The Impact of Neuroglia on Vestibular Disorders: Insights and Implications
Abstract
:1. Introduction
2. Materials and Methods
3. What Is Known to Date
3.1. Vestibular Migraine
3.2. Unilateral Vestibulopathy
3.3. Bilateral Vestibulopathy
4. Controversies and Clinical Complexities Regarding Neuroglial Implications
4.1. Vestibular Migraine
4.2. Unilateral Vestibulopathy
4.3. Bilateral Vestibulopathy
5. Challenges
6. Systemic Diseases, Glia, and Vestibular Disorders: Key Interactions
6.1. Diabetes, Neuroglial Dysfunction, and Vestibular Disorders
6.2. Blood Pressure, Vascular Changes, Neuroglial Dysfunction, and Vestibular Disorders
6.3. Systemic Lupus Erythematosus (SLE) and Neuroglia
7. Therapeutic Applications of Glia in Vestibular Disorders
8. Conclusions/Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, L.J.; Pyke, W.; Fowler, R.; Matthes, B.; de Goederen, E.; Surenthiran, S. Impact and experiences of vestibular disorders and psychological distress: Qualitative findings from patients, family members and healthcare professionals. Health Expect. 2024, 27, e13906. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Edlow, J.A.; Newman-Toker, D.E. Medical and Nonstroke Neurologic Causes of Acute, Continuous Vestibular Symptoms. Neurol. Clin. 2015, 33, 699–716. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, J.; Wang, J.; Liang, P.; Tian, E.; Liu, D.; Guo, Z.; Zhang, S. Vestibular dysfunction leads to cognitive impairments: State of knowledge in the field and clinical perspectives (Review). Int. J. Mol. Med. 2024, 53, 36. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Park, J.; Choi, Y.K. The Role of Astrocytes in the Central Nervous System Focused on BK Channel and Heme Oxygenase Metabolites: A Review. Antioxidants 2019, 8, 121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rahman, M.M.; Islam, M.R.; Yamin, M.; Islam, M.M.; Sarker, M.T.; Meem, A.F.K.; Akter, A.; Emran, T.B.; Cavalu, S.; Sharma, R. Emerging Role of Neuron-Glia in Neurological Disorders: At a Glance. Oxid. Med. Cell. Longev. 2022, 2022, 3201644. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Male, A.J.; Holmes, S.L.; Koohi, N.; Dudziec, M.; Hanna, M.G.; Ramdharry, G.M.; Pizzamiglio, C.; Pitceathly, R.D.S.; Kaski, D. A diagnostic framework to identify vestibular involvement in multi-sensory neurological disease. Eur. J. Neurol. 2024, 31, e16216. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Furman, J.M.; Balaban, C.D. Vestibular migraine. Ann. N. Y. Acad. Sci. 2015, 1343, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Lempert, T.; Olesen, J.; Furman, J.; Waterston, J.; Seemungal, B.; Carey, J.; Bisdorff, A.; Versino, M.; Evers, S.; Newman-Toker, D. Vestibular migraine: Diagnostic criteria. J. Vestib. Res. 2012, 22, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Sohn, J.H. Recent Advances in the Understanding of Vestibular Migraine. Behav. Neurol. 2016, 2016, 1801845. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Espinosa-Sanchez, J.M.; Lopez-Escamez, J.A. New insights into pathophysiology of vestibular migraine. Front. Neurol. 2015, 6, 12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verkhratsky, A.; Nedergaard, M. Physiology of Astroglia. Physiol. Rev. 2018, 98, 239–389. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sofroniew, M.V.; Vinters, H.V. Astrocytes: Biology and pathology. Acta Neuropathol. 2010, 119, 7–35. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Romanos, J.; Benke, D.; Pietrobon, D.; Zeilhofer, H.U.; Santello, M. Astrocyte dysfunction increases cortical dendritic excitability and promotes cranial pain in familial migraine. Sci. Adv. 2020, 6, eaaz1584. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pleș, H.; Florian, I.A.; Timis, T.L.; Covache-Busuioc, R.A.; Glavan, L.A.; Dumitrascu, D.I.; Popa, A.A.; Bordeianu, A.; Ciurea, A.V. Migraine: Advances in the Pathogenesis and Treatment. Neurol. Int. 2023, 15, 1052–1105. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bednarczuk, N.F.; Bonsu, A.; Ortega, M.C.; Fluri, A.S.; Chan, J.; Rust, H.; de Melo, F.; Sharif, M.; Seemungal, B.M.; Golding, J.F.; et al. Abnormal visuo-vestibular interactions in vestibular migraine: A cross sectional study. Brain 2019, 142, 606–616. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lannes, N.; Eppler, E.; Etemad, S.; Yotovski, P.; Filgueira, L. Microglia at center stage: A comprehensive review about the versatile and unique residential macrophages of the central nervous system. Oncotarget 2017, 8, 114393–114413. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Colonna, M.; Butovsky, O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu. Rev. Immunol. 2017, 35, 441–468. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smith, J.A.; Das, A.; Ray, S.K.; Banik, N.L. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res. Bull. 2012, 87, 10–20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muzio, L.; Viotti, A.; Martino, G. Microglia in Neuroinflammation and Neurodegeneration: From Understanding to Therapy. Front. Neurosci. 2021, 15, 742065. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, M.; Rong, J.; Zhou, M.; Liu, Y.; Sun, S.; Liu, L.; Cai, D.; Liang, F.; Zhao, L. Astrocyte-Microglia Crosstalk: A Novel Target for the Treatment of Migraine. Aging Dis. 2023, 15, 1277–1288. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vila-Pueyo, M.; Gliga, O.; Gallardo, V.J.; Pozo-Rosich, P. The Role of Glial Cells in Different Phases of Migraine: Lessons from Preclinical Studies. Int. J. Mol. Sci. 2023, 24, 12553. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Balakrishnan, A.; Belfiore, L.; Chu, T.H.; Fleming, T.; Midha, R.; Biernaskie, J.; Schuurmans, C. Insights Into the Role and Potential of Schwann Cells for Peripheral Nerve Repair From Studies of Development and Injury. Front. Mol. Neurosci. 2021, 13, 608442. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Song, Y.; Zhao, S.; Peng, P.; Zhang, C.; Liu, Y.; Chen, Y.; Luo, Y.; Li, B.; Liu, L. Neuron-glia crosstalk and inflammatory mediators in migraine pathophysiology. Neuroscience 2024, 560, 381–396. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Tuka, B.; Vécsei, L. Navigating the Neurobiology of Migraine: From Pathways to Potential Therapies. Cells 2024, 13, 1098. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strupp, M.; Bisdorff, A.; Furman, J.; Hornibrook, J.; Jahn, K.; Maire, R.; Newman-Toker, D.; Magnusson, M. Acute unilateral vestibulopathy/vestibular neuritis: Diagnostic criteria. J. Vestib. Res. 2022, 32, 389–406. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cullen, K.E. Vestibular processing during natural self-motion: Implications for perception and action. Nat. Rev. Neurosci. 2019, 20, 346–363. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Helmchen, C.; Klinkenstein, J.; Machner, B.; Rambold, H.; Mohr, C.; Sander, T. Structural changes in the human brain following vestibular neuritis indicate central vestibular compensation. Ann. N. Y. Acad. Sci. 2009, 1164, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.T.; Yanick, C.; Wein, N.; Gomez Limia, C.E. Neuron-Schwann cell interactions in peripheral nervous system homeostasis, disease, and preclinical treatment. Front. Cell. Neurosci. 2023, 17, 1248922. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jessen, K.R.; Mirsky, R. The repair Schwann cell and its function in regenerating nerves. J. Physiol. 2016, 594, 3521–3531. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perez-Catalan, N.A.; Doe, C.Q.; Ackerman, S.D. The role of astrocyte-mediated plasticity in neural circuit development and function. Neural Dev. 2021, 16, 1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chiareli, R.A.; Carvalho, G.A.; Marques, B.L.; Mota, L.S.; Oliveira-Lima, O.C.; Gomes, R.M.; Birbrair, A.; Gomez, R.S.; Simão, F.; Klempin, F.; et al. The Role of Astrocytes in the Neurorepair Process. Front. Cell Dev. Biol. 2021, 9, 665795. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kisucká, A.; Bimbová, K.; Bačová, M.; Gálik, J.; Lukáčová, N. Activation of Neuroprotective Microglia and Astrocytes at the Lesion Site and in the Adjacent Segments Is Crucial for Spontaneous Locomotor Recovery after Spinal Cord Injury. Cells 2021, 10, 1943. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Z.; Cai, Y.; Liu, Y.; Liu, H.; Wei, X.E.; Lin, C.; Liu, D.; Xiao, L.; Rong, L. Altered thalamus functional connectivity in patients with acute unilateral vestibulopathy: A resting-state fMRI study. Front. Neurosci. 2024, 18, 1388213. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, Y.; Zhang, J. Neuronal activity and remyelination: New insights into the molecular mechanisms and therapeutic advancements. Front. Cell Dev. Biol. 2023, 11, 1221890. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, H.A.; Mindos, T.; Parkinson, D.B. Plastic fantastic: Schwann cells and repair of the peripheral nervous system. Stem Cells Transl. Med. 2013, 2, 553–557. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strupp, M.; Kim, J.S.; Murofushi, T.; Straumann, D.; Jen, J.C.; Rosengren, S.M.; Della Santina, C.C.; Kingma, H. Bilateral vestibulopathy: Diagnostic criteria Consensus document of the Classification Committee of the Bárány Society. J. Vestib. Res. 2017, 27, 177–189, Erratum in: J. Vestib. Res. 2023, 33, 87. https://doi.org/10.3233/VES-229002. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hall, S.M. The Schwann cell: A reappraisal of its role in the peripheral nervous system. Neuropathol. Appl. Neurobiol. 1978, 4, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Ortinski, P.I.; Reissner, K.J.; Turner, J.; Anderson, T.A.; Scimemi, A. Control of complex behavior by astrocytes and microglia. Neurosci. Biobehav. Rev. 2022, 137, 104651. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, H.G.; Wheeler, M.A.; Quintana, F.J. Function and therapeutic value of astrocytes in neurological diseases. Nat. Rev. Drug Discov. 2022, 21, 339–358. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mahmoud, S.; Gharagozloo, M.; Simard, C.; Gris, D. Astrocytes Maintain Glutamate Homeostasis in the CNS by Controlling the Balance between Glutamate Uptake and Release. Cells 2019, 8, 184. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bachiller, S.; Jiménez-Ferrer, I.; Paulus, A.; Yang, Y.; Swanberg, M.; Deierborg, T.; Boza-Serrano, A. Microglia in Neurological Diseases: A Road Map to Brain-Disease Dependent-Inflammatory Response. Front. Cell. Neurosci. 2018, 12, 488. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuhn, S.; Gritti, L.; Crooks, D.; Dombrowski, Y. Oligodendrocytes in Development, Myelin Generation and Beyond. Cells 2019, 8, 1424. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Choi, S.Y.; Kee, H.J.; Park, J.H.; Kim, H.J.; Kim, J.S. Combined peripheral and central vestibulopathy. J. Vestib. Res. 2014, 24, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Butt, A.; Verkhratsky, A. Neuroglia: Realising their true potential. Brain Neurosci. Adv. 2018, 2, 2398212818817495. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reemst, K.; Noctor, S.C.; Lucassen, P.J.; Hol, E.M. The Indispensable Roles of Microglia and Astrocytes during Brain Development. Front. Hum. Neurosci. 2016, 10, 566. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qin, J.; Ma, Z.; Chen, X.; Shu, S. Microglia activation in central nervous system disorders: A review of recent mechanistic investigations and development efforts. Front. Neurol. 2023, 14, 1103416. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Teleanu, R.I.; Niculescu, A.G.; Roza, E.; Vladâcenco, O.; Grumezescu, A.M.; Teleanu, D.M. Neurotransmitters-Key Factors in Neurological and Neurodegenerative Disorders of the Central Nervous System. Int. J. Mol. Sci. 2022, 23, 5954. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lawrence, J.M.; Schardien, K.; Wigdahl, B.; Nonnemacher, M.R. Roles of neuropathology-associated reactive astrocytes: A systematic review. Acta Neuropathol. Commun. 2023, 11, 42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gasparini, C.F.; Sutherland, H.G.; Griffiths, L.R. Studies on the pathophysiology and genetic basis of migraine. Curr. Genom. 2013, 14, 300–315. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smyth, D.; Britton, Z.; Murdin, L.; Arshad, Q.; Kaski, D. Vestibular migraine treatment: A comprehensive practical review. Brain 2022, 145, 3741–3754. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rosso, G.; Young, P.; Shahin, V. Implications of Schwann Cells Biomechanics and Mechanosensitivity for Peripheral Nervous System Physiology and Pathophysiology. Front. Mol. Neurosci. 2017, 10, 345. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rastoldo, G.; Tighilet, B. The Vestibular Nuclei: A Cerebral Reservoir of Stem Cells Involved in Balance Function in Normal and Pathological Conditions. Int. J. Mol. Sci. 2024, 25, 1422. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kammerlind, A.S.; Ledin, T.E.; Odkvist, L.M.; Skargren, E.I. Recovery after acute unilateral vestibular loss and predictors for remaining symptoms. Am. J. Otolaryngol. 2011, 32, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Deveze, A.; Bernard-Demanze, L.; Xavier, F.; Lavieille, J.P.; Elziere, M. Vestibular compensation and vestibular rehabilitation. Current concepts and new trends. Neurophysiol. Clin. 2014, 44, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.D.; Herdman, S.J.; Whitney, S.L.; Anson, E.R.; Carender, W.J.; Hoppes, C.W.; Cass, S.P.; Christy, J.B.; Cohen, H.S.; Fife, T.D.; et al. Vestibular Rehabilitation for Peripheral Vestibular Hypofunction: An Updated Clinical Practice Guideline From the Academy of Neurologic Physical Therapy of the American Physical Therapy Association. J. Neurol. Phys. Ther. 2021, 46, 118–177. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- El Mahmoudi, N.; Marouane, E.; Rastoldo, G.; Pericat, D.; Watabe, I.; Lapotre, A.; Tonetto, A.; Chabbert, C.; Tighilet, B. Microglial Dynamics Modulate Vestibular Compensation in a Rodent Model of Vestibulopathy and Condition the Expression of Plasticity Mechanisms in the Deafferented Vestibular Nuclei. Cells 2022, 11, 2693. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lacour, M.; Helmchen, C.; Vidal, P.P. Vestibular compensation: The neuro-otologist’s best friend. J. Neurol. 2016, 263 (Suppl. S1), S54–S64. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dzyubenko, E.; Hermann, D.M. Role of glia and extracellular matrix in controlling neuroplasticity in the central nervous system. Semin. Immunopathol. 2023, 45, 377–387. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tighilet, B.; Bordiga, P.; Cassel, R.; Chabbert, C. Peripheral vestibular plasticity vs central compensation: Evidence and questions. J. Neurol. 2019, 266 (Suppl. S1), 27–32. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.; Miller-Fleming, L.; Pais, T.F. Microglia and inflammation: Conspiracy, controversy or control? Cell. Mol. Life Sci. 2014, 71, 3969–3985. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dougherty, J.M.; Carney, M.; Hohman, M.H.; Emmady, P.D. Vestibular Dysfunction. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK558926/ (accessed on 1 January 2020).
- Gordon, T. Nerve regeneration in the peripheral and central nervous systems. J. Physiol. 2016, 594, 3517–3520. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Stiphout, L.; Szmulewicz, D.J.; Guinand, N.; Fornos, A.P.; Van Rompaey, V.; van de Berg, R. Bilateral vestibulopathy: A clinical update and proposed diagnostic algorithm. Front. Neurol. 2023, 14, 1308485. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Porta Etessam, J.; González, N.; García-Azorín, D.; Silva, L. Bilateral vestibular hypofunction occurring between migraine attacks: Toward an integrative hypothesis. Neurologia (Engl. Ed.) 2020, 35, 448–449, (In English and Spanish). [Google Scholar] [CrossRef] [PubMed]
- Garden, G.A.; Campbell, B.M. Glial biomarkers in human central nervous system disease. Glia 2016, 64, 1755–1771. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, W.; Chen, D.; Peng, Y.; Lu, Z.; Kwan, M.P.; Tse, L.A. Association Between Metabolic Syndrome and Mortality: Prospective Cohort Study. JMIR Public Health Surveill. 2023, 9, e44073. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- López, E.; García, M.; Rodríguez, P. Advances in Cardiovascular Medicine: Current Perspectives. Lancet. 2023, 401, 567–578. [Google Scholar] [CrossRef]
- Deshpande, A.D.; Harris-Hayes, M.; Schootman, M. Epidemiology of diabetes and diabetes-related complications. Phys. Ther. 2008, 88, 1254–1264. [Google Scholar] [CrossRef] [PubMed]
- Darenskaya, M.A.; Kolesnikova, L.I.; Kolesnikov, S.I. Oxidative stress: Pathogenetic role in diabetes mellitus and its complications and therapeutic approaches to correction. Bull. Exp. Biol. Med. 2021, 171, 179–186. [Google Scholar] [CrossRef]
- Yang, T.H.; Chen, C.H.; Cheng, Y.F.; Lin, H.C.; Chen, C.S. Association of peripheral vestibular disorder with diabetes: A population-based study. J. Pers. Med. 2024, 14, 768. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.B.; Yoo, M.H. Blood supply to the vestibular labyrinth: Clinical implications. Res. Vestib. Sci. 2022, 21, 29–36. [Google Scholar] [CrossRef]
- Odum, E.P.; Orluwene, C.G. Metabolic syndrome prevalence in healthy individuals in University of Port Harcourt Teaching Hospital (Upth), Port Harcourt. IOSR-JDMS 2013, 10, 17–22. [Google Scholar]
- Cohen, H.S.; Plankey, M.W.; Ware, D. A retrospective study of the relationship between hypertension and vestibular disorders in middle-aged women with and without HIV. Cureus 2023, 15, e34988. [Google Scholar] [CrossRef] [PubMed]
- Richter, P.; Macovei, L.A.; Mihai, I.R.; Cardoneanu, A.; Burlui, M.A.; Rezus, E. Cytokines in systemic lupus erythematosus—Focus on TNF-α and IL-17. Int. J. Mol. Sci. 2023, 24, 14413. [Google Scholar] [CrossRef] [PubMed]
- Justiz-Vaillant, A.A.; Gopaul, D.; Soodeen, S.; Arozarena-Fundora, R.; Barbosa, O.A.; Unakal, C.; Thompson, R.; Pandit, B.; Umakanthan, S.; Akpaka, P.E. Neuropsychiatric systemic lupus erythematosus: Molecules involved in its immunopathogenesis, clinical features, and treatment. Molecules 2024, 29, 747. [Google Scholar] [CrossRef]
- Girasoli, L.; Cazzato, D.; Lauria, G. Update on Vertigo in Autoimmune Disorders: From Diagnosis to Treatment. J. Immunol. Res. 2018, 2018, 5072582. [Google Scholar] [CrossRef]
- Taura, A.; Nakashima, N.; Ohnishi, H.; Nakagawa, T.; Funabiki, K.; Ito, J.; Omori, K. Regenerative therapy for vestibular disorders using human induced pluripotent stem cells (iPSCs): Neural differentiation of human iPSC-derived neural stem cells after in vitro transplantation into mouse vestibular epithelia. Acta Otolaryngol. 2016, 136, 999–1005. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Patent Summary for JP-4028598-B2 [Internet]. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/JP-4028598-B2 (accessed on 6 February 2025).
- Magal, E. Use of Glial Neurotrophic Factor (GDNF) for Treatment of Hearing Disorders [Internet]. 1997 Feb 14. Available online: https://patents.google.com/patent/WO1997030722A1/en (accessed on 1 January 2025).
- Feil, K.; Böttcher, N.; Kremmyda, O.; Muth, C.; Teufel, J.; Zwergal, A.; Brandt, T.; Strupp, M. Medikamentöse Therapiemöglichkeiten bei vestibulären Störungen, Nystagmus und zerebellären Ataxien. Laryngorhinootologie 2018, 97, 14–23. [Google Scholar] [CrossRef]
- Strupp, M.; Thurtell, M.J.; Shaikh, A.G.; Brandt, T.; Zee, D.S.; Leigh, R.J. Pharmacotherapy of vestibular and ocular motor disorders, including nystagmus. J. Neurol. 2011, 258, 1207–1222. [Google Scholar] [CrossRef] [PubMed]
Vestibular Disorders | |
---|---|
Vestibular migraine |
|
Unilateral vestibulopathy |
|
Bilateral vestibulopathy |
|
Disorder | Main Controversies | Clinical Complexities |
---|---|---|
Vestibular migraine |
|
|
Unilateral vestibulopathy |
|
|
Bilateral vestibulopathy |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo-Bustamante, M.; Herrón-Arango, A.F.; Bedoya, M.J.; Figueroa, J.J.; Rees, V.; García, A. The Impact of Neuroglia on Vestibular Disorders: Insights and Implications. Neuroglia 2025, 6, 10. https://doi.org/10.3390/neuroglia6010010
Castillo-Bustamante M, Herrón-Arango AF, Bedoya MJ, Figueroa JJ, Rees V, García A. The Impact of Neuroglia on Vestibular Disorders: Insights and Implications. Neuroglia. 2025; 6(1):10. https://doi.org/10.3390/neuroglia6010010
Chicago/Turabian StyleCastillo-Bustamante, Melissa, Andrés Felipe Herrón-Arango, María José Bedoya, Juan José Figueroa, Valeria Rees, and Alejandro García. 2025. "The Impact of Neuroglia on Vestibular Disorders: Insights and Implications" Neuroglia 6, no. 1: 10. https://doi.org/10.3390/neuroglia6010010
APA StyleCastillo-Bustamante, M., Herrón-Arango, A. F., Bedoya, M. J., Figueroa, J. J., Rees, V., & García, A. (2025). The Impact of Neuroglia on Vestibular Disorders: Insights and Implications. Neuroglia, 6(1), 10. https://doi.org/10.3390/neuroglia6010010