The Resistive Barrier Discharge: A Brief Review of the Device and Its Biomedical Applications
Abstract
:1. Introduction
2. Mechanism of Operation of the Resistive Barrier Discharge
3. Biomedical Applications of the RBD
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Du Moncel, T.H. Notice sur L’appareil D’induction Electrique de Ruhmkorff et Sur les Experiences que L’on Peut Faire Avec Cet Instrument; Hachette et Cie Publishers: Paris, France, 1855. [Google Scholar]
- Von Siemens, W. Ueber die elektrostatische Induction und die Verzögerung des Stroms in Flaschendrähten. Poggendorfs Ann. Phys. Chem. 1857, 12, 66. [Google Scholar] [CrossRef]
- Kanazawa, S.; Kogoma, M.; Moriwaki, T.; Okazaki, S. Stable Glow Plasma at Atmospheric Pressure. J. Phys. D Appl. Phys. 1988, 21, 838. [Google Scholar] [CrossRef]
- Massines, F.; Mayoux, C.; Messaoudi, R.; Rabehi, A.; Ségur, P. Experimental Study of an Atmospheric Pressure Glow Discharge Application to Polymers Surface Treatment. In Proceedings of the GD-92, Swansea, UK, 13–18 September 1992; Volume 2, p. 730. [Google Scholar]
- Roth, J.R.; Laroussi, M.; Liu, C. Experimental Generation of a Steady-State Glow Discharge at Atmospheric Pressure. In Proceedings of the 27th IEEE International Conference Plasma Science, Tampa, FL, USA, 1–3 June 1993; p. 170. [Google Scholar]
- Bartnikas, R. Note on Discharges in Helium Under AC Conditions. Brit. J. Appl. Phys. J. Phys. D. 1968, 1, 659. [Google Scholar] [CrossRef]
- Donohoe, K.G. The Development and Characterization of an Atmospheric Pressure Nonequilibrium Plasma Chemical Reactor. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 1976. [Google Scholar]
- Yokoyama, T.; Kogoma, M.; Moriwaki, T.; Okazaki, S. The Mechanism of the Stabilized Glow Plasma at Atmospheric Pressure. J. Phys. D Appl. Phys. 1990, 23, 1125. [Google Scholar] [CrossRef]
- Massines, F.; Rabehi, A.; Decomps, P.; Gadri, R.B.; Ségur, P.; Mayoux, C. Experimental and Theoretical Study of a Glow Discharge at Atmospheric Pressure Controled by a Dielectric Barrier. J. Appl. Phys. 1998, 8, 2950. [Google Scholar] [CrossRef]
- Eliasson, B.; Egli, W.; Kogelschatz, U. Modelling of Dielectric Barrier Discharge Chemistry. Pure Apll. Chem. 1994, 66, 1275. [Google Scholar] [CrossRef] [Green Version]
- Gherardi, N.; Gouda, G.; Gat, E.; Ricard, A.; Massines, F. Transition from glow silent discharge to micro-discharges in nitrogen gas. Plasma Sources Sci. Technol. 2000, 9, 340. [Google Scholar] [CrossRef]
- Gheradi, N.; Massines, F. Mechanisms controlling the transition from glow silent discharge to streamer discharge in nitrogen. IEEE Trans. Plasma Sci. 2001, 29, 536. [Google Scholar] [CrossRef]
- Shi, J.J.; Deng, X.T.; Hall, R.; Punnett, J.D.; Kong, M. Three modes in a radio frequency atmospheric pressure glow discharge. J. Appl. Phys. 2003, 94, 6303. [Google Scholar] [CrossRef] [Green Version]
- Massines, F.; Gherardi, N.; Naude, N.; Segur, P. Glow and Townsend dielectric barrier discharge in various atmosphere. Plasma Phys. Contrl. Fusion 2005, 47, B557. [Google Scholar] [CrossRef]
- Kogelschatz, U.; Eliasson, B.; Egli, W. Dielectric Barrier Discharges: Principle and Applications. J. Phys. IV 1997, C4, 47. [Google Scholar] [CrossRef]
- Kogelschatz, U. Filamentary, Patterned, and Diffuse Barrier Discharges. IEEE Trans. Plasma Sci. 2002, 30, 1400. [Google Scholar] [CrossRef]
- Brandenburg, R. Dielectric barrier discharges: Progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci. Technol. 2017, 26, 053001. [Google Scholar] [CrossRef]
- Becker, K.; Kogelschatz, U.; Schoenbach, K.H.; Barker, R.J. (Eds.) Non-equilibrium Air Plasmas at Atmospheric Pressure; IOP Pub.: Bristol, UK, 2005; ISBN 0750309628. [Google Scholar]
- Roth, J.R.; Sherman, D.N.; Wilkinson, S.P. Electrohydrodynamic Flow Control with a Glow-Discharge Surface Plasma. AIAA J. 2000, 38, 1166. [Google Scholar] [CrossRef]
- Kogelschatz, U. Silent discharges for the generation of ultraviolet and vacuum ultraviolet excimer radiation. Pure Appl. Chem. 1990, 62, 1667. [Google Scholar] [CrossRef]
- Laroussi, M. Sterilization of Contaminated Matter with an Atmospheric Pressure Plasma. IEEE Trans. Plasma Sci. 1996, 24, 1188. [Google Scholar] [CrossRef]
- Laroussi, M.; Alexeff, I.; Richardson, J.P.; Dyer, F.F. The Resistive Barrier Discharge. IEEE Trans. Plasma Sci. 2002, 30, 158. [Google Scholar] [CrossRef]
- Okazaki, S.; Kogoma, M.; Uehara, M.; Kimura, Y. Appearance of a Stable Glow Discharge in Air, Argon, Oxygen and Nitrogen at Atmospheric Pressure using a 50 Hz Source. J. Phys. D Appl. Phys. 1993, 26, 889. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Lu, M.; Pu, Y. Study on Atmospheric Pressure Glow Discharge. Plasma Sources Sci. Technol. 2003, 12, 358. [Google Scholar] [CrossRef]
- Laroussi, M. Low Temperature Plasma-Based Sterilization: Overview and State-of-the-Art. Plasma Proc. Polym. 2005, 2, 391. [Google Scholar] [CrossRef]
- Fridman, G.; Friedman, G.; Gutsol, A.; Shekhter, A.B.; Vasilets, V.N.; Fridman, A. Applied plasma medicine. Plasma Process. Polym. 2008, 5, 503. [Google Scholar] [CrossRef]
- Laroussi, M. Low Temperature Plasmas for Medicine. IEEE Trans. Plasma Sci. 2009, 37, 714. [Google Scholar] [CrossRef]
- Von Woedtke, T.; Reuter, S.; Masur, K.; Weltmann, K.-D. Plasma for Medicine. Phys. Repts. 2013, 530, 291. [Google Scholar] [CrossRef]
- Isbary, G.; Morfill, G.; Schmidt, H.U.; Georgi, M.; Ramrath, K.; Heinlin, J. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br. J. Dermatol. 2010, 163, 78. [Google Scholar] [CrossRef]
- Keidar, M.; Walk, R.; Shashurin, A.; Srinivasan, P.; Sandler, A.; Dasgupta, S.; Ravi, R.; Guerrero-Preston, R.; Trink, B. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br. J. Cancer 2011, 105, 1295. [Google Scholar] [CrossRef]
- Barekzi, N.; Laroussi, M. Effects of Low Temperature Plasmas on Cancer Cells. Plasma Process. Polym. 2013, 10, 1039. [Google Scholar] [CrossRef]
- Lu, X.; Naidis, G.V.; Laroussi, M.; Reuter, S.; Graves, D.B.; Ostrikov, K. Reactive Species in Non-equilibrium Atmospheric Pressure Plasma: Generation, Transport, and Biological Effects. Phys. Rep. 2016, 630, 1. [Google Scholar] [CrossRef] [Green Version]
- Richardson, J.P.; Dyer, F.; Dobbs, F.C.; Alexeff, I.; Laroussi, M. On the Use of the Resistive Barrier Discharge to Kill Bacteria: Recent Results. In Proceedings of the International Conference Plasma Science, New Orleans, LA, USA, 4–7 June 2000. [Google Scholar]
- Laroussi, M.; Richardson, J.P.; Dobbs, F.C. Effects of Non-Equilibrium Atmospheric Pressure Plasmas on the Heterotrophic Pathways of Bacteria and on their Cell Morphology. Appl. Phys. Lett. 2002, 81, 772. [Google Scholar] [CrossRef] [Green Version]
- Laroussi, M.; Mendis, D.A.; Rosenberg, M. Plasma Interaction with Microbes. New J. Phys. 2003, 5, 41. [Google Scholar] [CrossRef]
- Thiyagrajan, M.; Alexeff, I.; Parameswaran, S.; Beebe, S. Atmospheric pressure resistive barrier cold plasma for biological decontamination. IEEE Trans. Plasma Sci. 2005, 33, 322. [Google Scholar] [CrossRef]
- Uhm, H.S.; Kang, J.G.; Choi, E.H.; Cho, G.S. Sterilization of medical equipment and contaminated articles by making use of a resistive barrier discharge. J. Korean Phys. Soc. 2012, 61, 551. [Google Scholar] [CrossRef]
- Thiyagrajan, M.; Anderson, H.; Gonzales, X.F. Induction of apoptosis in human myeloid leukemia cells by remote exposure of resistive barrier cold plasma. Biotechnol. Bioeng. 2014, 11, 565. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laroussi, M. The Resistive Barrier Discharge: A Brief Review of the Device and Its Biomedical Applications. Plasma 2021, 4, 75-80. https://doi.org/10.3390/plasma4010004
Laroussi M. The Resistive Barrier Discharge: A Brief Review of the Device and Its Biomedical Applications. Plasma. 2021; 4(1):75-80. https://doi.org/10.3390/plasma4010004
Chicago/Turabian StyleLaroussi, Mounir. 2021. "The Resistive Barrier Discharge: A Brief Review of the Device and Its Biomedical Applications" Plasma 4, no. 1: 75-80. https://doi.org/10.3390/plasma4010004