A Novel Optimization Algorithm Inspired by Egyptian Stray Dogs for Solving Multi-Objective Optimal Power Flow Problems
Abstract
:1. Introduction
2. The Mathematical Modeling of OPF Objective Function
2.1. Problem Formulation
2.2. Constraints
2.2.1. Equality Constraints
2.2.2. Inequality Constraints
- Generator constraints:
- Transformer constraints:
- Shunt VAR compensators constraints:
- Security constraints:
- The term penalizes deviations in the voltage at load buses from their limits .
- The term imposes a penalty on the active power at the slack generator, ensuring it stays within its limits.
- The term penalizes reactive power deviations at the generator buses from their limits .
- The term enforces constraints on the apparent power across transmission lines to avoid overloading.
2.3. Objective Function
2.3.1. Fuel Cost (FC)
2.3.2. Active Power Loss (APL)
2.3.3. Voltage Drops (VDs)
2.3.4. Minimization of Fuel Cost, Active Power Loss, and Voltage Drops
3. Egyptian Stray Dogs Algorithm
3.1. Natural Inspiration
3.2. Algorithm Key Components
3.2.1. Search Agents
3.2.2. Random Walk Mechanism
3.2.3. Exploration Phase
3.2.4. Exploitation Phase
3.2.5. Social Interaction Phase
- Information Sharing
- 2.
- Dominance and Submission
- 3.
- Cooperation
- 4.
- Competition
3.2.6. Energy Function
3.2.7. Algorithm Control Parameters
3.3. Mathematical Formulation
- If the dog’s energy is the same as the alpha dog’s energy, it moves toward the alpha dog’s position as shown in Equation (33):
- If the dog’s energy is between the alpha and beta dogs’ energy, it moves towards the beta dog’s position, illustrated below in Equation (34):
- If the dog’s fitness is significantly higher than the alpha dog’s fitness, it makes a small adjustment towards the alpha dog’s position:
Algorithm 1 Egyptian Stray Dog Algorithm Pseudo-code |
Input: Number of dogs “D”, bounds “[L,U]”, maximum number of iterations “Max_iter”, number of dimensions (variables) “dim”, Objective function to minimize “F” and the Territory size. Output: Best energy found “TargetEnergy”, Position corresponding to the best energy “TargetPosition” Initialization: 1. Initialize the optimization problem with solution space bounds [L,U], number of dogs “D” and initial territory size. 2. For each dog i: a. Initialize the dog’s position within its territory using Equation (25): For L = 1 to Max_iter: 1. Update Positions and Energies: For each dog i:
For each dog i:
For each dog i:
Repeat Main Optimization Loop until a stopping criterion is met. Finalization: After completing the iterations, the algorithm returns the best energy, second-best found and the corresponding best and second best positions. |
4. Results and Discussion
4.1. Case 1: Minimization of Fuel Cost
4.2. Case 2: Minimization of Power Loss
4.3. Case 3: Minimization of Voltage Drops
4.4. Case 4: Minimization of Fuel Cost, Power Losses, and Voltage Drops
Function | PSO | MVO | GOA | HHO | HO | ESDO | |
---|---|---|---|---|---|---|---|
Alpha Dog | Beta Dog | ||||||
V.D. (p.u) | 0.1834 | 0.2139 | 0.3048 | 0.2146 | 0.2127 | 0.1466 | 0.1831 |
Cost (USD/h) | 831.6215 | 885.9045 | 850.2231 | 834.5388 | 837.6748 | 816.9713 | 816.5565 |
Ploss (MW) | 6.97 | 5.718 | 8.192 | 7.487 | 6.470 | 9.550 | 9.459 |
5. Conclusions
- Case 1: From the point of view of fuel cost minimization, the lowest fuel cost corresponds to the ESDO in comparison with PSO, MVO, and GOA. That is why ESDO is more efficient than other algorithms in the context of operating cost reduction.
- Case 2: ESDO’s Alpha Dog and Beta Dog strategy shows a minimum power loss in comparison with the other algorithms, which significantly outperforms other algorithms on this point and confirms ESDO’s capability to maintain low power loss for system stability.
- Case 3: In voltage drop minimization, ESDO gave excellent voltage stability, presenting the lowest voltage drop compared to all the algorithms tested, proving its strength in dealing with voltage-related constraints.
- Case 4: Convergence analysis shows that ESDO reduced the multi-objective function values to their minimum possible values more consistently than others and outperformed its competitors with reference to speed and final solution quality.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grigsby, L.L. Power System Stability and Control; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Grainger, J.J.; Stevenson, W.D. Power System Analysis; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Woods, A.J.; Wollenberg, B.F. Power Generation, Operation and Control; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Mansouri, A.; Ammar, A.; el Magri, A.; Elaadouli, N.; Younes, E.K.; Lajouad, R.; Giri, F. An adaptive control strategy for integration of wind farm using a VSC-HVDC transmission system. Results Eng. 2024, 23, 102359. [Google Scholar] [CrossRef]
- Mansouri, A.; el Magri, A.; Lajouad, R.; Giri, F. Novel adaptive observer for HVDC transmission line: A new power management approach for renewable energy sources involving Vienna rectifier. IFAC J. Syst. Control. 2024, 27, 100255. [Google Scholar] [CrossRef]
- Berizzi, A.; Bovo, C.; Marannino, P. Multiobjective optimization techniques applied to modern power systems. In Proceedings of the Power Engineering Society Winter Meeting, Columbus, OH, USA, 28 January–1 February 2001. [Google Scholar]
- Hingorani, N.G.; Gyugyi, L. Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems; IEEE Press: New York, NY, USA, 2000. [Google Scholar]
- Zhang, X.P.; Rehtanz, C.; Pal, B. Flexible AC Transmission Systems: Modelling and Control; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Glover, J.D.; Sarma, M.S.; Overbye, T.J. Power System Analysis and Design, 4th ed.; Thompson Corporation: Stamford, CT, USA, 2008; p. 255. [Google Scholar]
- Ahmad, S.; Asar, A.U. Reliability Enhancement of Electric Distribution Network Using Optimal Placement of Distributed Generation. Sustainability 2021, 13, 11407. [Google Scholar] [CrossRef]
- McDonald, J.D. Electric Power Substations Engineering; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Northcote-Green, J.; Wilson, R. Control and Automation of Electrical Power Distribution Systems; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Vedam, R.S.; Sarma, M.S. Power Quality; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Machowski, J. Power System Dynamics and Stability; Prentice Hall: New Jersey, NY, USA, 1997. [Google Scholar]
- Carpentier, J. Contribution to the study of economic dispatching. Bull. Fr. Soc. Electr. 1962, 3, 431–447. [Google Scholar]
- Dommel, H.; Tinney, W. Optimal power flow solutions. IEEE Trans. Power Appar. Syst. 1968, PAS-87, 1866–1876. [Google Scholar] [CrossRef]
- Abido, M.A. Optimal power flow using particle swarm optimization. Electr. Power Energy Syst. 2002, 24, 563–571. [Google Scholar] [CrossRef]
- He, S.; Wen, J.Y.; Prempain, E.; Wu, Q.H.; Fitch, J.; Mann, S. An improved particle swarm optimization for optimal power flow. In Proceedings of the 2004 International Conference on Power System Technology, Singapore, 21–24 November 2004. [Google Scholar]
- Zhao, B.; Guo, C.X.; Cao, Y.J. Improved particle swarm optimization algorithm for OPF problems. In Proceedings of the IEEE/PES Power Systems Conference and Exposition, New York, NY, USA, 10–13 October 2004; pp. 233–238. [Google Scholar]
- Wang, C.-R.; Yuan, H.-J.; Huang, Z.-Q.; Zhang, J.-W.; Sun, C.-J. A modified particle swarm optimization algorithm and its application in optimal power flow problem. In Proceedings of the 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, China, 18–21 August 2005; Volume 5, pp. 2885–2889. [Google Scholar]
- Musirin, I.; Aminudin, N.; Othman, M.M.; Rahman TK, A. Particle Swarm Optimization Technique in Economic Power Dispatch Problems. In Proceedings of the 4th International Power Engineering and Optimization Conference, Shah Alam, Malaysia, 23–24 June 2010. [Google Scholar]
- Liang, R.H.; Tsai, S.R.; Chen, Y.T.; Tseng, W.T. Optimal power flow by a fuzzy based hybrid particle swarm optimization approach. Electr. Power Syst. Res. 2011, 81, 1466–1474. [Google Scholar] [CrossRef]
- Niknam, T.; Narimani, M.R.; Aghaei, J.; Azizipanah-Abarghooee, R. Improved particle swarm optimisation for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index. IET Gener. Transm. Distrib. 2012, 11, 1012–1022. [Google Scholar] [CrossRef]
- Radosavljevi’c, J.; Klimenta, D.; Jevti´c, M.; Arsi´c, N. Optimal Power Flow Using a Hybrid Optimization Algorithm of Particle Swarm Optimization and Gravitational Search Algorithm. Electr. Power Compon. Syst. 2015, 43, 1958–1970. [Google Scholar] [CrossRef]
- Lai, L.L.; Ma, J.T.; Yokoyama, R.; Zhao, M. Improved genetic algorithms for optimal power flow under both normal and contingent operation states. Int. J. Electr. Power Energy Syst. 1997, 19, 287–292. [Google Scholar] [CrossRef]
- Bakirtzis, A.G.; Biskas, P.N.; Zoumas, C.E.; Petridis, V. Optimal power flow by enhanced genetic algorithm. IEEE Trans. Power Syst. 2002, 22, 60. [Google Scholar]
- Kumari, M.S.; Maheswarapu, S. Enhanced Genetic Algorithm based computation technique for multi-objective Optimal Power Flow solution. Int. J. Electr. Power Energy Syst. 2010, 32, 736–742. [Google Scholar] [CrossRef]
- Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Applic. 2016, 27, 1053–1073. [Google Scholar] [CrossRef]
- Mirjalili, S. The Ant Lion Optimizer; School of Information and Communication Technology, Griffith University: Nathan, Australia, 2015. [Google Scholar]
- El-Fergany, A.A.; Hasanien, H.M. Single and Multi-objective Optimal Power Flow Using Grey Wolf Optimizer and Differential Evolution Algorithms. Electr. Power Compon. Syst. 2015, 43, 1548–1559. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris Hawks Optimization: Algorithm and Applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-Verse Optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Applic 2016, 27, 495–513. [Google Scholar] [CrossRef]
- Abdelsalam, M.; Diab, H.Y. Optimal Coordination of DOC Relays Incorporated into a Distributed Generation-Based Micro-Grid Using a Meta-Heuristic MVO Algorithm. Energies 2019, 12, 4115. [Google Scholar] [CrossRef]
- Mirjalili, S.; Jangir, P.; Saremi, S. Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems. Appl. Intell. 2017, 46, 79–95. [Google Scholar] [CrossRef]
- Mirjalili, S.; Saremi, S.; Mirjalili, S.M.; Coelho, L.D.S. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert Syst. Appl. 2016, 47, 106–119. [Google Scholar] [CrossRef]
- Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Gad, Y.; Diab, H.; Abdelsalam, M.; Galal, Y. Smart Energy Management System of Environmentally Friendly Microgrid Based on Grasshopper Optimization Technique. Energies 2020, 13, 5000. [Google Scholar] [CrossRef]
- Mafarja, M.; Aljarah, I.; Heidari, A.A.; Hammouri, A.I.; Faris, H.; Ala’M, A.-Z.; Mirjalili, S. Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems. Knowl.-Based Syst. 2018, 145, 25–45. [Google Scholar] [CrossRef]
- Amiri, M.H.; Hashjin, N.M.; Montazeri, M.; Mirjalili, S.; Khodadadi, N. Hippopotamus Optimization Algorithm: A Novel Nature-Inspired Optimization Algorithm. Sci. Rep. 2024, 14, 5032. [Google Scholar] [CrossRef] [PubMed]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Chattopadhyay, P.K. Application of biogeography-based optimisation to solve different optimal power flow problems. IET Gener. Transm. Distrib. 2011, 5, 70–80. [Google Scholar] [CrossRef]
- Duman, S.; Güvenc, U.; Sönmez, Y.; Yörükeren, N. Optimal power flow using gravitational search algorithm. Energy Convers. Manag. 2012, 59, 86–95. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Roy, P.K. Solution of multi-objective optimal power flow using gravitational search algorithm. IET Gener. Transm. Distrib. 2012, 6, 751–763. [Google Scholar] [CrossRef]
- Jahan, M.S.; Amjady, N. Solution of large-scale security constrained optimal power flow by a new bi-level optimisation approach based on enhanced gravitational search algorithm. IET Gener. Transm. Distrib. 2013, 7, 1481–1491. [Google Scholar] [CrossRef]
- El-Sehiemy, R.A.; Shafiq, M.B.; Azmy, A.M. Multi-phase search optimisation algorithm for constrained opti-mal power flow problem. Int. J. Bio-Inspired Comput. 2014, 6, 275–289. [Google Scholar] [CrossRef]
- He, X.; Wang, W.; Jiang, J.; Xu, L. An improved artificial bee colony algorithm and its application to multi-objective optimal power flow. Energies 2015, 8, 2412–2437. [Google Scholar] [CrossRef]
- Arul, R.; Ravi, G.; Velusami, S. Solving optimal power flow problems using chaotic self-adaptive differential harmony search algorithm. Electr. Power Compon. Syst. 2013, 41, 782–805. [Google Scholar] [CrossRef]
- Lan, Z.; He, Q.; Jiao, H.; Yang, L. An Improved Equilibrium Optimizer for Solving Optimal Power Flow Problem. Sustainability 2022, 14, 4992. [Google Scholar] [CrossRef]
- Warid, W.; Hizam, H.; Mariun, N.; Abdul-Wahab, N.I. Optimal power flow using the Jaya algorithm. Energies 2016, 9, 678. [Google Scholar] [CrossRef]
- Bouchekara, H.R.E.H.; Abido, M.A. Optimal power flow using differential search algorithm. Electr. Power Compon. Syst. 2014, 42, 1683–1699. [Google Scholar] [CrossRef]
- Christy, A.A.; Raj, P.A.D.V. Adaptive biogeography based predator-prey optimization technique for optimal power flow. Int. J. Electr. Power Energy Syst. 2014, 62, 344–352. [Google Scholar] [CrossRef]
- Severino, E.R.; Di Silvestre, M.L.; Badalamenti, R.; Nguyen, N.Q.; Guerrero, J.M.; Meng, L. Optimal power flow in islanded microgrids using a simple distributed algorithm. Energies 2015, 8, 11493–11514. [Google Scholar] [CrossRef]
- Ezugwu, A.E.; Agushaka, J.O.; Abualigah, L.; Mirjalili, S.; Gandomi, A.H. Prairie Dog Optimization Algorithm. Neural Comput. Appl. 2022, 34, 20017–20065. [Google Scholar] [CrossRef]
- Lenin, K. Real power loss reduction by German shepherd dog, explore–save and line up search optimization algorithms. Ain Shams Eng. J. 2022, 13, 101688. [Google Scholar] [CrossRef]
- Martinez, E.; Cesário, C.S.; Dias, J.V.; Silva, I.O.; Souza, V.B. Community perception and attitudes about the behavior of stray dogs in a college campus. Acta Vet. Bras. 2018, 12, 10–16. [Google Scholar] [CrossRef]
- Alsac, O.; Stott, B. Optimal load flow with steady-state security. IEEE Trans. Power Appar. Syst. 1974, 93, 745–751. [Google Scholar] [CrossRef]
- Christie, R.D. Power Systems Test Case Archive; University of Washington, Department of Electrical Engineering: Seattle, WA, USA, 1993. [Google Scholar]
- Available online: http://labs.ece.uw.edu/pstca/pf30/pg_tca30bus.htm (accessed on 1 June 2024).
- Ismail, N.A.M.; Zin, A.A.M.; Khairuddin, A.; Khokhar, S. A comparison of voltage stability indices. In Proceedings of the 2014 IEEE 8th International Power Engineering and Optimization Conference (PEOCO2014), Langkawi, Malaysia, 24–25 March 2014; pp. 30–34. [Google Scholar]
Bus No. | Active Power Limits | Reactive Power Limits | Cost Factors | ||||
---|---|---|---|---|---|---|---|
PGmin (p.u.) | PGmax (p.u.) | QGmin (p.u.) | QGmax (p.u.) | a | b | c | |
1 | 0.5 | 2.5 | −0.2 | 2 | 0 | 200 | 37.5 |
2 | 0.2 | 0.8 | −0.2 | 1 | 0 | 175 | 175 |
5 | 0.15 | 0.5 | −0.15 | 0.8 | 0 | 100 | 625 |
8 | 0.1 | 0.35 | −0.15 | 0.6 | 0 | 325 | 83.4 |
11 | 0.1 | 0.3 | −0.1 | 0.5 | 0 | 300 | 250 |
13 | 0.12 | 0.4 | −0.15 | 0.6 | 0 | 300 | 250 |
Bus Tag | Active Power P (p.u.) | Reactive Power Q (p.u.) |
---|---|---|
1 | 0 | 0 |
2 | 0.217 | 0.127 |
3 | 0.024 | 0.012 |
4 | 0.076 | 0.016 |
5 | 0.942 | 0.190 |
6 | 0 | 0 |
7 | 0.228 | 0.109 |
8 | 0.300 | 0.300 |
9 | 0 | 0 |
10 | 0.058 | 0.020 |
11 | 0 | 0 |
12 | 0.112 | 0.075 |
13 | 0 | 0 |
14 | 0.062 | 0.016 |
15 | 0.082 | 0.025 |
16 | 0.035 | 0.018 |
17 | 0.090 | 0.058 |
18 | 0.032 | 0.009 |
19 | 0.095 | 0.034 |
20 | 0.022 | 0.007 |
21 | 0.175 | 0.112 |
22 | 0 | 0 |
23 | 0.032 | 0.016 |
24 | 0.087 | 0.067 |
25 | 0 | 0 |
26 | 0.035 | 0.023 |
27 | 0 | 0 |
28 | 0 | 0 |
29 | 0.024 | 0.009 |
30 | 0.106 | 0.019 |
Line Tag | From Bus | To Bus | R (p.u.) | X (p.u.) | B (p.u.) | Tap Settings |
---|---|---|---|---|---|---|
1 | 1 | 2 | 0.0192 | 0.0575 | 0.0264 | |
2 | 1 | 3 | 0.0452 | 0.1852 | 0.0204 | |
3 | 2 | 4 | 0.0570 | 0.1737 | 0.0184 | |
4 | 3 | 4 | 0.0132 | 0.0379 | 0.0042 | |
5 | 2 | 5 | 0.0472 | 0.1983 | 0.0209 | |
6 | 2 | 6 | 0.0581 | 0.1763 | 0.0187 | |
7 | 4 | 6 | 0.0119 | 0.0414 | 0.0045 | |
8 | 5 | 7 | 0.0460 | 0.1160 | 0.0102 | |
9 | 6 | 7 | 0.0267 | 0.0820 | 0.0085 | |
10 | 6 | 8 | 0.0120 | 0.0420 | 0.0045 | |
11 | 6 | 9 | 0 | 0.2080 | 0 | 1.078 |
12 | 6 | 10 | 0 | 0.5560 | 0 | 1.069 |
13 | 9 | 11 | 0 | 0.2080 | 0 | |
14 | 9 | 10 | 0 | 0.1100 | 0 | |
15 | 4 | 12 | 0 | 0.2560 | 0 | 1.032 |
16 | 12 | 13 | 0 | 0.1400 | 0 | |
17 | 12 | 14 | 0.1231 | 0.2559 | 0 | |
18 | 12 | 15 | 0.0662 | 0.1304 | 0 | |
19 | 12 | 16 | 0.0945 | 0.1987 | 0 | |
20 | 14 | 15 | 0.2210 | 0.1997 | 0 | |
21 | 16 | 17 | 0.0824 | 0.1932 | 0 | |
22 | 15 | 18 | 0.1070 | 0.2185 | 0 | |
23 | 18 | 19 | 0.0639 | 0.1292 | 0 | |
24 | 19 | 20 | 0.0340 | 0.0680 | 0 | |
25 | 10 | 20 | 0.0936 | 0.2090 | 0 | |
26 | 10 | 17 | 0.0324 | 0.0845 | 0 | |
27 | 10 | 21 | 0.0348 | 0.0749 | 0 | |
28 | 10 | 22 | 0.0727 | 0.1499 | 0 | |
29 | 21 | 22 | 0.0116 | 0.0236 | 0 | |
30 | 15 | 23 | 0.1000 | 0.2020 | 0 | |
31 | 22 | 24 | 0.1150 | 0.1790 | 0 | |
32 | 23 | 24 | 0.1320 | 0.2700 | 0 | |
33 | 24 | 25 | 0.1885 | 0.3292 | 0 | |
34 | 25 | 26 | 0.2544 | 0.3800 | 0 | |
35 | 25 | 27 | 0.1093 | 0.2087 | 0 | |
36 | 28 | 27 | 0 | 0.3960 | 0 | 1.068 |
37 | 27 | 29 | 0.2198 | 0.4153 | 0 | |
38 | 27 | 30 | 0.3202 | 0.6027 | 0 | |
39 | 29 | 30 | 0.2399 | 0.4533 | 0 | |
40 | 8 | 28 | 0.0636 | 0.2000 | 0.0214 | |
41 | 6 | 28 | 0.0169 | 0.0599 | 0.0065 |
Parameter | PSO | MVO | GOA | HHO | HO | ESDO |
---|---|---|---|---|---|---|
PG2 (MW) | 38.14 | 57.005 | 42.448 | 35.455 | 37.748 | 52.466 |
PG5 (MW) | 26.2 | 25.697 | 35.154 | 25.514 | 24.486 | 21.587 |
PG8 (MW) | 21.56 | 10 | 22.275 | 14.132 | 20.141 | 23.425 |
PG11 (MW) | 20.71 | 14.655 | 12.859 | 13.038 | 19.536 | 16.481 |
PG13 (MW) | 19.17 | 23.882 | 14.988 | 22.873 | 18.647 | 17.671 |
VG1 (p.u.) | 1.0508 | 1.0659 | 1.0306 | 1.0799 | 1.0724 | 1.0662 |
VG2 (p.u.) | 1.0445 | 1.0469 | 1.0125 | 1.0677 | 1.0592 | 1.0553 |
VG5 (p.u.) | 0.9857 | 1.0134 | 1.0238 | 1.0359 | 1.0211 | 1.0328 |
VG8 (p.u.) | 0.9985 | 1.0236 | 1.0068 | 1.0292 | 1.05 | 1.027 |
VG11 (p.u.) | 1.0062 | 1.0886 | 1.0319 | 1.0306 | 1.0587 | 1.0558 |
VG13 (p.u.) | 0.9894 | 1.0223 | 1.0301 | 1.0247 | 1.0478 | 1.0157 |
T11 (p.u.) | 0.9539 | 0.963 | 1.0714 | 0.9614 | 1.0717 | 1.0394 |
T12 (p.u.) | 1.0542 | 0.9984 | 1.0145 | 1.0057 | 1.0637 | 0.9512 |
T15 (p.u.) | 1.0119 | 1.0838 | 1.0184 | 1.0702 | 0.9866 | 0.9574 |
T36 (p.u.) | 0.9229 | 1.0111 | 0.9149 | 0.9542 | 0.9792 | 0.9945 |
Qc10 (MVAR) | 2.49 | 3.0136 | 0.9194 | 1.5328 | 1.6327 | 5.2471 |
Qc12 (MVAR) | 1.95 | 2.5849 | 3.0701 | 2.3717 | 1.5815 | 4.7483 |
Qc15 (MVAR) | 1.44 | 2.9703 | 2.626 | 0.6234 | 0.7791 | 1.54 |
Qc17 (MVAR) | 1.7 | 3.8087 | 2.7184 | 0.7575 | 0.7785 | 4.2336 |
Qc20 (MVAR) | 4.05 | 0.6324 | 2.1094 | 2.3747 | 1.0707 | 5.4377 |
Qc21 (MVAR) | 3.37 | 0.1162 | 1.7526 | 0.2875 | 1.4405 | 2.3971 |
Qc23 (MVAR) | 2.66 | 1.5749 | 4.1688 | 2.5882 | 3.5704 | 6.5002 |
Qc24 (MVAR) | 0.77 | 2.9851 | 2.1707 | 0.6439 | 1.1696 | 2.6493 |
Qc29 (MVAR) | 2.68 | 3.0164 | 1.1151 | 1.3092 | 2.5822 | 1.3045 |
Cost (USD/h) | 812.2991 | 811.2007 | 819.1972 | 810.3851 | 808.1815 | 804.8769 |
Ploss (MW) | 9.05 | 8.7858 | 9.0376 | 9.394 | 8.75 | 8.360 |
V.D. (p.u) | 0.4778 | 0.39458 | 0.43427 | 0.39237 | 0.4276 | 0.42463 |
Function | PSO | MVO | GOA | HHO | HO | ESDO | |
---|---|---|---|---|---|---|---|
Alpha Dog | Beta Dog | ||||||
Cost (USD/h) | 812.2991 | 811.2007 | 819.1972 | 810.3851 | 808.1815 | 804.8769 | 805.6415 |
Ploss (kW) | 9.05 | 8.7858 | 9.0376 | 9.394 | 8.75 | 8.360 | 8.132 |
V.D. (p.u) | 0.4778 | 0.39458 | 0.43427 | 0.39237 | 0.4276 | 0.42463 | 0.58534 |
Parameter | PSO | MVO | GOA | HHO | HO | ESDO |
---|---|---|---|---|---|---|
PG2 (MW) | 41.51 | 68.955 | 80 | 53.01 | 67.351 | 43.308 |
PG5 (MW) | 34.8 | 19.039 | 44.67 | 50 | 22.946 | 42.242 |
PG8 (MW) | 16.87 | 21.288 | 14.539 | 25.694 | 33.611 | 31.505 |
PG11 (MW) | 30 | 17.556 | 24.313 | 27.655 | 29.986 | 28.36 |
PG13 (MW) | 22.26 | 38.306 | 26.47 | 17.609 | 40 | 37.615 |
VG1 (p.u.) | 1.0658 | 1.029 | 1.0175 | 1.0887 | 1.0306 | 1.0586 |
VG2 (p.u.) | 1.0409 | 1.0121 | 1.0116 | 1.0747 | 1.0174 | 1.0471 |
VG5 (p.u.) | 1.0253 | 0.9607 | 0.9913 | 1.0047 | 0.9854 | 1.0378 |
VG8 (p.u.) | 1.0175 | 0.9924 | 0.9844 | 1.013 | 1.0066 | 1.0375 |
VG11 (p.u.) | 0.9756 | 0.9795 | 0.9584 | 1.0681 | 1.1 | 1.0823 |
VG13 (p.u.) | 1.0696 | 1.0705 | 1.0675 | 1.0647 | 1.09 | 1.0594 |
T11 (p.u.) | 1.0103 | 0.9587 | 1.0051 | 0.9821 | 1.0739 | 1.0137 |
T12 (p.u.) | 1.0133 | 1.0967 | 0.9994 | 0.9542 | 1.0819 | 0.9866 |
T15 (p.u.) | 1.0387 | 1.0026 | 1.0334 | 1.02 | 0.9831 | 1.0394 |
T36 (p.u.) | 0.9992 | 0.9637 | 0.9823 | 0.9462 | 1.0258 | 1.0225 |
Qc10 (MVAR) | 1.87 | 4.0627 | 2.0029 | 4.1989 | 4.8259 | 6.5128 |
Qc12 (MVAR) | 1.11 | 3.222 | 1.143 | 2.2796 | 3.773 | 5.7736 |
Qc15 (MVAR) | 3.4 | 0.5512 | 4.9276 | 2.229 | 1.3436 | 4.0751 |
Qc17 (MVAR) | 3.06 | 2.7073 | 4.757 | 2.4167 | 2.7258 | 4.3258 |
Qc20 (MVAR) | 3.69 | 3.2085 | 2.8317 | 1.151 | 4.9092 | 4.4399 |
Qc21 (MVAR) | 2.73 | 0.8877 | 3.2476 | 0.281 | 4.956 | 5.357 |
Qc23 (MVAR) | 1.51 | 3.8854 | 3.0158 | 3.5741 | 5 | 5.0097 |
Qc24 (MVAR) | 2.93 | 2.7022 | 3.5583 | 5 | 3.9178 | 2.995 |
Qc29 (MVAR) | 2.55 | 0.115 | 4.9797 | 0.5129 | 3.2519 | 7.6933 |
Ploss (MW) | 6.150 | 7.980 | 5.833 | 5.753 | 5.899 | 4.617 |
Cost (USD/h) | 830.8549 | 842.7470 | 890.4579 | 879.9424 | 869.1381 | 877.7591 |
V.D. (p.u) | 0.4189 | 0.5270 | 0.5001 | 0.6740 | 0.4235 | 0.7154 |
Function | PSO | MVO | GOA | HHO | HO | ESDO | |
---|---|---|---|---|---|---|---|
Alpha Dog | Beta Dog | ||||||
Ploss (MW) | 6.150 | 7.980 | 5.833 | 5.753 | 5.899 | 4.617 | 4.673 |
Cost (USD/h) | 830.8549 | 842.7470 | 890.4579 | 879.9424 | 869.1381 | 877.7591 | 875.6038 |
V.D. (p.u) | 0.4189 | 0.5270 | 0.5001 | 0.6740 | 0.4235 | 0.7154 | 0.8116 |
Parameter | PSO | MVO | GOA | HHO | HO | ESDO |
---|---|---|---|---|---|---|
PG2 (MW) | 47.44 | 20.155 | 23.466 | 54.822 | 58.048 | 26.137 |
PG5 (MW) | 38.3 | 45.481 | 45.129 | 38.159 | 30.547 | 21.297 |
PG8 (MW) | 21.48 | 34.892 | 22.86 | 12.108 | 31.922 | 22.968 |
PG11 (MW) | 17.59 | 21.796 | 13.901 | 26.986 | 20.923 | 22.007 |
PG13 (MW) | 24.36 | 36.976 | 12 | 16.792 | 30.202 | 18.583 |
VG1 (p.u.) | 1.0583 | 1.0424 | 1.0684 | 1.0576 | 1.0512 | 1.0335 |
VG2 (p.u.) | 1.0482 | 1.0177 | 1.0376 | 1.0546 | 1.0384 | 1.0169 |
VG5 (p.u.) | 1.0018 | 0.9972 | 0.9941 | 1.0068 | 1.0184 | 1.0043 |
VG8 (p.u.) | 1.0157 | 1.0058 | 1.0175 | 1.0039 | 0.9931 | 0.9941 |
VG11 (p.u.) | 1.0455 | 1.0079 | 1.0411 | 1.0275 | 1.0052 | 1.0166 |
VG13 (p.u.) | 1.0051 | 1.0466 | 1.0641 | 0.9961 | 1.0341 | 1.0185 |
T11 (p.u.) | 0.947 | 0.9758 | 1.025 | 0.9441 | 0.9376 | 0.9886 |
T12 (p.u.) | 0.9752 | 0.9998 | 0.9949 | 0.9436 | 1.0248 | 0.9378 |
T15 (p.u.) | 0.9776 | 0.923 | 1.0639 | 1.0097 | 0.9461 | 0.9685 |
T36 (p.u.) | 0.9971 | 0.9624 | 0.9475 | 0.9489 | 0.9557 | 0.9528 |
Qc10 (MVAR) | 2.43 | 1.7223 | 2.0907 | 3.5273 | 1.4147 | 2.3706 |
Qc12 (MVAR) | 1.07 | 2.2949 | 4.2781 | 2.7519 | 3.5379 | 0.8577 |
Qc15 (MVAR) | 2.77 | 1.2178 | 2.8611 | 4.8386 | 2.1059 | 4.3805 |
Qc17 (MVAR) | 2.44 | 0.536 | 2.6467 | 1.3469 | 4.1553 | 4.0145 |
Qc20 (MVAR) | 1.75 | 2.0567 | 2.9978 | 1.7484 | 1.1842 | 4.9584 |
Qc21 (MVAR) | 1.77 | 4.9961 | 0.9558 | 4.9585 | 3.6636 | 3.9269 |
Qc23 (MVAR) | 5 | 1.5199 | 2.2352 | 2.6712 | 2.0054 | 3.3669 |
Qc24 (MVAR) | 1.35 | 1.5641 | 0.2538 | 2.8402 | 2.3734 | 5.2544 |
Qc29 (MVAR) | 5 | 4.2558 | 4.553 | 0.1266 | 3.7256 | 1.9815 |
V.D. (p.u) | 0.1834 | 0.2139 | 0.3048 | 0.2146 | 0.2127 | 0.1466 |
Cost (USD/h) | 831.6215 | 885.9045 | 850.2231 | 834.5388 | 837.6748 | 816.9713 |
Ploss (MW) | 6.97 | 5.718 | 8.192 | 7.487 | 6.470 | 9.550 |
Parameter | PSO | MVO | GOA | HHO | HO | ESDO |
---|---|---|---|---|---|---|
PG2 (MW) | 74 | 37.679 | 52.834 | 40.925 | 49.328 | 61.185 |
PG5 (MW) | 43 | 27.4 | 31.536 | 34.88 | 23.033 | 25.226 |
PG8 (MW) | 27.98 | 27.57 | 25.644 | 29.799 | 12.381 | 25.964 |
PG11 (MW) | 20.46 | 16.724 | 23.034 | 19.042 | 27.337 | 17.551 |
PG13 (MW) | 22.17 | 36.527 | 24.915 | 33.37 | 31.2 | 29.078 |
VG1 (p.u.) | 1.0165 | 1.0568 | 1.0586 | 1.0425 | 1.0399 | 1.0254 |
VG2 (p.u.) | 1.0076 | 1.0361 | 1.0348 | 1.0235 | 1.0286 | 1.0116 |
VG5 (p.u.) | 1.0044 | 1.0007 | 0.9678 | 0.9978 | 1.0229 | 1.0229 |
VG8 (p.u.) | 0.998 | 1.0041 | 1.0071 | 1.0205 | 1.0074 | 0.9996 |
VG11 (p.u.) | 1.06 | 1.0858 | 1.0896 | 1.0505 | 1.0512 | 1.058 |
VG13 (p.u.) | 1.0625 | 1.0431 | 1.0375 | 1.014 | 1.0202 | 1.0205 |
T11 (p.u.) | 0.9904 | 0.9408 | 1.0332 | 0.9831 | 0.9333 | 0.9728 |
T12 (p.u.) | 0.9657 | 1.0889 | 0.9662 | 0.9714 | 1.0403 | 0.9575 |
T15 (p.u.) | 1.032 | 1.0504 | 0.9456 | 0.9606 | 0.9977 | 0.9811 |
T36 (p.u.) | 0.952 | 0.9525 | 0.932 | 0.9939 | 0.9345 | 0.9795 |
Qc10 (MVAR) | 3.78 | 3.1662 | 0.0399 | 2.1737 | 2.9341 | 1.4981 |
Qc12 (MVAR) | 4.89 | 1.3741 | 3.112 | 0.6344 | 2.9367 | 3.3776 |
Qc15 (MVAR) | 0.45 | 4.0924 | 4.095 | 0.8095 | 3.8171 | 1.5789 |
Qc17 (MVAR) | 2.92 | 3.4921 | 2.8313 | 1.5141 | 1.3053 | 3.6618 |
Qc20 (MVAR) | 4.41 | 3.3257 | 3.4526 | 3.1292 | 3.7579 | 2.1352 |
Qc21 (MVAR) | 1.82 | 2.1631 | 2.4151 | 2.6551 | 0.9492 | 1.9634 |
Qc23 (MVAR) | 1.64 | 0.2003 | 0.749 | 2.9791 | 0.0918 | 2.5902 |
Qc24 (MVAR) | 0.68 | 0.4166 | 3.8998 | 3.097 | 3.0236 | 2.8996 |
Qc29 (MVAR) | 3.87 | 3.3593 | 4.5961 | 1.0288 | 0.0338 | 3.7976 |
Cost (USD/h) | 873.1963 | 829.1404 | 827.2878 | 838.8745 | 824.1647 | 825.7937 |
Ploss (MW) | 5.55 | 7.22 | 7.059 | 6.38 | 8.13 | 7.65 |
V.D. (p.u) | 0.1899 | 0.2478 | 0.4756 | 0.2681 | 0.2004 | 0.1851 |
Function | PSO | MVO | GOA | HHO | HO | ESDO | |
---|---|---|---|---|---|---|---|
Alpha Dog | Beta Dog | ||||||
Cost (USD/h) | 873.1963 | 829.1404 | 827.2878 | 838.8745 | 824.1647 | 825.7937 | 819.8483 |
Ploss (MW) | 5.55 | 7.22 | 7.059 | 6.38 | 8.13 | 7.65 | 8.01 |
V.D. (p.u) | 0.1899 | 0.2478 | 0.4756 | 0.2681 | 0.2004 | 0.1851 | 0.2041 |
Algorithm | Inspiration | Convergence | Exploration–Exploitation Balance | Computational Complexity | Susceptibility to Local Optima |
---|---|---|---|---|---|
PSO | Bird flocking/Fish schooling | Fast, but may stagnate | Good, but weak in later stages | Low | High |
MVO | Multiverse theory | Moderate | Strong balance | Medium | Low |
GOA | Grasshopper swarming behavior | Moderate, but slow | Strong global exploration | Medium | Moderate |
HHO | Harris hawks hunting strategy | Fast | Adaptive and dynamic | Medium | Low |
HO | Hippopotamus water–land behavior | Good | Strong adaptability | Medium | Moderate |
ESDO | Egyptian stray dogs’ behavior | Fast | Excellent dynamic balance | Medium | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Institute of Knowledge Innovation and Invention. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
ElMessmary, M.H.; Diab, H.Y.; Abdelsalam, M.; Moussa, M.F. A Novel Optimization Algorithm Inspired by Egyptian Stray Dogs for Solving Multi-Objective Optimal Power Flow Problems. Appl. Syst. Innov. 2024, 7, 122. https://doi.org/10.3390/asi7060122
ElMessmary MH, Diab HY, Abdelsalam M, Moussa MF. A Novel Optimization Algorithm Inspired by Egyptian Stray Dogs for Solving Multi-Objective Optimal Power Flow Problems. Applied System Innovation. 2024; 7(6):122. https://doi.org/10.3390/asi7060122
Chicago/Turabian StyleElMessmary, Mohamed H., Hatem Y. Diab, Mahmoud Abdelsalam, and Mona F. Moussa. 2024. "A Novel Optimization Algorithm Inspired by Egyptian Stray Dogs for Solving Multi-Objective Optimal Power Flow Problems" Applied System Innovation 7, no. 6: 122. https://doi.org/10.3390/asi7060122
APA StyleElMessmary, M. H., Diab, H. Y., Abdelsalam, M., & Moussa, M. F. (2024). A Novel Optimization Algorithm Inspired by Egyptian Stray Dogs for Solving Multi-Objective Optimal Power Flow Problems. Applied System Innovation, 7(6), 122. https://doi.org/10.3390/asi7060122