Asymptotic Formulation for the Rayleigh Wave on a Nonlocally Elastic Half-Space
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statement of the Problem
2.2. Perturbation Scheme
3. Results and Discussion
3.1. Asymptotic Formulation for the Nonlocally Elastic Rayleigh Wave
3.2. Hyperbolic Equation at a Prescribed Depth
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colombi, A.; Colquitt, D.; Roux, P.; Guenneau, S.; Craster, R.V. A seismic metamaterial: The resonant metawedge. Sci. Rep. 2016, 6, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pu, X.; Palermo, A.; Cheng, Z.; Shi, Z.; Marzani, A. Seismic metasurfaces on porous layered media: Surface resonators and fluid-solid interaction effects on the propagation of Rayleigh waves. Int. J. Eng. Sci. 2020, 154, 103347. [Google Scholar] [CrossRef]
- Bratov, V.; Kuznetsov, S.; Morozov, N. Seismic barriers filled with solid elastic and granular materials: Comparative analysis. Math. Mech. Solids 2022, 27, 1761–1770. [Google Scholar] [CrossRef]
- Nieves, M.J.; Carta, G.; Pagneux, V.; Brun, M. Rayleigh waves in micro-structured elastic systems: Non-reciprocity and energy symmetry breaking. Int. J. Eng. Sci. 2020, 156, 103365. [Google Scholar] [CrossRef]
- El Masri, E.; Waters, T.; Ferguson, N. Guided wave inspection of bars in reinforced-concrete beams using surface-mounted vibration sensors. Vibration 2020, 3, 343–356. [Google Scholar] [CrossRef]
- Kröner, E. Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 1967, 3, 731–742. [Google Scholar] [CrossRef]
- Edelen, D.G.B.; Laws, N. On the thermodynamics of systems with nonlocality. Arch. Ration. Mech. Anal. 1971, 43, 24–35. [Google Scholar] [CrossRef]
- Eringen, A.C.; Edelen, D.G.B. On nonlocal elasticity. Int. J. Eng. Sci. 1972, 10, 233–248. [Google Scholar] [CrossRef]
- Eringen, A.C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 1983, 54, 4703–4710. [Google Scholar] [CrossRef]
- Eringen, A.C. Nonlocal Continuum Field Theories; Springer: New York, NY, USA, 2002. [Google Scholar]
- Elishakoff, I.; Dujat, K.; Muscolino, G.; Bucas, S.; Natsuki, T.; Wang, C.M.; Pentaras, D.; Versaci, C.; Storch, J.; Challamel, N.; et al. Carbon Nanotubes and Nanosensors: Vibration, Buckling and Balistic Impact; John Wiley & Sons: New York, NY, USA, 2013. [Google Scholar]
- Karlicic, D.; Murmu, T.; Adhikari, S.; McCarthy, M. Non-Local Structural Mechanics; John Wiley & Sons: NewYork, NY, USA, 2015. [Google Scholar]
- Challamel, N.; Wang, C.M. The small length scale effect for a non-local cantilever beam: A paradox solved. Nanotechnology 2008, 19, 345703. [Google Scholar] [CrossRef]
- Chebakov, R.; Kaplunov, J.; Rogerson, G.A. Refined boundary conditions on the free surface of an elastic half-space taking into account non-local effects. Proc. R. Soc. A Math. Phys. Eng. Sci. 2016, 472, 20150800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.P.; Challamel, N.; Wang, C.M.; Zhang, H. Comparison of nano-plate bending behaviour by Eringen nonlocal plate, Hencky bar-net and continualised nonlocal plate models. Acta Mech. 2019, 230, 885–907. [Google Scholar] [CrossRef]
- Pisano, A.A.; Fuschi, P.; Polizzotto, C. Integral and differential approaches to Eringen’s nonlocal elasticity models accounting for boundary effects with applications to beams in bending. ZAMM 2021, 101, e202000152. [Google Scholar] [CrossRef]
- Wang, Y.B.; Zhu, X.W.; Dai, H.H. Exact solutions for the static bending of Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. AIP Adv. 2016, 6, 085114. [Google Scholar] [CrossRef] [Green Version]
- Romano, G.; Barretta, R.; Diaco, M.; de Sciarra, F.M. Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int. J. Mech. Sci. 2017, 121, 151–156. [Google Scholar] [CrossRef]
- Vaccaro, M.S.; Pinnola, F.P.; de Sciarra, F.M.; Barretta, R. Limit behaviour of Eringen’s two-phase elastic beams. Europ. J. Mech.-A/Solids 2021, 89, 104315. [Google Scholar] [CrossRef]
- Kaplunov, J.; Prikazchikov, D.A.; Prikazchikova, L. On integral and differential formulations in nonlocal elasticity. Eur. J. Mech.-A/Solids 2022, 104497. [Google Scholar] [CrossRef]
- Kaplunov, J.; Prikazchikov, D.A.; Prikazchikova, L. On non-locally elastic Rayleigh wave. Philos. Trans. R. Soc. A 2022, 380, 20210387. [Google Scholar] [CrossRef]
- Zaera, R.; Serrano, Ó.; Fernández-Sáez, J. Non-standard and constitutive boundary conditions in nonlocal strain gradient elasticity. Meccanica 2020, 55, 469–479. [Google Scholar] [CrossRef] [Green Version]
- Kaplunov, J.; Prikazchikov, D.A. Asymptotic theory for Rayleigh and Rayleigh-type waves. In Advances in Applied Mechanics; Bordas, S.P.A., Balint, D.S., Eds.; Elsevier: London, UK, 2017; pp. 1–106. [Google Scholar]
- Chadwick, P. Surface and interfacial waves of arbitrary form in isotropic elastic media. J. Elast. 1976, 6, 73–80. [Google Scholar] [CrossRef]
- Kiselev, A.P.; Parker, D.F. Omni-directional Rayleigh, Stoneley and Schölte waves with general time dependence. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 2241–2258. [Google Scholar] [CrossRef] [Green Version]
- Khajiyeva, L.A.; Prikazchikov, D.A.; Prikazchikova, L.A. Hyperbolic-elliptic model for surface wave in a pre-stressed incompressible elastic half-space. Mech. Res. Comm. 2018, 92, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Kaplunov, J.; Prikazchikov, D. Reduced model for the surface dynamics of a generally anisotropic elastic half-space. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020, 476, 20190590. [Google Scholar] [CrossRef] [Green Version]
- Wootton, P.T.; Kaplunov, J.; Colquitt, D.J. An asymptotic hyperbolic–elliptic model for flexural-seismic metasurfaces. Proc. R. Soc. A 2020, 475, 20190079. [Google Scholar] [CrossRef] [Green Version]
- Wootton, P.T.; Kaplunov, J.; Prikazchikov, D. A second-order asymptotic model for Rayleigh waves on a linearly elastic half plane. IMA J. Appl. Math. 2020, 85, 113–131. [Google Scholar] [CrossRef]
- Mubaraki, A.; Prikazchikov, D. On Rayleigh wave field induced by surface stresses under the effect of gravity. Math. Mech. Solids 2022, 27, 1771–1782. [Google Scholar] [CrossRef]
- Sobolev, S. Some problems in wave propagation. In Differential and integral equations of mathematical physics; Russian translation; Frank, P., von Mises, R., Eds.; ONTI: Moscow, Russia, 1937; pp. 468–617. [Google Scholar]
- Prikazchikov, D.A. Rayleigh waves of arbitrary profile in anisotropic media. Mech. Res. Comm. 2013, 50, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Parker, D.F. The Stroh formalism for elastic surface waves of general profile. Proc. R. Soc. A Math. Phys. Eng. Sci. 2013, 469, 20132160. [Google Scholar] [CrossRef]
- Shubin, M.A. Pseudodifferential Operators and Spectral Theory, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Dai, H.H.; Kaplunov, J.D.; Prikazchikov, D.A. A long-wave model for the surface elastic wave in a coated half-space. Proc. R. Soc. 2010, 466, 3097–3116. [Google Scholar] [CrossRef] [Green Version]
- Kaplunov, J.D.; Prikazchikov, D.A.; Sabirova, R.F. On a hyperbolic equation for the Rayleigh wave. Dokl. Phys. 2022, 506, 63–66. [Google Scholar]
- Eremeyev, V. Strongly anisotropic surface elasticity and antiplane surface waves. Philos. Trans. R. Soc. A 2020, 378, 20190100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liam, L.S.; Adytia, D.; Van Groesen, E. Embedded wave generation for dispersive surface wave models. Ocean Eng. 2014, 80, 73–83. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prikazchikov, D.A. Asymptotic Formulation for the Rayleigh Wave on a Nonlocally Elastic Half-Space. Vibration 2023, 6, 57-64. https://doi.org/10.3390/vibration6010005
Prikazchikov DA. Asymptotic Formulation for the Rayleigh Wave on a Nonlocally Elastic Half-Space. Vibration. 2023; 6(1):57-64. https://doi.org/10.3390/vibration6010005
Chicago/Turabian StylePrikazchikov, Danila A. 2023. "Asymptotic Formulation for the Rayleigh Wave on a Nonlocally Elastic Half-Space" Vibration 6, no. 1: 57-64. https://doi.org/10.3390/vibration6010005
APA StylePrikazchikov, D. A. (2023). Asymptotic Formulation for the Rayleigh Wave on a Nonlocally Elastic Half-Space. Vibration, 6(1), 57-64. https://doi.org/10.3390/vibration6010005