Optimizing Security and Cost Efficiency in N-Level Cascaded Chaotic-Based Secure Communication System
Abstract
:1. Introduction
- 1.
- Introduce a novel N-level cascaded chaotic-based secure communication system for voice encryption using the 4D unified hyperchaotic system.
- 2.
- Investigate the effect of increasing the number of cascaded levels on encryption quality.
- 3.
- Implement the proposed system on FPGA and analyze its performance using various parameters.
- 4.
- Analyze the effect of increasing the number of cascaded levels from N = 1 to N = 20 to reach the best performance by measuring various of metrics.
- 5.
- Introduce VBPM as a new performance metric for evaluating the system’s overall performance.
- 6.
- Demonstrate the superiority of the proposed system compared to other related works in terms of security and efficiency.
2. Model Description of the N-Levels Cascaded Chaotic-Based Secure Communication System for Voice Encryption
- 1.
- When , the output hyperchaotic attractor is similar to Lorenz attractor.
- 2.
- When , the output hyperchaotic attractor is similar to Lu attractor.
- 3.
- When , the attractor is similar to Chen attractor.
3. Hardware Implementation
4. Numerical Simulation
4.1. Signal-to-Noise Ratio (SNR)
4.2. Peak Signal-to-Noise Ratio (PSNR)
4.3. Percent Residual Deviation (PRD)
4.4. Correlation Coefficient (CC) Analysis
4.5. Timing Analysis
5. Experimental Results
Comparison with Existing Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Rössler, O.E. Continuous chaos—Four prototype equations. Ann. N. Y. Acad. Sci. 1979, 316, 376–392. [Google Scholar] [CrossRef]
- Rajagopal, K.; Jahanshahi, H.; Varan, M.; Bayır, I.; Pham, V.T.; Jafari, S.; Karthikeyan, A. A hyperchaotic memristor oscillator with fuzzy based chaos control and LQR based chaos synchronization. AEU-Int. J. Electron. Commun. 2018, 94, 55–68. [Google Scholar] [CrossRef]
- Matsumoto, T.; Chua, L.; Komuro, M. The double scroll. IEEE Trans. Circuits Syst. 1985, 32, 797–818. [Google Scholar] [CrossRef]
- Holmes, P. A nonlinear oscillator with a strange attractor. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1979, 292, 419–448. [Google Scholar]
- Hénon, M. A two-dimensional mapping with a strange attractor. In The Theory of Chaotic Attractors; Springer: Berlin/Heidelberg, Germany, 1976; pp. 94–102. [Google Scholar]
- Sprott, J.C.; Sprott, J.C. Chaos and Time-Series Analysis; Oxford University Press: Oxford, UK, 2003; Volume 69, Available online: https://test-sprott.physics.wisc.edu/chaostsa/answers/SOLUTIONS.pdf (accessed on 25 July 2024).
- Beyene, G.A.; Rahma, F.; Rajagopal, K.; Al-Hussein, A.B.A.; Boulaaras, S. Dynamical Analysis of a 3D Fractional-Order Chaotic System for High-Security Communication and its Electronic Circuit Implementation. J. Nonlinear Math. Phys. 2023, 30, 1375–1391. [Google Scholar] [CrossRef]
- Fa-Qiang, W.; Chong-Xin, L. Hyperchaos evolved from the Liu chaotic system. Chin. Phys. 2006, 15, 963. [Google Scholar] [CrossRef]
- Bonny, T.; Al Debsi, R.; Majzoub, S.; Elwakil, A.S. Hardware optimized fpga implementations of high-speed true random bit generators based on switching-type chaotic oscillators. Circuits Syst. Signal Process. 2019, 38, 1342–1359. [Google Scholar] [CrossRef]
- Muthuswamy, B. Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 2010, 20, 1335–1350. [Google Scholar] [CrossRef]
- Sambas, A.; Miroslav, M.; Vaidyanathan, S.; Ovilla-Martínez, B.; Tlelo-Cuautle, E.; Abd El-Latif, A.A.; Abd-El-Atty, B.; Benkouider, K.; Bonny, T. A New Hyperjerk System with a Half Line Equilibrium: Multistability, Period Doubling Reversals, Antimonotonocity, Electronic Circuit, FPGA Design and an Application to Image Encryption. IEEE Access 2024, 12, 9177–9194. [Google Scholar] [CrossRef]
- Bernstein, D.J.; Lange, T. Post-quantum cryptography. Nature 2017, 549, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Lin, Z.; Wu, J.; Zhang, H.; Sun, Z.; Ruan, D.; Yin, L.; Long, G.L. Experimental free-space quantum secure direct communication and its security analysis. Photonics Res. 2020, 8, 1522–1531. [Google Scholar] [CrossRef]
- Zhang, J.; Rajendran, S.; Sun, Z.; Woods, R.; Hanzo, L. Physical layer security for the Internet of Things: Authentication and key generation. IEEE Wirel. Commun. 2019, 26, 92–98. [Google Scholar] [CrossRef]
- Nakamura, Y.; Sekiguchi, A. The chaotic mobile robot. IEEE Trans. Robot. Autom. 2001, 17, 898–904. [Google Scholar] [CrossRef]
- Li, C.H.; Song, Y.; Wang, F.Y.; Wang, Z.Q.; Li, Y.B. A chaotic coverage path planner for the mobile robot based on the Chebyshev map for special missions. Front. Inf. Technol. Electron. Eng. 2017, 18, 1305–1319. [Google Scholar] [CrossRef]
- AlMutairi, F.; Bonny, T. New Image Encryption Algorithm Based on Switching-type Chaotic Oscillator. In Proceedings of the 2019 International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, United Arab Emirates, 19–21 November 2019; pp. 1–5. [Google Scholar]
- Chen, G.; Zhou, J.; Liu, Z. Global synchronization of coupled delayed neural networks and applications to chaotic CNN models. Int. J. Bifurc. Chaos 2004, 14, 2229–2240. [Google Scholar] [CrossRef]
- Bonny, T.; Nasir, Q. Clock glitch fault injection attack on an FPGA-based non-autonomous chaotic oscillator. Nonlinear Dyn. 2019, 96, 2087–2101. [Google Scholar] [CrossRef]
- Manhil, M.M.; Jamal, R.K. A novel secure communication system using Duffing’s chaotic model. Multimed. Tools Appl. 2024, 1–14. [Google Scholar] [CrossRef]
- Karawanich, K.; Chimnoy, J.; Khateb, F.; Marwan, M.; Prommee, P. Image cryptography communication using FPAA-based multi-scroll chaotic system. Nonlinear Dyn. 2024, 112, 4951–4976. [Google Scholar] [CrossRef]
- Cuomo, K.M.; Oppenheim, A.V.; Strogatz, S.H. Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 1993, 40, 626–633. [Google Scholar] [CrossRef]
- Cuomo, K.M.; Oppenheim, A.V. Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 1993, 71, 65. [Google Scholar] [CrossRef] [PubMed]
- Abd, M.H.; Tahir, F.R.; Al-Suhail, G.A.; Pham, V.T. An adaptive observer synchronization using chaotic time-delay system for secure communication. Nonlinear Dyn. 2017, 90, 2583–2598. [Google Scholar] [CrossRef]
- Hussein, E.A.; Khashan, M.K.; Jawad, A.K. A high security and noise immunity of speech based on double chaotic masking. Int. J. Electr. Comput. Eng. 2020, 10, 4270. [Google Scholar] [CrossRef]
- Busawon, K.; Canyelles-Pericas, P.; Binns, R.; Elliot, I.; Ghassemlooy, Z. A brief survey and some discussions on chaos-based communication schemes. In Proceedings of the 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Budapest, Hungary, 18–20 July 2018; pp. 1–5. [Google Scholar]
- Short, K.M. Steps toward unmasking secure communications. Int. J. Bifurc. Chaos 1994, 4, 959–977. [Google Scholar] [CrossRef]
- Yuan, F.; Bai, C.J.; Li, Y.X. Cascade discrete memristive maps for enhancing chaos. Chin. Phys. B 2021, 30, 120514. [Google Scholar] [CrossRef]
- Yuan, F.; Li, Y.; Wang, G. A universal method of chaos cascade and its applications. Chaos Interdiscip. J. Nonlinear Sci. 2021, 31, 021102. [Google Scholar] [CrossRef]
- Kharel, R. Design and Implementation of Secure Chaotic Communication Systems. Ph.D. Thesis, Northumbria University, Newcastle upon Tyne, UK, 2011. [Google Scholar]
- Zhang, G.; Ding, W.; Li, L. Image encryption algorithm based on tent delay-sine cascade with logistic map. Symmetry 2020, 12, 355. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, Y.; Ye, Y.; Zhang, J.; Wang, S.; Liu, Y.; Pan, G.; Zhang, J. Exploiting Optical Chaos With Time-Delay Signature Suppression for Long-Distance Secure Communication. IEEE Photonics J. 2017, 9, 1–12. [Google Scholar] [CrossRef]
- Pan, J.; Ding, Q.; Du, B. A new improved scheme of chaotic masking secure communication based on Lorenz system. Int. J. Bifurc. Chaos 2012, 22, 1250125. [Google Scholar] [CrossRef]
- Zhou, Y.; Hua, Z.; Pun, C.M.; Chen, C.P. Cascade chaotic system with applications. IEEE Trans. Cybern. 2014, 45, 2001–2012. [Google Scholar] [CrossRef]
- Waried, H.H. Synchronization of quantum cascade lasers with mutual optoelectronic coupling. Chin. J. Phys. 2018, 56, 1113–1120. [Google Scholar] [CrossRef]
- Yu, Z.; Du, B.; Kong, D.; Chai, Z. A 4D conservative chaotic system: Dynamics and realization. Phys. Scr. 2024, 99, 085263. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhao, G.B. Hyperchaos generated from the unified chaotic system and its control. Int. J. Mod. Phys. B 2010, 24, 4619–4637. [Google Scholar] [CrossRef]
- Bonny, T.; Nassan, W.A.; Baba, A. Voice encryption using a unified hyper-chaotic system. Multimed. Tools Appl. 2022, 1–19. [Google Scholar] [CrossRef]
- Al Nassan, W.; Bonny, T.; Baba, A. A New Chaos-Based Cryptoystem for Voice Encryption. In Proceedings of the 2020 3rd International Conference on Signal Processing and Information Security (ICSPIS), Dubai, United Arab Emirates, 25–26 November 2020; pp. 1–4. [Google Scholar]
- Mohamed, M.A.; Bonny, T.; Sambas, A.; Vaidyanathan, S.; Nassan, W.A.; Zhang, S.; Obaideen, K.; Mamat, M.; Nawawi, M.; Kamal, M. A Speech Cryptosystem Using the New Chaotic System with a Capsule-Shaped Equilibrium Curve. Comput. Mater. Contin. 2023, 75. Available online: https://www.techscience.com/cmc/v75n3/52569 (accessed on 25 July 2024).
- Bashier, E. Speech scrambling based on chaotic maps and one-time pad, Computing, Electrical and Electronics Engineering (ICCEEE). In Proceedings of the International Conference on Computing, Electrical and Electronic Engineering (ICCEEE), Khartoum, Sudan, 26–28 August 2013; pp. 128–133. [Google Scholar]
- Sheela, S.; Suresh, K.; Tandur, D. Chaos based speech encryption using modified Henon map. In Proceedings of the 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 22–24 February 2017; pp. 1–7. [Google Scholar]
- Sathiyamurthi, P.; Ramakrishnan, S. Speech encryption using chaotic shift keying for secured speech communication. EURASIP J. Audio Speech Music Process. 2017, 2017, 1–11. [Google Scholar] [CrossRef]
- Yousif, S.F. Speech Encryption Based on Zaslavsky Map. J. Eng. Appl. Sci. 2019, 14, 6392–6399. [Google Scholar] [CrossRef]
- Kordov, K. A novel audio encryption algorithm with permutation-substitution architecture. Electronics 2019, 8, 530. [Google Scholar] [CrossRef]
- Gebereselassie, S.A.; Roy, B.K. A new Secure Speech Communication Scheme Based on Hyperchaotic Masking and Modulation. IFAC-PapersOnLine 2022, 55, 914–919. [Google Scholar] [CrossRef]
- Paul, B.; Trivedi, G. Post quantum cryptography algorithms: A review and applications. In Proceedings of the 7th ASRES International Conference on Intelligent Technologies, Jakarta, Indonesia, 16–18 December 2022; Springer: Singapore, 2022; pp. 3–17. [Google Scholar]
Ref. | Used Chaotic Systems | Levels of Masking |
---|---|---|
[34] 2012 | Lorenz System | 1, 2 |
[35] 2014 | Seed map | 2 |
[33] 2017 | Optical chaos with TD signature suppression | 3 |
[25] 2017 | Lur’e system | 1, 2 |
[36] 2018 | Quantum cascade lasers | 2 |
[32] 2020 | Tent Delay-Sine cascade with Logistic Map | 2 |
[26] 2020 | Rossler chaotic flow system | 1, 2 |
[29] 2021 | discrete memristive maps | 2, 3 |
FPGA Resources | Number of Levels | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 15 | 20 | |
Logic Utilization (in ALMs) % | 14 | 27 | 41 | 55 | 69 | 79 | 93 | 105 | 120 | 132 | 184 | 263 |
Maximum Frequency(MHz) | 31.08 | 30.19 | 30.97 | 31.29 | 30.42 | 30.58 | 29.69 | - | - | - | - | - |
Number of Levels (N) | SNR | PSNR | PRD | Correlation Coefficient CC | Encryption Time (te) s | Decryption Time (td) s |
---|---|---|---|---|---|---|
1 | −60.10 | 11.15 | 0.0027 | 0.32 | 0.23 | |
2 | −65.41 | 12.39 | 0.0011 | 0.47 | 0.30 | |
3 | −69.02 | 12.56 | 0.0006 | 0.74 | 0.46 | |
4 | −71.68 | 12.47 | 0.0004 | 0.81 | 0.47 | |
5 | −73.99 | 11.95 | 0.0005 | 1.1 | 0.6 | |
6 | −75.98 | 11.37 | 0.0006 | 1.2 | 0.7 | |
7 | −77.76 | 10.73 | 0.0008 | 1.3 | 0.7 | |
8 | −79.34 | 10.18 | 0.0011 | 1.8 | 0.8 | |
9 | −79.34 | 10.18 | 0.0014 | 1.8 | 0.9 | |
10 | −80.87 | 9.56 | 0.0017 | 1.9 | 1 | |
15 | −82.33 | 8.95 | 0.0020 | 3 | 1.6 | |
20 | −92.02 | 7.44 | 0.0018 | 4 | 2 |
Number of Levels (N) | SNR | PSNR | PRD | Correlation Coefficient (CC) | Encryption Time (te) | Decryption Time (td) | Logic Utilization | Maximum Frequency | VBPM |
---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0.7246 | 0 | 1 | 0 | 0 | 0 | 0.8687 | 1.5748 |
2 | 0.1664 | 0.9668 | 0.0219 | 0.3043 | 0.0408 | 0.0395 | 0.0522 | 0.3125 | 3.6938 |
3 | 0.2794 | 1 | 0.0466 | 0.0870 | 0.1141 | 0.1299 | 0.1084 | 0.8 | 5.2676 |
4 | 0.3628 | 0.9824 | 0.0727 | 0 | 0.1332 | 0.1356 | 0.1647 | 1 | 6.0775 |
5 | 0.4352 | 0.8809 | 0.1028 | 0.0435 | 0.2120 | 0.2090 | 0.2209 | 0.4563 | 2.8723 |
6 | 0.4975 | 0.7676 | 0.1360 | 0.0870 | 0.2391 | 0.2566 | 0.2610 | 0.5562 | 2.3800 |
7 | 0.5533 | 0.6426 | 0.1729 | 0.1739 | 0.2663 | 0.2655 | 0.3173 | 0 | 1.3786 |
8 | 0.6028 | 0.5352 | 0.2123 | 0.3043 | 0.4022 | 0.3220 | 0.3655 | - | 0.9884 |
9 | 0.6028 | 0.5352 | 0.2583 | 0.4348 | 0.4022 | 0.3785 | 0.4257 | - | 0.8642 |
10 | 0.6507 | 0.4141 | 0.3150 | 0.5652 | 0.4293 | 0.4350 | 0.4739 | - | 0.7314 |
15 | 0.6964 | 0.2949 | 0.6390 | 0.6957 | 0.7283 | 0.7740 | 0.6827 | - | 0.5678 |
20 | 1 | 0 | 1 | 0.6087 | 1 | 1 | 1 | - | 0.5542 |
Author | Ref. | Chaotic Oscillators | Correlation Coefficient | SNR in dB |
---|---|---|---|---|
Alwahbani and Bashier 2013 | [42] | circle map and logistic map | 0.0017 | −14.0065 |
Sheela et al., 2017 | [43] | Henon map (2D-MHM) and standard map | −0.0037 | - |
Sathiyamurthi and Ramakrishnan 2017 | [44] | logistic map, tent map, quadratic map, and Bernoulli’s map | 0.0119 | - |
Yousif 2019 | [45] | Zaslavsky map | −0.00092 | −56.8661 |
Kordov 2019 | [46] | chaotic circle map and modified rotation equations | −0.0011166 | −16.0483 |
Gebereselassie et al., 2022 | [47] | Chen’s hyperchaotic system | −0.0007 | - |
Proposed System | Unified hyperchaotic system | 0.0004 | −71.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Institute of Knowledge Innovation and Invention. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonny, T.; Al Nassan, W. Optimizing Security and Cost Efficiency in N-Level Cascaded Chaotic-Based Secure Communication System. Appl. Syst. Innov. 2024, 7, 107. https://doi.org/10.3390/asi7060107
Bonny T, Al Nassan W. Optimizing Security and Cost Efficiency in N-Level Cascaded Chaotic-Based Secure Communication System. Applied System Innovation. 2024; 7(6):107. https://doi.org/10.3390/asi7060107
Chicago/Turabian StyleBonny, Talal, and Wafaa Al Nassan. 2024. "Optimizing Security and Cost Efficiency in N-Level Cascaded Chaotic-Based Secure Communication System" Applied System Innovation 7, no. 6: 107. https://doi.org/10.3390/asi7060107
APA StyleBonny, T., & Al Nassan, W. (2024). Optimizing Security and Cost Efficiency in N-Level Cascaded Chaotic-Based Secure Communication System. Applied System Innovation, 7(6), 107. https://doi.org/10.3390/asi7060107