Innovative Ultrasonic Spray Methods for Indoor Disinfection
Abstract
:1. Introduction
2. Development of Ultrasonic and Combined Spraying Devices for Disinfectant Liquids
- For disinfecting people in factories, offices, hospitals, public places (including land, underground, and air transportation), and restaurants, the effective droplet size is 10–35 µm;
- For disinfecting indoor spaces and vehicles, droplet sizes between 25–70 µm are ideal;
- For disinfecting open spaces (e.g., roads, buildings, pavilions, and recreational areas), droplet sizes of 150–300 µm are required.
2.1. Ultrasonic Liquid Layer Sprayers
2.2. High-Capacity Wearable Atomizer Designs for Generating a Variety of Particle Sizes
2.3. Innovative Acoustic–Dynamic Methods and Devices for Spraying Disinfectant Liquids
2.3.1. Multi-Stage Spraying
2.3.2. Cavitation Combined Method
3. Methods
3.1. Experimental Setup
3.2. Testing Methodology
- Approximately one-third of the distance from the upper end of the tubular emitter, after droplets passed through the first antinode of the standing wave inside the emitter. A vacuum aspirator was used to collect aerosol droplets at this stage, corresponding to the first stage of atomization.
- 50 mm from the lower end of the tubular emitter, to determine the droplet size characteristics of the aerosol produced after the multi-stage atomization process.
4. Discussion of the Results of the Development of Methods and Devices for Spraying Disinfectant Liquids
4.1. Droplet Size in Ultrasonic Atomization of a Thin Liquid Layer
4.2. Droplet Size in Multi-Stage Ultrasonic Atomization
4.3. Droplet Size in Combined Cavitation Spraying
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, X.; Fan, Z.; Li, S.; Yin, H. A review on zoonotic pathogens associated with non-human primates: Understanding the potential threats to humans. Microorganisms 2023, 11, 246. [Google Scholar] [CrossRef] [PubMed]
- Mitjà, O.; Ogoina, D.; Titanji, B.K.; Galvan, C.; Muyembe, J.J.; Marks, M.; Orkin, C.M. Monkeypox. Lancet 2023, 401, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Bujňák, M.; Pirník, R.; Kuchár, P.; Rástočný, K. Assessing the Risk of Spreading COVID-19 in the Room Utilizing Low-Cost Monitoring System. Appl. Syst. Innov. 2023, 6, 40. [Google Scholar] [CrossRef]
- World Health Organization. Cleaning and Disinfection of Environmental Surfaces in the Context of COVID-19: Interim Guidance, 15 May 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Hussain, S.; Cheema, M.J.M.; Motahhir, S.; Iqbal, M.M.; Arshad, A.; Waqas, M.S.; Malik, S. Proposed design of walk-through gate (WTG): Mitigating the effect of COVID-19. Appl. Syst. Innov. 2020, 3, 41. [Google Scholar] [CrossRef]
- Khan, M.T.; Ahmad, R.; Liu, G.; Zhang, L.; Santagata, R.; Lega, M.; Casazza, M. Potential Environmental Impacts of a Hospital Wastewater Treatment Plant in a Developing Country. Sustainability 2024, 16, 2233. [Google Scholar] [CrossRef]
- Khan, M.T.; Shah, I.A.; Hossain, M.F.; Akther, N.; Zhou, Y.; Khan, M.S.; Al-Shaeli, M.; Bacha, M.S.; Ihsanullah, I. Personal protective equipment (PPE) disposal during COVID-19: An emerging source of microplastic and microfiber pollution in the environment. Sci. Total Environ. 2023, 860, 160322. [Google Scholar] [CrossRef]
- Subpiramaniyam, S. Outdoor disinfectant sprays for the prevention of COVID-19: Are they safe for the environment? Sci. Total Environ. 2021, 759, 144289. [Google Scholar] [CrossRef]
- Clausen, P.A.; Frederiksen, M.; Sejbæk, C.S.; Sørli, J.B.; Hougaard, K.S.; Frydendall, K.B.; Wolkoff, P. Chemicals inhaled from spray cleaning and disinfection products and their respiratory effects. A comprehensive review. Int. J. Hyg. Environ. Health 2020, 229, 113592. [Google Scholar] [CrossRef]
- Andersen, B.M.; Rasch, M.; Hochlin, K.; Jensen, F.H.; Wismar, P.; Fredriksen, J.E. Decontamination of rooms, medical equipment and ambulances using an aerosol of hydrogen peroxide disinfectant. J. Hosp. Infect. 2006, 62, 149. [Google Scholar] [CrossRef]
- Kchaou, M.; Abuhasel, K.; Khadr, M.; Hosni, F.; Alquraish, M. Surface disinfection to protect against microorganisms: Overview of traditional methods and issues of emergent nanotechnologies. Appl. Sci. 2020, 10, 6040. [Google Scholar] [CrossRef]
- Park, S.; Park, K. Principles and droplet size distributions of various spraying methods: A review. J. Mech. Sci. Technol. 2022, 36, 4033–4041. [Google Scholar] [CrossRef]
- Nasr, G.G.; Yule, A.J.; Bendig, L. Industrial Sprays and Atomization: Design, Analysis and Applications; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Zhang, Y.; Yuan, S.; Wang, L. Investigation of capillary wave, cavitation and droplet diameter distribution during ultrasonic atomization. Exp. Therm. Fluid Sci. 2021, 120, 110219. [Google Scholar] [CrossRef]
- Gebel, J.; Exner, M.; French, G.; Chartier, Y.; Christiansen, B.; Gemein, S.; Sonntag, H.G. The role of surface disinfection in infection prevention. GMS Hyg. Infect. Control 2013, 8, 1–12. [Google Scholar] [CrossRef]
- Center of Ultrasound Technologies. Available online: https://u-sonic.ru (accessed on 25 October 2024).
- Khmelev, V.N.; Shalunov, A.V.; Golykh, R.N.; Nesterov, V.A.; Dorovskikh, R.S.; Shalunova, A.V. Determination of the modes and the conditions of ultrasonic spraying providing specified productivity and dispersed characteristics of the aerosol. J. Appl. Fluid Mech. 2017, 10, 1409–1419. [Google Scholar] [CrossRef]
- Khmelev, V.N.; Shalunov, A.V.; Nesterov, V.A. High-Frequency Vibration System for Liquid Atomization. Rom. J. Acoust. Vib. 2018, 16, 136–142. [Google Scholar]
- Ramisetty, K.A.; Pandit, A.B.; Gogate, P.R. Investigations into ultrasound induced atomization. Ultrason. Sonochem. 2013, 20, 254–264. [Google Scholar] [CrossRef]
- Boguslavski, Y.Y. Physical mechanism of the acoustic atomization of a liquid. Sov. Phys. Acoust. 1969, 15, 14–21. [Google Scholar]
- Dalmoro, A.; Barba, A.A.; d’Amore, M. Analysis of size correlations for microdroplets produced by ultrasonic atomization. Sci. World J. 2013, 2013, 482910. [Google Scholar] [CrossRef]
- Shalunov, A.; Khmelev, V.; Terentiev, S.; Nesterov, V.; Genne, D. The Development and Analysis of a Multistage Spraying Method for Liquids in an Ultrasonic Field. Appl. Sci. 2024, 14, 796. [Google Scholar] [CrossRef]
- Gelfand, B.E. Droplet breakup phenomena in flows with velocity lag. Prog. Energy Combust. Sci. 1996, 22, 201–265. [Google Scholar] [CrossRef]
- Borisov, A.A.; Gel’Fand, B.E.; Natanzon, M.S.; Kossov, O.M. Droplet breakup regimes and criteria for their existence. J. Eng. Phys. 1981, 40, 44–49. [Google Scholar] [CrossRef]
- Pilch, M.; Erdman, C.A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of liquid drop. Int. J. Multiph. Flow 1987, 13, 741–757. [Google Scholar] [CrossRef]
- Malvern Spraytec. Available online: https://www.malvernpanalytical.com/en/products/product-range/spraytec (accessed on 6 December 2024).
Sprayer Number (Figure 4) | 4a | 4b | 4c | 4d |
---|---|---|---|---|
Power, VA, not more than | 150 | 150 | 150 | 100 |
Frequency of ultrasonic vibrations, kHz | 22 ± 1.65 | 22 ± 1.65 | 35 ± 2.63 | 160 ± 10 |
Amplitude of oscillations of the working tool, µm | 20–30 | 20–30 | 35 | 15 |
Oscillating system, mm | Ø100 × 250 | Ø170 × 80 | Ø100 × 250 | 65 × 70 × 90 |
Liquid viscosity, no more than, cPz | 30 | 5 | 5 | 3 |
Sauter diameter of formed droplets, µm | 65 | 65 | 55 | 18 |
Productivity (by water), mL/s, no more than | 15 | 5 | 3 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Institute of Knowledge Innovation and Invention. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shalunov, A.; Kudryashova, O.; Khmelev, V.; Genne, D.; Terentiev, S.; Nesterov, V. Innovative Ultrasonic Spray Methods for Indoor Disinfection. Appl. Syst. Innov. 2024, 7, 126. https://doi.org/10.3390/asi7060126
Shalunov A, Kudryashova O, Khmelev V, Genne D, Terentiev S, Nesterov V. Innovative Ultrasonic Spray Methods for Indoor Disinfection. Applied System Innovation. 2024; 7(6):126. https://doi.org/10.3390/asi7060126
Chicago/Turabian StyleShalunov, Andrey, Olga Kudryashova, Vladimir Khmelev, Dmitry Genne, Sergey Terentiev, and Viktor Nesterov. 2024. "Innovative Ultrasonic Spray Methods for Indoor Disinfection" Applied System Innovation 7, no. 6: 126. https://doi.org/10.3390/asi7060126
APA StyleShalunov, A., Kudryashova, O., Khmelev, V., Genne, D., Terentiev, S., & Nesterov, V. (2024). Innovative Ultrasonic Spray Methods for Indoor Disinfection. Applied System Innovation, 7(6), 126. https://doi.org/10.3390/asi7060126