a 360° videos displayed in VR 8 Time series features (gaze angular (velocity, acceleration & path curvature), duration (fixation & non-fixation), intervals (fixation & non-fixation)). 32 Statistical features (min, max, mean, median, Std.Dev, kurtosis, skewness, 9 ten-step percentiles and 16-bin histogram) | HTC-VP | 43 | 74.4 80.1 | ||
[156] | 2021 | 1-NN | 1-NN | A sphere moving counterclockwise on 1. elliptical path 1, 2. elliptical path 2 Six features (onset time, amplitude, duration, peak velocity, median velocity, and average velocity) for each user gaze type (fixations, smooth pursuits, and saccades). Head rotational coordinates (x, y, and z) from HMD. All aggregated to 21 features. | HTC-VP PLab-IC | 11 | 45 | 75 | |
Time-CNN | T-CNN | ≈94 | ≈88 | ||||||
Encoder | CNN | ≈97 | 100 | ||||||
FCN | FCN | ≈88 | ≈97 | ||||||
Inception | Inception | ≈94 | 100 | ||||||
MCDCNN | MCDCNN | ≈94 | ≈97 | ||||||
MLP | MLP | ≈91 | ≈82 | ||||||
ResNet | ResNet | ≈94 | 100 | ||||||
TWIESN | TWIESN | ≈94 | 100 | ||||||
[162] | 2015 | BlinkHeadAR * | RF | View a sequence of rapidly changing images of numbers and letters on the HMD display 70 blink features + 90 head-movement features = 162 features reduced to 95 features overall. | GG | 20 | 94 | ||
[136] | 2019 | PointingVR * | RF SVMs | Controlled VR tasks (pointing, grabbing, walking, typing) Position, movement, and spatial relations between body segments (head, hands), eye gaze, ray, and target. Distance, rotation, motion, velocity, and angular velocity (6 feature categories) | HTC-V | 22 | 41.39 | ||
GrabbingVR * | 31.25 | ||||||||
WalkingVR * | 43.42 | ||||||||
TypingVR * | 44.44 | ||||||||
[163] | 2020 | BioMove | k-NN | Interacting with Balls in VR environment Interacting with Cubes in VR environment. Static metrics (arm length, body, and waist height). HMD and HHC positional and rotational coordinates, acceleration, and velocity. Eye tracking gaze positional data | HTC-V | 15 | 98.6 (1.4) | ||
[164] | 2023 | XR-Embedding * XR-Classification * | GRU DML | Playing the VR game “Half-Life: Alyx” Positional (x,y,z) and orientational (quaternion: x,y,z,w) coordinates from the HMD and both HHC (21 features) | HTC-VP | 63 | 99 98 | ||
[165] | 2021 | PositionF-within-k-NN | k-NN RF GBM | Using an ecologically valid VR app to train first assists how to troubleshoot a surgical robot in a robotic operating room Positional data (6-DOF (x, y, z, roll, pitch, yaw)) from HMD and HHC was interpolated to a velocity Combined as (min, max, mean, median, and standard deviation) vector | HTC-V | 61 | 89.42 | ||
PositionF-within-RF | 95.50 | ||||||||
PositionF-within-GBM | 95 | ||||||||
PositionF-between-k-NN | 28 | ||||||||
PositionF-between-RF | 42.33 | ||||||||
PositionF-between-GBM | 41.5 | ||||||||
Velocity-Features-k-NN | 31.17 | ||||||||
Velocity-Features-RF | 32.67 | ||||||||
Velocity-Features-GBM | 25.67 | ||||||||
[157] | 2021 | BodyNorm * | LSTM (RNNs) MLP | 1. Archery, 2. Bowling 3D position, 3D rotation, and vectors 4 feature sets | OQ | 16 | 90 78 | 68 63 |
Concept | Ref. | Year | Scheme Name | Classifier | Features | Equip. | Sample | A% (EER) |
---|---|---|---|---|---|---|---|---|
[166] | 2022 | ForarmEMG * | 1D-CNN GRU LSTM FFN | MFCC 13 features | MYO EMS | 5 | 96.45 95.00 96.38 88.90 | |
[167] | 2022 | PerAE-MIT-BIH-AR | Personalized Autoencoder | Transformed heartbeat to Gramian matrix | ECG | 30 | 93.30 | |
PerAE-ECG-ID | 20 | 93.02 | ||||||
PerAE-PTB | 20 | 92.90 | ||||||
[168] | 2020 | OcuLock | SVMs k-NN | Physiological (blink data), behavioural (fixation, saccades) | LMS EOG | 70 | (3.55), (4.97) | |
[169] | 2019 | BrainSignal-SPS | SVMs | Mean, median, standard deviation, z-score, normalization, skewness, kurtosis | EEG VRH | 32 | 79.55 | |
BrainSignal-AR + SPS | 80.91 | |||||||
BrainSignal-PSD + SPS | 76.75 | |||||||
[170] | BrainVR * | Data collection | GC | 16 |
Concept | Ref. | Year | Scheme Name | Input Method | HMD |
---|---|---|---|---|---|
[42] | 2015 | Glass OTP | Front facing camera | GG |
Concept | Ref. | Year | Scheme Name | Input Method/Task | Classifier | Equip. | US | SS | A% (EER) |
---|---|---|---|---|---|---|---|---|---|
Knowledge-2FA | |||||||||
[172] | 2023 | TOP-XR * | Long and short HMD controller presses | Proposal | |||||
[173] | 2023 | KeystrokeXR * | Trigger button click using dominant hand | OQ | |||||
[174] | 2021 | Dance VR * | Press grip button Dance moves | ANN k-NN | OQS | 10 | ≈88 90–93 | ||
[175] | 2021 | InAir-Camera * | In-Air handwriting | DTW TTV SVMs | LM | 180 100 | 10 90 | (0.81) (0.70) (0.10) | |
InAir-Glove * | DTW TTV SVMs | DG IMU | (0.75) (0.68) (0.16) | ||||||
[158] | 2020 | RubikBiom | Non-dominant hand controls the cube’s pose, the dominant hand performs pointing, selection and tapping. Enter 4 digit-PIN using both hands | MLP | HTC-V | 23 | 92.39 | ||
FCN | 98.91 | ||||||||
ResNet | 98.55 | ||||||||
Encoder | 88.41 | ||||||||
MCDCNN | 93.84 | ||||||||
T-CNN | 90.58 | ||||||||
[176] | 2020 | Blinkey | Spontaneous blinks that start once the eyes are opened and ends when the eyes are closed. | SVMs | HTC-VP PLab | 82 | 43 | (14.6) | |
k-NN | (0.04) | ||||||||
CNN | (>20) | ||||||||
RF | (>20) | ||||||||
[177] | 2019 | GazeEOG-close * | Open and closed eyes 4–5 eye gaze gestures password | k-NN | JM-SG EOG | 15 | 18 | 76.8 | |
LDA | 69.0 | ||||||||
DT | 67.1 | ||||||||
L-SVMs | 76.1 | ||||||||
RBF-SVMs | 80.6 | ||||||||
GazeEOG-open * | k-NN | 82.5 | |||||||
LDA | 62.0 | ||||||||
DT | 69.0 | ||||||||
L-SVMs | 81.9 | ||||||||
RBF-SVMs | 88.3 | ||||||||
[178] | 2018 | PassHand-4D * | Perform movements in front of a camera | Proposal | |||||
[179] | 2017 | Pixie | Take a picture of the trinket to log in | MLP | Nexus HTC1 | 42 | 96.52 (1.87) | ||
RF | 96.77 (1.96) | ||||||||
SVM | 93.04 (10.74) | ||||||||
DT | 91.01 (7.66) | ||||||||
[180] | 2017 | VRPassword | Make a pattern password by displacing virtual objects from a position to another | OR-DK2 LM | Proposal | ||||
[181] | 2017 | LipReader * | Sentence in a form ”verb color preposition digit letter adverb” | LSTM | 34 | 93.8 | |||
[182] | 2015 | GlassGesture | Near-eye display and gyroscope Users perform head gestures to answer questions | k-NN-DTW 1-SVMs | GG | 18 | 96 | ||
[183] | 2015 | 3DPasswords | User navigates through its virtual environment and interacts with objects. | 40 | |||||
Knowledge Multifactor | |||||||||
[184] | 2018 | FusionXR * | Hand motion tracking In-air handwriting code writing | DTW TTV | LM | 100 | (0.6) | ||
Biometric Multifactor | |||||||||
[185] | 2023 | MetaGuard | Controllers Ball throwing | SNN | OQ | 41 | 90.2 | ||
FCNs | 89.3 | ||||||||
ResNet | 87.2 | ||||||||
FedAvg + FCN | 6.34 | ||||||||
[186] | 2020 | HybridFusion * | Face, signature, fingerprint images captured by cameras | ANN | 10 | >90 | |||
Biometric Multimodal | |||||||||
[187] | 2020 | MMGatorAuth | Voice commands using a microphone | MFCC-GMM | Kinect BYM | 106 | 100% (0.84) | ||
LPC-GMM | 100% (4.99) | ||||||||
LPCC-GMM | 100% (6.75) | ||||||||
PLP-GMM | 100% (6.44) | ||||||||
[188] | 2019 | EEG * | Right and left fist movements Jumping dot stimulus | SVM-Linear | EEG Ober2 | 109 168/11 37 37 | 98 | ||
EyeTracking * | RF | 79 | |||||||
FusionEEG-Eye * | SWM | (42.05) | |||||||
FusionEEG-Eye * | SVM-RF | (26.4) |
Concept | Ref. | Year | Scheme | Interaction Method | HMD | US | SS | A% (EER) |
---|---|---|---|---|---|---|---|---|
[197] | 2023 | GazePair | OOB—Spoken key sequence cue and eye gaze | MH-2 | 20 | 98.3 | ||
[196] | 2020 | Tap-Pair | OOB—Head direction and tapping | MH | 3 | 90 | ||
[195] | 2017 | HoloPair | OOB—Tracing and waving | MH | 22 # | 22 | 98 | |
[194] | 2016 | LGTM | In band communication | ARH | 58.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hallal, L.; Rhinelander, J.; Venkat, R. Recent Trends of Authentication Methods in Extended Reality: A Survey. Appl. Syst. Innov. 2024, 7, 45. https://doi.org/10.3390/asi7030045
Hallal L, Rhinelander J, Venkat R. Recent Trends of Authentication Methods in Extended Reality: A Survey. Applied System Innovation. 2024; 7(3):45. https://doi.org/10.3390/asi7030045
Chicago/Turabian StyleHallal, Louisa, Jason Rhinelander, and Ramesh Venkat. 2024. "Recent Trends of Authentication Methods in Extended Reality: A Survey" Applied System Innovation 7, no. 3: 45. https://doi.org/10.3390/asi7030045
APA StyleHallal, L., Rhinelander, J., & Venkat, R. (2024). Recent Trends of Authentication Methods in Extended Reality: A Survey. Applied System Innovation, 7(3), 45. https://doi.org/10.3390/asi7030045