A Plasma-Based Decontamination Process Reveals Potential for an in-Process Surface-Sanitation Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasma Process
2.2. Technical Specimens and Their Characterization
2.3. Microbiology and Microbial Preparation of the Technical Specimens
2.4. Theoretical Experimental Handling
3. Results
3.1. Characterization of the Technical Specimens
3.2. RFs Depending on the Microorganism
3.3. RFs Depending on the Surface Material
3.4. RFs Depending on the Pre-Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garcia Martinez, M.; Fearne, A.; Caswell, J.A.; Henson, S. Co-regulation as a possible model for food safety governance: Opportunities for public–private partnerships. Food Policy 2007, 32, 299–314. [Google Scholar] [CrossRef]
- Holah, J.T. Industrial Monitoring: Hygiene in Food Processing. In Biofilms—Science and Technology; Melo, L.F., Bott, T.R., Fletcher, M., Capdeville, B., Eds.; Springer: Dordrecht, The Netherlands, 1992; pp. 645–659. [Google Scholar]
- Bruhn, C.M. Consumer concerns: Motivating to action. Emerg. Infect. Dis. 1997, 3, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Powell, D.A.; Jacob, C.J.; Chapman, B.J. Enhancing food safety culture to reduce rates of foodborne illness. Food Control 2011, 22, 817–822. [Google Scholar] [CrossRef]
- Novotny, L.; Dvorska, L.; Lorencova, A.; Beran, V.; Pavlik, I. Fish: A potential source of bacterial pathogenes for human beings. Vet. Med. 2004, 49, 343–358. [Google Scholar] [CrossRef]
- Tham, W.; Ericsson, H.; Loncarevic, S.; Unnerstad, H.; Danielsson-Tham, M.L. Lessons from an outbreak of listeriosis related to vacuum-packed gravad and cold-smoked fish. Int. J. Food Microbiol. 2000, 62, 173–175. [Google Scholar] [CrossRef]
- EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreakes in 2015. EFSA J. 2015, 12, 173–175. [Google Scholar]
- LundÉN, J.M.; Autio, T.J.; SjÖBerg, A.M.; Korkeala, H.J. Persistent and Nonpersistent Listeria monocytogenes Contamination in Meat and Poultry Processing Plants. J. Food Prot. 2003, 66, 2062–2069. [Google Scholar] [CrossRef]
- LundÉN, J.M.; Autio, T.J.; Korkeala, H.J. Transfer of Persistent Listeria monocytogenes Contamination between Food-Processing Plants Associated with a Dicing Machine. J. Food Prot. 2002, 65, 1129–1133. [Google Scholar] [CrossRef]
- Rivera-Betancourt, M.; Shackelford, S.D.; Arthur, T.M.; Westmoreland, K.E.; Bellinger, G.; Rossman, M.; Reagan, J.O.; Koohmaraie, M. Prevalence of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella in Two Geographically Distant Commercial Beef Processing Plants in the United States. J. Food Prot. 2004, 67, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.S.; Al-Taher, F.M.; Moorman, M.; DeVries, J.W.; Tippett, R.; Swanson, K.M.J.; Fu, T.-J.; Salter, R.; Dunaif, G.; Estes, S.; et al. Cleaning and Other Control and Validation Strategies to Prevent Allergen Cross-Contact in Food-Processing Operations. J. Food Prot. 2008, 71, 445–458. [Google Scholar] [CrossRef]
- Poulis, J.A.; de Pijper, M.; Mossel, D.A.A.; Dekkers, P.P.A. Assessment of cleaning and disinfection in the food industry with the rapid ATP-bioluminescence technique combined with the tissue fluid contamination test and a conventional microbiological method. Int. J. Food Microbiol. 1993, 20, 109–116. [Google Scholar] [CrossRef]
- Mettler, E.; Carpentier, B. Variations over Time of Microbial Load and Physicochemical Properties of Floor Materials after Cleaning in Food Industry Premises. J. Food Prot. 1998, 61, 57–65. [Google Scholar] [CrossRef]
- De Oliveira, F.A.; Neto, O.C.; dos Santos, L.M.R.; Ferreira, E.H.R.; Rosenthal, A. Effect of high pressure on fish meat quality—A review. Trends Food Sci. Technol. 2017, 66, 1–19. [Google Scholar] [CrossRef]
- Abdallah, M.; Chataigne, G.; Ferreira-Theret, P.; Benoliel, C.; Drider, D.; Dhulster, P.; Chihib, N.-E. Effect of growth temperature, surface type and incubation time on the resistance of Staphylococcus aureus biofilms to disinfectants. Appl. Microbiol. Biotechnol. 2014, 98, 2597–2607. [Google Scholar] [CrossRef] [PubMed]
- Sundheim, G.; Langsrud, S.; Heir, E.; Holck, A.L. Bacterial resistance to disinfectants containing quaternary ammonium compounds. Int. Biodeterior. Biodegrad. 1998, 41, 235–239. [Google Scholar] [CrossRef]
- Itoh, Y.; Sugita-Konishi, Y.; Kasuga, F.; Iwaki, M.; Hara-Kudo, Y.; Saito, N.; Noguchi, Y.; Konuma, H.; Kumagai, S. Enterohemorrhagic Escherichia coli O157:H7 Present in Radish Sprouts. Appl. Environ. Microbiol. 1998, 64, 1532–1535. [Google Scholar] [CrossRef]
- Lang, M.M.; Ingham, B.H.; Ingham, S.C. Efficacy of novel organic acid and hypochlorite treatments for eliminating Escherichia coli O157:H7 from alfalfa seeds prior to sprouting. Int. J. Food Microbiol. 2000, 58, 73–82. [Google Scholar] [CrossRef]
- Schnabel, U.; Schmidt, C.; Stachowiak, J.; Bösel, A.; Andrasch, M.; Ehlbeck, J. Plasma processed air for biological decontamination of PET and fresh plant tissue. Plasma Process. Polym. 2018, 15, 185–192. [Google Scholar] [CrossRef]
- Carpentier, B.; Cerf, O. Review—Persistence of Listeria monocytogenes in food industry equipment and premises. Int. J. Food Microbiol. 2011, 145, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Denes, A.R.; Somers, E.B.S.; Wong, A.C.L.; Denes, F.S. Plasma-Aided Treatment of Surfaces against Bacterial Attachment and Biofilm Deposition. U.S. Patent 6096564A, 1 August 2000. [Google Scholar]
- Baier, M.; Gorgen, M.; Ehlbeck, J.; Knorr, D.; Herppich, W.B.; Schluter, O. Non-thermal atmospheric pressure plasma: Screening for gentle process conditions and antibacterial efficiency on perishable fresh produce. Innov. Food Sci. Emerg. Technol. 2014, 22, 147–157. [Google Scholar] [CrossRef]
- Andrasch, M.; Stachowiak, J.; Schlüter, O.; Schnabel, U.; Ehlbeck, J. Scale-up to pilot plant dimensions of plasma processed water generation for fresh-cut lettuce treatment. Food Packag. Shelf Life 2017, 14, 40–45. [Google Scholar] [CrossRef]
- Ehlbeck, J.; Schnabel, U.; Polak, M.; Winter, J.; von Woedtke, T.; Brandenburg, R.; von dem Hagen, T.; Weltmann, K.D. Low temperature atmospheric pressure plasma sources for microbial decontamination. J. Phys. D-Appl. Phys. 2011, 44, 013002. [Google Scholar] [CrossRef]
- Ehlbeck, J.; Ohl, A.; Maass, M.; Krohmann, U.; Neumann, T. Moving atmospheric microwave plasma for surface and volume treatment. Surf. Coat. Technol. 2003, 174, 493–497. [Google Scholar] [CrossRef]
- Schnabel, U.; Niquet, R.; Schlüter, O.; Gniffke, H.; Ehlbeck, E. Decontamination and sensory properties of microbiologically contaminated fresh fruits and vegetables by microwave plasma processed air (PPA). J. Food Process. Preserv. 2014, 39, 653–662. [Google Scholar] [CrossRef]
- Schnabel, U.; Niquet, R.; Krohmann, U.; Winter, J.; Schluter, O.; Weltmann, K.D.; Ehlbeck, J. Decontamination of Microbiologically Contaminated Specimen by Direct and Indirect Plasma Treatment. Plasma Process. Polym. 2012, 9, 569–575. [Google Scholar] [CrossRef]
- Muranyi, P.; Wunderlich, J.; Heise, M. Sterilization efficiency of a cascaded dielectric barrier discharge. J. Appl. Microbiol. 2007, 103, 1535–1544. [Google Scholar] [CrossRef]
- Schnabel, U.; Andrasch, M.; Weltmann, K.D.; Ehlbeck, J. Inactivation of Vegetative Microorganisms and Bacillus atrophaeus Endospores by Reactive Nitrogen Species (RNS). Plasma Process. Polym. 2014, 11, 110–116. [Google Scholar] [CrossRef]
- Limpert, E.; Stahel, W.A.; Abbt, M. Log-normal Distributions across the Sciences: Keys and Clues: On the charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions, which can provide deeper insight into variability and probability—Normal or log-normal: That is the question. Bioscience 2001, 51, 341–352. [Google Scholar]
- Lambert, R.J.W.; Johnston, M.D. Disinfection kinetics: A new hypothesis and model for the tailing of log-survivor/time curves. J. Appl. Microbiol. 2000, 88, 907–913. [Google Scholar] [CrossRef]
- Baier, M.; Foerster, J.; Schnabel, U.; Knorr, D.; Ehlbeck, J.; Herppich, W.B.; Schluter, O. Direct non-thermal plasma treatment for the sanitation of fresh corn salad leaves: Evaluation of physical and physiological effects and antimicrobial efficacy. Postharvest Biol. Technol. 2013, 84, 81–87. [Google Scholar] [CrossRef]
- Ragni, L.; Berardinelli, A.; Vannini, L.; Montanari, C.; Sirri, F.; Guerzoni, M.E.; Guarnieri, A. Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs. J. Food Eng. 2010, 100, 125–132. [Google Scholar] [CrossRef]
- Montie, T.C.; Kelly-Wintenberg, K.; Roth, J.R. An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans. Plasma Sci. 2000, 28, 41–50. [Google Scholar] [CrossRef]
- Rossi, F.; Kylián, O.; Hasiwa, M. Decontamination of Surfaces by Low Pressure Plasma Discharges. Plasma Process. Polym. 2006, 3, 431–442. [Google Scholar] [CrossRef]
- Deilmann, M.; Halfmann, H.; Bibinov, N.; Wunderlich, J.; Awakowicz, P. Low-Pressure Microwave Plasma Sterilization of Polyethylene Terephthalate Bottles. J. Food Prot. 2008, 71, 2119–2123. [Google Scholar] [CrossRef]
- Koulik, P.; Begounov, S.; Goloviatinskii, S. Atmospheric Plasma Sterilization and Deodorization of Dielectric Surfaces. Plasma Chem. Plasma Process. 1999, 19, 311–326. [Google Scholar] [CrossRef]
- Schnabel, U.; Andrasch, M.; Stachowiak, J.; Weit, C.; Weihe, T.; Schmidt, C.; Muranyi, P.; Schlüter, O.; Ehlbeck, J. Sanitation of fresh-cut endive lettuce by plasma processed tap water (PPtW)—Up-scaling to industrial level. Innov. Food Sci. Emerg. Technol. 2019, 53, 45–55. [Google Scholar] [CrossRef]
- Salton, M.R.J. Studies of the bacterial cell wall: IV. The composition of the cell walls of some gram-positive and gram-negative bacteria. Biochim. Biophys. Acta 1953, 10, 512–523. [Google Scholar] [CrossRef]
- Schnabel, U.; Oehmigen, K.; Naujox, K.; Rackow, K.; Krohmann, U.; Schmitt, O.; Schlüter, O.; Weltmann, K.D.; Von Woedtke, T.; Ehlbeck, J. Inactivation of Escherichia coli K-12 and enterohemorrhagic Escherichia coli (EHEC) by atmospheric pressure plasma. J. Agric. Sci. Appl. 2014, 3, 81–91. [Google Scholar] [CrossRef]
- Poole, R.K. Nitric oxide and nitrosative stress tolerance in bacteria. Biochem. Soc. Trans. 2005, 33, 176–180. [Google Scholar] [CrossRef]
- Poole, R.K.; Hughes, M.N. New functions for the ancient globin family: Bacterial responses to nitric oxide and nitrosative stress. Mol. Microbiol. 2000, 36, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Binet, M.R.B.; Cruz-Ramos, H.; Laver, J.; Hughes, M.N.; Poole, R.K. Nitric oxide releases intracellular zinc from prokaryotic metallothionein in Escherichia coli. FEMS Microbiol. Lett. 2002, 213, 121–126. [Google Scholar] [CrossRef]
- Forrester, M.T.; Foster, M.W. Protection from nitrosative stress: A central role for microbial flavohemoglobin. Free Radic. Biol. Med. 2012, 52, 1620–1633. [Google Scholar] [CrossRef]
- Frey Alexander, D.; Farrés, J.; Bollinger Christian, J.T.; Kallio Pauli, T. Bacterial Hemoglobins and Flavohemoglobins for Alleviation of Nitrosative Stress in Escherichia coli. Appl. Environ. Microbiol. 2002, 68, 4835–4840. [Google Scholar] [CrossRef]
- Kashef, N.; Hamblin, M.R. Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation? Drug Resist. Updates 2017, 31, 31–42. [Google Scholar] [CrossRef]
- Storz, G.; Imlayt, J.A. Oxidative stress. Curr. Opin. Microbiol. 1999, 2, 188–194. [Google Scholar] [CrossRef]
- Farr, S.B.; D’Ari, R.; Touati, D. Oxygen-dependent mutagenesis in Escherichia coli lacking superoxide dismutase. Proc. Natl. Acad. Sci. USA 1986, 83, 8268–8272. [Google Scholar] [CrossRef]
- McCord, J.M.; Keele, B.B.; Fridovich, I. An Enzyme-Based Theory of Obligate Anaerobiosis: The Physiological Function of Superoxide Dismutase. Proc. Natl. Acad. Sci. USA 1971, 68, 1024–1027. [Google Scholar] [CrossRef]
- Scott, M.D.; Meshnick, S.R.; Eaton, J.W. Superoxide dismutase-rich bacteria. Paradoxical increase in oxidant toxicity. J. Biol. Chem. 1987, 262, 3640–3645. [Google Scholar] [CrossRef]
- Aertsen, A.; Michiels, C.W. Stress and How Bacteria Cope with Death and Survival. Crit. Rev. Microbiol. 2004, 30, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.D. Formation of Viable but Nonculturable Cells. In Starvation in Bacteria; Kjelleberg, S., Ed.; Springer: Boston, MA, USA, 1993; pp. 239–272. [Google Scholar]
- Ramamurthy, T.; Ghosh, A.; Pazhani, G.P.; Shinoda, S. Current Perspectives on Viable but Non-Culturable (VBNC) Pathogenic Bacteria. Front. Public Health 2014, 2, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rice, S.A.; McDougald, D.; Kjelleberg, S. Vibrio vulnificus: A physiological and genetic approach to the viable but nonculturable response. J. Infect. Chemother. 2000, 6, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I.; Shahamat, M.; Kirchman, P.A.; Russek-Cohen, E.; Colwell, R.R. Methionine uptake and cytopathogenicity of viable but nonculturable Shigella dysenteriae type 1. Appl. Environ. Microbiol. 1994, 60, 3573–3578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindbäck, T.; Rottenberg, M.E.; Roche, S.M.; Rørvik, L.; Marit, D. The ability to enter into an avirulent viable but non-culturable (VBNC) form is widespread among Listeria monocytogenes isolates from salmon, patients and environment. Vet. Res. 2010, 41, 8. [Google Scholar] [CrossRef]
- Valérie, B.; Michel, F.; Eric, D.; Florence, J.; Jean-Michel, C. Environmental and physico-chemical factors induce VBNC state in Listeria monocytogenes. Vet. Res. 2002, 33, 359–370. [Google Scholar]
- Keer, J.T.; Birch, L. Molecular methods for the assessment of bacterial viability. J. Microbiol. Methods 2003, 53, 175–183. [Google Scholar] [CrossRef]
- Morishige, Y.; Fujimori, K.; Amano, F. Use of flow cytometry for quantitative analysis of metabolism of VBNC (Viable but Non-Culturable) Salmonella. Biol. Pharm. Bull. 2015, 38, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, R.A.; Heggebø, R.; Sunde, E.B.; Skjervheim, M. Staphylococcus aureus and Listeria monocytogenes in Norwegian raw milk cheese production. Food Microbiol. 2011, 28, 492–496. [Google Scholar] [CrossRef]
- Garcia-Armisen, T.; Servais, P. Enumeration of viable E. coli in rivers and wastewaters by fluorescent in situ hybridization. J. Microbiol. Methods 2004, 58, 269–279. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, R.; Li, L.; Peters, B.M.; Li, B.; Lin, C.-w.; Chuang, T.-L.; Chen, D.; Zhao, X.; Xiong, Z.; et al. Viable but non-culturable state and toxin gene expression of enterohemorrhagic Escherichia coli O157 under cryopreservation. Res. Microbiol. 2017, 168, 188–193. [Google Scholar] [CrossRef]
- Cunningham, E.; O’Byrne, C.; Oliver, J.D. Effect of weak acids on Listeria monocytogenes survival: Evidence for a viable but nonculturable state in response to low pH. Food Control 2009, 20, 1141–1144. [Google Scholar] [CrossRef]
- Wan, C.; Zhang, Q.; Lee, D.-J.; Wang, Y.; Li, J. Long-term storage of aerobic granules in liquid media: Viable but non-culturable status. Bioresour. Technol. 2014, 166, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Laroussi, M. Nonthermal decontamination of biological media by atmospheric-pressure plasmas: Review, analysis, and prospects. IEEE Trans. Plasma Sci. 2002, 30, 1409–1415. [Google Scholar] [CrossRef]
- Azimi, Y.; Chen, X.; Allen, D.G.; Pileggi, V.; Seto, P.; Droppo, I.G.; Farnood, R.R. UV disinfection of wastewater flocs: The effect of secondary treatment conditions. Water Sci. Technol. 2013, 67, 2719–2723. [Google Scholar] [CrossRef] [PubMed]
- Gusbeth, C.; Frey, W.; Volkmann, H.; Schwartz, T.; Bluhm, H. Pulsed electric field treatment for bacteria reduction and its impact on hospital wastewater. Chemosphere 2009, 75, 228–233. [Google Scholar] [CrossRef]
- Beachey, E.H. Bacterial Adherence: Adhesin-Receptor Interactions Mediating the Attachment of Bacteria to Mucosal Surfaces. J. Infect. Dis. 1981, 143, 325–345. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilm Formation: A Clinically Relevant Microbiological Process. Clin. Infect. Dis. 2001, 33, 1387–1392. [Google Scholar] [CrossRef]
- Fukuzaki, S.; Urano, H.; Nagata, K. Adsorption of protein onto stainless-steel surfaces. J. Ferment. Bioeng. 1995, 80, 6–11. [Google Scholar] [CrossRef]
- Roach, P.; Farrar, D.; Perry, C.C. Interpretation of Protein Adsorption: Surface-Induced Conformational Changes. J. Am. Chem. Soc. 2005, 127, 8168–8173. [Google Scholar] [CrossRef]
- Laca, A.; Mousia, Z.; Dı́az, M.; Webb, C.; Pandiella, S.S. Distribution of microbial contamination within cereal grains. J. Food Eng. 2006, 72, 332–338. [Google Scholar] [CrossRef]
- Halfmann, H.; Bibinov, N.; Wunderlich, J.; Awakowicz, P. A double inductively coupled plasma for sterilization of medical devices. J. Phys. D Appl. Phys. 2007, 40, 4145–4154. [Google Scholar] [CrossRef]
- Balwanz, W.W. Plasma Cleaning of Surfaces. In Surface Contamination: Genesis, Detection, and Control; Mittal, K.L., Ed.; Springer: Boston, MA, USA, 1979; pp. 255–269. [Google Scholar]
- Shannon, R.L.G. R.B: Plasma Cleaning Device, in Other—Patent, B. CO, Editor 1978, Boeing CO: US. p. 5. Available online: https://patents.google.com/patent/US4088926A/en (accessed on 17 August 2022).
- Brauge, T.; Faille, C.; Leleu, G.; Denis, C.; Hanin, A.; Midelet, G. Treatment with disinfectants may induce an increase in viable but non culturable populations of Listeria monocytogenes in biofilms formed in smoked salmon processing environments. Food Microbiol. 2020, 92, 103548. [Google Scholar] [CrossRef] [PubMed]
- Liebmann, J.; Scherer, J.; Bibinov, N.; Rajasekaran, P.; Kovacs, R.; Gesche, R.; Awakowicz, P.; Kolb-Bachofen, V. Biological effects of nitric oxide generated by an atmospheric pressure gas-plasma on human skin cells. Nitric Oxide 2011, 24, 8–16. [Google Scholar] [CrossRef]
- Frohling, A.; Durek, J.; Schnabel, U.; Ehlbeck, J.; Bolling, J.; Schluter, O. Indirect plasma treatment of fresh pork: Decontamination efficiency and effects on quality attributes. Innov. Food Sci. Emerg. Technol. 2012, 16, 381–390. [Google Scholar] [CrossRef]
- Misra, N.N.; Tiwari, B.K.; Raghavarao, K.S.M.S.; Cullen, P.J. Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Eng. Rev. 2011, 3, 159–170. [Google Scholar] [CrossRef]
- Critzer, F.J.; Kelly-Wintenberg, K.; South, S.L.; Golden, D.A. Atmospheric Plasma Inactivation of Foodborne Pathogens on Fresh Produce Surfaces. J. Food Prot. 2007, 70, 2290–2296. [Google Scholar] [CrossRef]
- Marsili, L.; Espie, S.; Anderson, J.G.; MacGregor, S.J. Plasma inactivation of food-related microorganisms in liquids. Radiat. Phys. Chem. 2002, 65, 507–513. [Google Scholar] [CrossRef]
- Moreau, M.; Orange, N.; Feuilloley, M.G.J. Non-thermal plasma technologies: New tools for bio-decontamination. Biotechnol. Adv. 2008, 26, 610–617. [Google Scholar] [CrossRef]
- Perni, S.; Shama, G.; Kong, M.G. Cold Atmospheric Plasma Disinfection of Cut Fruit Surfaces Contaminated with Migrating Microorganisms. J. Food Prot. 2008, 71, 1619–1625. [Google Scholar] [CrossRef]
- Yu, H.; Perni, S.; Shi, J.J.; Wang, D.Z.; Kong, M.G.; Shama, G. Effects of cell surface loading and phase of growth in cold atmospheric gas plasma inactivation of Escherichia coli K12. J. Appl. Microbiol. 2006, 101, 1323–1330. [Google Scholar] [CrossRef]
Pre-Treatment [s] | Post-Treatment [min] |
---|---|
5 | 1 |
3 | |
5 | |
15 | 1 |
3 | |
5 | |
50 | 1 |
3 | |
5 |
Materials | Relative Area [µm2] | Roughness [nm] |
---|---|---|
Polyethylene (PE) | 255.57 ± 1.24 | 13.55 ± 2.3 |
Glass (G) | 165.26 ± 1.39 | 1.33 × 10−4 ± 5.35 × 10−5 |
High grade steel (HGS) | 161.46 ± 2.85 | 6.16 × 10−6 ± 2.41 × 10−6 |
Microorganisms | DSM Number | ATCC/NCTC Number | Nutrient Solution | Distributor Nutrient Solution | Agar Plates | Distributor Agar Plates | Growth Temp. [°C] |
---|---|---|---|---|---|---|---|
Listeria monocytogenes | DSM 20600 | ATCC 15313/NCTC 10357 | Standard nutrient solution I | Carl Roth GmbH, Karlsruhe, Germany | Standard nutrient agar I | Carl Roth GmbH, Karlsruhe, Germany | 37 |
Staphyloccocus aureus | DSM 799 | ATCC 6538/NCTC 10788 | Standard nutrient solution I | Carl Roth GmbH, Karlsruhe, Germany | Trypticase soy agar (TSA) | Carl Roth GmbH, Karlsruhe, Germany | 37 |
Escherichia coli | DSM 11250 | NCTC 10538 | Standard nutrient solution I | Carl Roth GmbH, Karlsruhe, Germany | Trypticase soy agar (TSA) | Carl Roth GmbH, Karlsruhe, Germany | 37 |
Salmonella enterica subsp. enterica serovar Typhimurium | DSM 17058 | ATCC 43971/NCTC 12416 | Nutrient solution I | sifin diagnostics GmbH, Berlin, Germany | Xylose lysine deoxycholate agar | sifin diagnostics GmbH, Berlin, Germany | 37 |
Salmonella enterica subps. enterica serovar Enteritidis | DSM 17420 | ATCC 13076 | Nutrient solution I | sifin diagnostics GmbH, Berlin, Germany | Xylose lysine deoxycholate agar | sifin diagnostics GmbH, Berlin, Germany | 37 |
Microorganism | Highest RF | Treatment Regime | Lowest RF | Treatment Regime |
---|---|---|---|---|
L. monocytogenes | below DL (HGS) | PT: 50 s, POT: 5 min | 0.51 ± 0.11 (PE) | PT: 5 s, POT: 1 min |
S. aureus | below DL (G) | PT: 50 s, POT: 5 min | 0.57 ± 0.28 (PE) | PT: 5 s, POT: 1 min |
E. coli | below DL (G) | PT: 50 s, POT: 5 min | 0.35 ± 0.39 (HGS) | PT: 5 s, POT: 1 min |
Typhimurium | below DL (HGS + G) | PT: 50 s, POT: 3–5 min | 0.57 ± 0.72 (G) | PT: 15 s, POT: 3 min |
Enteritidis | below DL (HGS + G + PE) | PT: 50 s, POT: 3–5 min | 0.57 ± 0.77 (HGS) | PT: 5 s, POT: 1 min |
Material | Highest RF (MO) | Treatment Regime | Lowest RF (MO) | Treatment Regime |
---|---|---|---|---|
PE | below DL (Enteritidis) | PT: 50 s, POT: 3 min | 0.51 ± 0.11 (L. monocytogenes) | PT: 5 s, POT: 1 min |
G | below DL (S. aureus, E. coli, Enteritidis) | PT: 50 s, POT: 5 min | 0.57 ± 0.72 (Typhimurium) | PT: 15 s, POT: 1 min |
HGS | below DL (Enteritidis, Typhimurium, L. monocytogenes) | PT: 50 s, POT: 3–5 min | 0.35 ± 0.39 (E. coli) | PT: 5 s, POT: 1 min |
PT Time | Highest RF (MO) | Treatment Regime | Lowest RF (MO) | Treatment Regime |
---|---|---|---|---|
5 s | 1.70 ± 0.4 (S. aureus) | POT: 3 min/HGS | 0.35 ± 0.39 (E.coli) | POT: 1 min/PE |
15 s | 2.49 ± 0.25 (E.coli) | POT: 3 min/G | 0.48 ± 0.41 (Enteritidis) | POT: 1 min/PE |
50 s | below DL (Enteritidis, E. coli, S. aureus, Typhimurium, L. monocytogenes) | POT: 3–5 min/PE, G, HGS | 0.52 ± 0.18 (E. coli) | POT: 1 min/HGS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weihe, T.; Schnabel, U.; Andrasch, M.; Stachowiak, J.; Tübbecke, F.; Ehlbeck, J. A Plasma-Based Decontamination Process Reveals Potential for an in-Process Surface-Sanitation Method. Plasma 2022, 5, 351-365. https://doi.org/10.3390/plasma5030027
Weihe T, Schnabel U, Andrasch M, Stachowiak J, Tübbecke F, Ehlbeck J. A Plasma-Based Decontamination Process Reveals Potential for an in-Process Surface-Sanitation Method. Plasma. 2022; 5(3):351-365. https://doi.org/10.3390/plasma5030027
Chicago/Turabian StyleWeihe, Thomas, Uta Schnabel, Mathias Andrasch, Jörg Stachowiak, Frank Tübbecke, and Jörg Ehlbeck. 2022. "A Plasma-Based Decontamination Process Reveals Potential for an in-Process Surface-Sanitation Method" Plasma 5, no. 3: 351-365. https://doi.org/10.3390/plasma5030027
APA StyleWeihe, T., Schnabel, U., Andrasch, M., Stachowiak, J., Tübbecke, F., & Ehlbeck, J. (2022). A Plasma-Based Decontamination Process Reveals Potential for an in-Process Surface-Sanitation Method. Plasma, 5(3), 351-365. https://doi.org/10.3390/plasma5030027