Energy Efficiency of Plasma Jets: Electrical Modeling Based on Experimental Results
Abstract
:1. Introduction
2. Experimental Apparatus
3. Electrical Model
4. Recursive Least Squares Method
- : parameter vector to be estimated;
- : measurement vector.
5. Results and Discussion
5.1. Estimated Parameters
- : pre-discharge capacity;
- : pre-discharge current;
- : pre-discharge voltage.
5.2. Electrical Study of the Plasma Jet Reactor
5.2.1. Delivered Power
5.2.2. Discharge Power
- : discharge power;
- : resistive current;
- : estimated resistance.
5.2.3. Plasma Energy Efficiency
5.3. Effect of the Applied Voltage
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koga-Ito, C.Y.; Kostov, K.G.; Miranda, F.S.; Milhan, N.V.M.; Azevedo Neto, N.F.; Nascimento, F.; Pessoa, R.S. Cold Atmospheric Plasma as a Therapeutic Tool in Medicine and Dentistry. Plasma Chem. Plasma Process. 2024, 44, 1393–1429. [Google Scholar] [CrossRef]
- Adesina, K.; Lin, T.-C.; Huang, Y.-W.; Locmelis, M.; Han, D. A Review of Dielectric Barrier Discharge Cold Atmospheric Plasma for Surface Sterilization and Decontamination. IEEE Trans. Radiat. Plasma Med. Sci. 2024, 8, 295–306. [Google Scholar] [CrossRef]
- Walden, R.; Goswami, A.; Scally, L.; McGranaghan, G.; Cullen, P.J.; Pillai, S.C. Nonthermal plasma technologies for advanced functional material processing and current applications: Opportunities and challenges. J. Environ. Chem. Eng. 2024, 12, 113541. [Google Scholar] [CrossRef]
- Das, S.; Mishra, B.; Mohapatra, S.; Tripathi, B.P.; Kar, S.; Bhatt, S. Efficacy of argon cold atmospheric pressure plasma jet on hospital surface decontamination and its impact on the surface property. Phys. Scr. 2024, 99, 025601. [Google Scholar] [CrossRef]
- Gowri, K.N.; Güler, H.K.; King, M.W. Plasma in biomedical applications. In Advances in Plasma Treatment of Textile Surfaces; Woodhead Publishing: Sawston, UK, 2024; Available online: https://www.sciencedirect.com/science/article/pii/B9780443190797000099 (accessed on 30 September 2024).
- Wree, J.L.; Rogalla, D.; Ostendorf, A.; Schierbaum, K.D.; Devi, A. Plasma-Enhanced Atomic Layer Deposition of Molybdenum Oxide Thin Films at Low Temperatures for Hydrogen Gas Sensing. ACS Appl. Mater. Interfaces 2022, 15, 14502–14512. [Google Scholar] [CrossRef]
- Laghi, G.; Franco, D.; Condorelli, G.G.; Gallerani, R.; Guglielmino, S.; Laurita, R.; Morganti, D.; Traina, F.; Conoci, S.; Gherardi, M. Control strategies for atmospheric pressure plasma polymerization of fluorinated silane thin films with antiadhesive properties. Plasma Process. Polym. 2023, 20, 2200194. [Google Scholar] [CrossRef]
- Farhadi, K.; Romanos, G.E. Plasma Cleaning for Implant Surfaces to Improve Implant Success. In Saving Dental Implants; Wiley: Hoboken, NJ, USA, 2024; pp. 534–544. [Google Scholar] [CrossRef]
- Suschek, C. Plasma Applications in Biomedicine; MDPI: Basel, Switzerland, 2024; Available online: https://www.mdpi.com/books/reprint/9534 (accessed on 30 September 2024).
- Kazemi, A.; Nicol, M.J.; Bilén, S.G.; Kirimanjeswara, G.S.; Knecht, S.D. Cold Atmospheric Plasma Medicine: Applications, Challenges, and Opportunities for Predictive Control. Plasma 2024, 7, 233–257. [Google Scholar] [CrossRef]
- Li, Y.; Tan, S.; Liu, D.; Zhang, Y. Molecular dynamics simulation research on the interaction between plasma and living organisms: A comprehensive review. Plasma Process. Polym. 2024, 21, 2300119. [Google Scholar] [CrossRef]
- Dufour, T. From basics to frontiers: A comprehensive review of plasma-modified and plasma-synthesized polymer films. Polymers 2023, 15, 3607. [Google Scholar] [CrossRef]
- Rahman, T.U.; Roy, H.; Fariha, A.; Shoronika, A.Z.; Al-Mamun, M.R.; Islam, S.Z.; Islam, M.S.; Marwani, H.M.; Islam, A.; Alsukaibi, A.K.; et al. Progress in plasma doping semiconductor photocatalysts for efficient pollutant remediation and hydrogen generation. Sep. Purif. Technol. 2023, 320, 124141. [Google Scholar] [CrossRef]
- Koinuma, H.; Ohkubo, H.; Hashimoto, T.; Inomata, K.; Shiraishi, T.; Miyanaga, A.; Hayashi, S. Development and application of a microbeam plasma generator. Appl. Phys. Lett. 1992, 60, 816. [Google Scholar] [CrossRef]
- Stoffels, E.; Flikweert, A.J.; Stoffels, W.W.; Kroesen, G. Plasma needle: A non-destructive atmospheric plasma source for fine surface treatment of (bio)materials. Plasma Sources Sci. Technol. 2002, 11, 383. [Google Scholar] [CrossRef]
- Laroussi, M.; Lu, X. Room-temperature atmospheric pressure plasma plume for biomedical applications. Appl. Phys. Lett. 2005, 87, 113902. [Google Scholar] [CrossRef]
- Förster, S.; Mohr, C.; Viöl, W. Investigations of an atmospheric pressure plasma jet by optical emission spectroscopy. Surf. Coat. Technol. 2005, 200, 827. [Google Scholar] [CrossRef]
- Teschke, M.; Kedzierski, J.; Finantu-Dinu, E.G.; Korzec, D.; Engemann, J. High speed photographs of a dielectric barrier atmospheric pressure plasma jet. IEEE Trans. Plasma Sci. 2005, 33, 310. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, J.; Wang, D.; Wang, X. A novel cold plasma jet generated by atmospheric dielectric barrier capillary discharge. Thin Solid Film. 2006, 506, 404. [Google Scholar] [CrossRef]
- Walsh, J.L.; Shi, J.J.; Kong, M.G. Contrasting characteristics of pulsed and sinusoidal cold atmospheric plasma jets. Appl. Phys. Lett. 2006, 88, 171501. [Google Scholar] [CrossRef]
- Cheng, C.; Peng, L.; Lei, X.; Li-Ye, Z.; Ru-Juan, Z.; Wen-Rui, Z. Development of a new atmospheric pressure cold plasma jet generator and application in sterilization. Chin. Phys. 2006, 15, 1544. [Google Scholar] [CrossRef]
- Kim, D.B.; Rhee, J.K.; Moon, S.Y.; Choe, W. Study of geometrical and operational parameters controlling the low frequency microjet atmospheric pressure plasma characteristics. Appl. Phys. Lett. 2006, 89, 061502. [Google Scholar] [CrossRef]
- Hong, Y.C.; Uhm, H.S.; Cheol, Y. Microplasma jet at atmospheric pressure. Appl. Phys. Lett. 2006, 89, 221504. [Google Scholar] [CrossRef]
- Lu, X.P.; Laroussi, M. Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses. J. Appl. Phys. 2006, 100, 063302. [Google Scholar] [CrossRef]
- Sands, B.L.; Ganguly, B.N.; Tachibana, K. A streamer-like atmospheric pressure plasma jet. Appl. Phys. Lett. 2008, 92, 151503. [Google Scholar] [CrossRef]
- Naidis, G.V. Modelling of streamer propagation in atmospheric-pressure helium plasma jets. J. Phys. D Appl. Phys. 2010, 43, 402001. [Google Scholar] [CrossRef]
- Jánský, J.; Bourdon, A. Simulation of helium discharge ignition and dynamics in thin tubes at atmospheric pressure. Appl. Phys. Lett. 2011, 99, 161504. [Google Scholar] [CrossRef]
- Breden, D.; Miki, K.; Raja, L.L. Computational study of cold atmospheric nanosecond pulsed helium plasma jet in air. Appl. Phys. Lett. 2011, 99, 111501. [Google Scholar] [CrossRef]
- Yousfi, M.; Eichwald, O.; Merbahi, N.; Jomaa, N. Analysis of ionization wave dynamics in low-temperature plasma jets from fluid modeling supported by experimental investigations. Plasma Sources Sci. Technol. 2012, 21, 045003. [Google Scholar] [CrossRef]
- Boeuf, J.P.; Yang, L.L.; Pitchford, L.C. Dynamics of a guided streamer (‘plasma bullet’) in a helium jet in air at atmospheric pressure. J. Phys. D Appl. Phys. 2012, 46, 015201. [Google Scholar] [CrossRef]
- Khacef, A.; Cormier, J.M. Pulsed sub-microsecond dielectric barrier discharge treatment of simulated glass manufacturing industry flue gas: Removal of SO2 and NOx. J. Phys. D Appl. Phys. 2006, 39, 1078–1083. [Google Scholar] [CrossRef]
- Motret, O.; Hibert, C.; Pellerin, S.; Pouvesle, J.M. Rotational temperature measurements in atmospheric pulsed dielectric barrier discharge—Gas temperature and molecular fraction effects. J. Phys. D Appl. Phys. 2000, 33, 1493–1498. [Google Scholar] [CrossRef]
- Odic, E.; Dhainaut, M.; Petit, M.; Goldman, A.; Goldman, M.; Karimi, C. Approach of the Physical and Chemical Specic Properties of Pulsed Surface Dielectric Barrier Discharges in Air at Atmospheric Pressure. J. Adv. Oxid. Technol. 2003, 6, 41–47. [Google Scholar]
- Pipa, A.; Brandenburg, R. The Equivalent Circuit Approach for the Electrical Diagnostics of Dielectric Barrier Discharges: The Classical Theory and Recent Developments. Atoms 2019, 7, 14. [Google Scholar] [CrossRef]
- Rueda, V.; Wiesner, A.; Diez, R.; Piquet, H. Power Estimation of a Current Supplied DBD Considering the Transformer Parasitic Elements. IEEE Trans. Ind. Appl. 2019, 55, 6567–6575. [Google Scholar] [CrossRef]
- Florez, D.; Schitz, D.; Piquet, H.; Diez, R. Efficiency of an Exciplex DBD Lamp Excited Under Different Methods. IEEE Trans. Plasma Sci. 2018, 46, 140–147. [Google Scholar] [CrossRef]
- Rueda, V.; Diez, R.; Bente, N.; Piquet, H. Combined Image Processing and Equivalent Circuit Approach for the Diagnostic of Atmospheric Pressure DBD. Appl. Sci. 2022, 12, 8009. [Google Scholar] [CrossRef]
- Fang, Z.; Shao, T.; Yang, J.; Zhang, C. Discharge processes and an electrical model of atmospheric pressure plasma jets in argon. Eur. Phys. J. D 2016, 70, 3. [Google Scholar] [CrossRef]
- Saber, K.; Guedah, H.; Abahazem, A.; Merbahi, N.; Yousfi, M. Electrical equivalent circuit and modeling of a pulsed air corona discharge. Mater. Today Proc. 2020, 24, 119–124. [Google Scholar] [CrossRef]
- Landau, I.-D. Identification des Systems; HERME Editions collection pédagogique d’automatique; HERMES: New Castle, PA, USA, 1998; ISBN 2-86601-683-1. [Google Scholar]
- Díez, R.; Salanne, J.-P.; Piquet, H.; Bhosle, S.; Zissis, G. Predictive model of a DBD lamp for power supply design and method for the automatic identification of its parameters. Eur. Phys. J. Appl. Phys. 2007, 37, 307–313. [Google Scholar] [CrossRef]
- Grillenzoni, C. Optimal recursive estimation of dynamic models. J. Am. Stat. Assoc. 1994, 89, 777–787. [Google Scholar] [CrossRef]
- Barlaud, M.; Alengrin, G.; Menez, J.; Grenier, Y.; Aboutajdine, D. Méthodes d’identification paramétrique pour des signaux non-stationnaires perturbés par un bruit blanc. In Proceedings of the 11th Colloque on Signal and Image Processing, Gretsi, Nice, France, 1–5 June 1987; pp. 749–752. [Google Scholar]
- Saber, K.; Abahazem, A.; Merbahi, N.; Yousfi, M. Plasma energy efficiency in tip-to-plane air corona discharges at atmospheric pressure. J. Electrost. 2022, 115, 103642. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hani, A.; Saber, K.; Abahazem, A.; Merbahi, N. Energy Efficiency of Plasma Jets: Electrical Modeling Based on Experimental Results. Plasma 2024, 7, 826-841. https://doi.org/10.3390/plasma7040044
Hani A, Saber K, Abahazem A, Merbahi N. Energy Efficiency of Plasma Jets: Electrical Modeling Based on Experimental Results. Plasma. 2024; 7(4):826-841. https://doi.org/10.3390/plasma7040044
Chicago/Turabian StyleHani, Achraf, Karim Saber, Alyen Abahazem, and Nofel Merbahi. 2024. "Energy Efficiency of Plasma Jets: Electrical Modeling Based on Experimental Results" Plasma 7, no. 4: 826-841. https://doi.org/10.3390/plasma7040044
APA StyleHani, A., Saber, K., Abahazem, A., & Merbahi, N. (2024). Energy Efficiency of Plasma Jets: Electrical Modeling Based on Experimental Results. Plasma, 7(4), 826-841. https://doi.org/10.3390/plasma7040044