Soil Management Practices to Mitigate Nitrous Oxide Emissions and Inform Emission Factors in Arid Irrigated Specialty Crop Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Review—Approach
2.2. Brief Overview of Four Specialty Crops
2.3. Estimating EF and State-Wide Emissions by Crop and Management Practice
3. Effects of Soil Management Practices on N2O Emissions in Tomatoes, Lettuce, Grapes and Almonds
3.1. Fertilization
3.1.1. Fertilizer Rate
3.1.2. Fertilizer Type, Placement and Application Timing
3.1.3. Fertilizer Efficiency Enhancers
3.1.4. Tomatoes and Fertilization
3.1.5. Lettuce and Fertilization
3.1.6. Wine Grapes and Fertilization
3.1.7. Almonds and Fertilization
3.2. Irrigation
3.2.1. Tomatoes and Irrigation
3.2.2. Almonds and Irrigation
3.3. Tillage
Tomatoes and Tillage
3.4. Cover Crops
3.4.1. Tomatoes and Cover crops
3.4.2. Lettuce and Cover crops
3.4.3. Grapes and Cover Crops
4. Limitations of the Approach and Gaps in Nitrous Oxide Emission Knowledge from California Specialty Crops
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burney, J.A.; Davis, S.J.; Lobell, D.B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. USA 2010, 107, 12052–12057. [Google Scholar] [CrossRef] [PubMed]
- FAO. In Deficit Irrigation Practices-Foreword. FAO Technical Papers-Water Reports No. 22. 2002. Available online: http://www.fao.org/tempref/agl/AGLW/ESPIM/CD-ROM/documents/5K_e.pdf (accessed on 23 November 2019).
- CARB. California Greenhouse Gas Emissions Inventory; California Air Resources Board, California Environmental Protection Agency: Sacramento, CA, USA, 2015. Available online: http://www.arb.ca.gov/cc/inventory/doc/docs4/4b_solidwastetreatment_composting_feedstockprocessed_ch4_2012.htm (accessed on 23 November 2019).
- USEPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2014; EPA 430-R-100–06; US Environmental Protection Agency: Washington, DC, USA, 2016. Available online: http://epa.gov/climatechange/emissions/usinventoryreport.html (accessed on 27 May 2016).
- IPCC. Anthropogenic and natural radiative forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Culman, S.W.; Haden, V.R.; Maxwell, T.; Waterhouse, H.; Horwath, W. Greenhouse Gas Mitigation Opportunities in California Agriculture: Review of California Cropland Emissions and Mitigation Potential. Available online: https://nicholasinstitute.duke.edu/sites/default/files/publications/ni_ggmoca_r_3.pdf (accessed on 23 November 2019).
- Hart, J.F. Specialty cropland in California. Geogr. Rev. 2003, 93, 153–170. [Google Scholar] [CrossRef]
- USDA. Citrus Fruits 2015 Summary; USDA: Washington, DC, USA, 2015.
- DeLonge, M.S.; Owen, J.J.; Silver, W.L. Greenhouse Gas Mitigation Opportunities in California Agriculture: Review of California Rangeland Emissions and Mitigation Potential. Available online: https://nicholasinstitute.duke.edu/sites/default/files/ni_ggmoca_r_4.pdf (accessed on 23 November 2019).
- Owen, J.J.; Kebreab, E.; Silver, W. Greenhouse Gas Mitigation Opportunities in California Agriculture: Review of Emissions and Mitigation Potential of Animal Manure Management and Land Application of Manure. Available online: https://nicholasinstitute.duke.edu/sites/default/files/ni_ggmoca_r_6.pdf (accessed on 23 November 2019).
- Sumner, D. Greenhouse Gas Mitigation Opportunities in California Agriculture: Outlook for California Agriculture to 2030. Available online: https://aic.ucdavis.edu/publications/california%20outlook%20for%20GHG%20duke%20report.pdf (accessed on 23 November 2019).
- Bouwman, A.; Boumans, L.; Batjes, N. Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Glob. Biogeochem. Cycles 2002, 16. [Google Scholar] [CrossRef]
- Bateman, E.J.; Baggs, E.M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fert. Soils 2005, 41, 379–388. [Google Scholar] [CrossRef]
- Stehfest, E.; Bouwman, L. N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions. Nutr. Cycl. Agroecosyst. 2006, 74, 207–228. [Google Scholar] [CrossRef]
- Zhu, X.; Burger, M.; Doane, T.A.; Horwath, W.R. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proc. Natl. Acad. Sci. USA 2013, 110, 6328–6333. [Google Scholar] [CrossRef]
- Zhu-Barker, X.; Cavazos, A.R.; Ostrom, N.E.; Horwath, W.R.; Glass, J.B. The importance of abiotic reactions for nitrous oxide production. Biogeochemistry 2015, 126, 251–267. [Google Scholar] [CrossRef]
- Zhu-Barker, X.; Steenwerth, K. Nitrous Oxide Production from Soils in the Future: Processes, Controls and Responses to Climate Change. In Developments in Soil Sciences; Elsevier: Amsterdam, The Netherlands, 2018; Volume 35, pp. 131–183. [Google Scholar]
- CDFA. California Processing Tomato Report. 2016. Available online: https://www.nass.usda.gov/Statistics_by_State/California/Publications/Specialty_and_Other_Releases/Tomatoes/2016/201605ptom.pdf (accessed on 23 November 2019).
- U.S. Agricultural Marketing Service. USDA Definition of Specialty Crops. Retrieved 1 June 2016. Available online: http://www.ams.usda.gov/AMSv1.0/scbgpdefinitions (accessed on 23 November 2019).
- Starrs, P.F.; Goin, P. Field Guide to California Agriculture; University of California Press: Berkeley, CA, USA, 2010. [Google Scholar]
- UCAIC. The Measure of California Agriculture; University of California Agricutural Issues Center: Davis, CA, USA, 2009. [Google Scholar]
- Williams, J.N.; Hollander, A.D.; O’Geen, A.T.; Thrupp, L.A.; Hanifin, R.; Steenwerth, K.; McGourty, G.; Jackson, L.E. Assessment of carbon in woody plants and soil across a vineyard-woodland landscape. Carbon Balance Manag. 2011, 6, 11. [Google Scholar] [CrossRef]
- Verhoeven, E.; Pereira, E.; Decock, C.; Garland, G.; Kennedy, T.; Suddick, E.; Horwath, W.; Six, J. N2O emissions from California farmlands: A review. Calif. Agric. 2017, 71, 148–159. [Google Scholar] [CrossRef]
- Smart, D.R.; Suddick, E.; Pritchard, T. Control of Greenhouse Gas Emissions From California Vineyards by Soil Carbon and Water and Its Policy Implications; Final Report; Kearney Foundation of Soil Science: Davis, CA, USA, 2006. [Google Scholar]
- Steenwerth, K.; Belina, K. Cover crops and cultivation: Impacts on soil N dynamics and microbiological function in a Mediterranean vineyard agroecosystem. Appl. Soil. Ecol. 2008, 40, 370–380. [Google Scholar] [CrossRef]
- Garland, G.M.; Suddick, E.; Burger, M.; Horwath, W.; Six, J. Direct N2O emissions following transition from conventional till to no-till in a cover cropped Mediterranean vineyard (Vitis vinifera). Agric. Ecosyst. Environ. 2011, 144, 423–428. [Google Scholar] [CrossRef]
- Garland, G.M.; Suddick, E.; Burger, M.; Horwath, W.; Six, J. Direct N2O emissions from a Mediterranean vineyard: Event-related baseline measurements. Agric. Ecosyst. Environ. 2014, 195, 44–52. [Google Scholar] [CrossRef]
- Verhoeven, E.; Six, J. Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: An assessment across two years. Agric. Ecosyst. Environ. 2014, 191, 27–38. [Google Scholar] [CrossRef]
- Yu, O.T.; Greenhut, R.F.; O’Geen, A.T.; Mackey, B.; Horwath, W.R.; Steenwerth, K.L. Precipitation Events and Management Practices Affect Greenhouse Gas Emissions from Vineyards in a Mediterranean Climate. Soil Sci. Soc. Am. J. 2017, 81, 138–152. [Google Scholar] [CrossRef]
- Wolff, M.W.; Alsina, M.M.; Stockert, C.M.; Khalsa, S.D.S.; Smart, D.R. Minimum tillage of a cover crop lowers net GWP and sequesters soil carbon in a California vineyard. Soil Tillage Res. 2018, 175, 244–254. [Google Scholar] [CrossRef]
- Smart, D.R.; Alsina, M.M.; Wolff, M.W.; Matiasek, M.G.; Schellenberg, D.L.; Edstrom, J.P.; Brown, P.H.; Scow, K.M. N2O emissions and water management in California perennial crops. In Understanding Greenhouse Gas Emissions from Agricultural Management; American Chemical Society: Baltimore, MD, USA, 2011; pp. 227–255. [Google Scholar]
- Suddick, E.; Steenwerth, K.; Garland, G.; Smart, D.; Six, J. Discerning agricultural management effects on nitrous oxide emissions from conventional and alternative cropping systems: A California case study. In Understanding Greenhouse Gas Emissions from Agricultural Management; Guo, L., Gunasekara, A., McConnell, L., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2011; Volume 1072, pp. 203–226. [Google Scholar]
- Schellenberg, D.L.; Alsina, M.M.; Muhammad, S.; Stockert, C.M.; Wolff, M.W.; Sanden, B.L.; Brown, P.H.; Smart, D.R. Yield-scaled global warming potential from N2O emissions and CH4 oxidation for almond (Prunus dulcis) irrigated with nitrogen fertilizers on arid land. Agric. Ecosyst. Environ. 2012, 155, 7–15. [Google Scholar] [CrossRef]
- Alsina, M.M.; Fanton-Borges, A.C.; Smart, D.R. Spatiotemporal variation of event related N2O and CH4 emissions during fertigation in a California almond orchard. Ecosphere 2013, 4, 1–21. [Google Scholar] [CrossRef]
- CalRecycle. Research to Evaluate Nitrous Oxide (N2O) Emissions from Compost in Support of AB 32 Scoping Plan Composting Measure. 2015; Publication #DRRR 201500–1544. Available online: https://www2.calrecycle.ca.gov/Publications/Download/1183 (accessed on 24 November 2019).
- Wolff, M.W.; Hopmans, J.W.; Stockert, C.M.; Burger, M.; Sanden, B.L.; Smart, D.R. Effects of drip fertigation frequency and N-source on soil N2O production in almonds. Agric. Ecosyst. Environ. 2016, 238, 67–77. [Google Scholar] [CrossRef]
- Decock, C.; Garland, G.; Suddick, E.C.; Six, J. Season and location–specific nitrous oxide emissions in an almond orchard in California. Nutr. Cycl. Agroecosyst. 2017, 107, 139–155. [Google Scholar] [CrossRef]
- Pereira, E.I.P.; Suddick, E.C.; Six, J. Carbon Abatement and Emissions Associated with the Gasification of Walnut Shells for Bioenergy and Biochar Production. PLoS ONE 2016, 11, e0150837. [Google Scholar] [CrossRef]
- Burger, M.; Horwath, W. Assessment of Baseline Nitrous Oxide Emissions in California Cropping Systems; California Air Resources Board: Sacramento, CA, USA, 2012.
- Kennedy, T.L.; Suddick, E.C.; Six, J. Reduced nitrous oxide emissions and increased yields in California tomato cropping systems under drip irrigation and fertigation. Agric. Ecosyst. Environ. 2013, 170, 16–27. [Google Scholar] [CrossRef]
- Kallenbach, C.M.; Rolston, D.E.; Horwath, W.R. Cover cropping affects soil N2O and CO2 emissions differently depending on type of irrigation. Agric. Ecosyst. Environ. 2010, 137, 251–260. [Google Scholar] [CrossRef]
- Suddick, E.C.; Six, J. An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation. Sci. Total Environ. 2013, 465, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.I.P. Can Biochar Mitigate Nitrogen Losses in Organic Farming Systems; University of California: Davis, CA, USA, 2014. [Google Scholar]
- Parton, W.J.; Hartman, M.; Ojima, D.; Schimel, D. DAYCENT and its land surface submodel: Description and testing. Glob. Planet. Chang. 1998, 19, 35–48. [Google Scholar] [CrossRef]
- De Gryze, S.; Albarracin, M.; Catala-Luque, R.; Howitt, R.; Six, J. Modeling shows that alternative soil management can decrease greenhouse gases. Calif. Agric. 2009, 63, 84–90. [Google Scholar] [CrossRef]
- De Gryze, S.; Lee, J.; Ogle, S.; Paustian, K.; Six, J. Assessing the potential for greenhouse gas mitigation in intensively managed annual cropping systems at the regional scale. Agric. Ecosyst. Environ. 2011, 144, 150–158. [Google Scholar] [CrossRef]
- De Gryze, S.; Wolf, A.; Kaffka, S.R.; Mitchell, J.; Rolston, D.E.; Temple, S.R.; Lee, J.; Six, J. Simulating greenhouse gas budgets of four California cropping systems under conventional and alternative management. Ecol. Appl. 2010, 20, 1805–1819. [Google Scholar] [CrossRef]
- CDFA. California Agricultural Statistics Review, 2016–2017; CDFA: Sacramento, VA, USA, 2016.
- Turini, T.; Cahn, M.; Cantwell, M.; Jackson, L.; Koike, S.; Natwick, E.; Smith, R.; Subbarao, K.; Takele, E. Iceberg Lettuce Production in California; University of California Division of Agriculture and Natural Resources: Davis, CA, USA, 2011; p. 7215. [Google Scholar]
- Tolomeo, V.; Krug, K.; DeWalt, D. California Agricultural Statistics, 2012 Crop Year; United States Department of Agriculture, National Agricultural Statistics Service, Pacific Regional Office—California: Sacramento, CA, USA, 2012.
- Elias, E.; Steele, C.; Havstad, K.; Steenwerth, K.; Chambers, J.; Deswood, H.; Kerr, A.; Rango, A.; Schwartz, M.; Stine, P. Southwest Regional Climate Hub and California Subsidiary Hub Assessment of Climate Change Vulnerability and Adaptation and Mitigation Strategies; US Department of Agriculture: Washington, DC, USA, 2015; p. 76.
- CDFA. California Agricultural Statistics Review 2015–2016. 2017. Available online: https://www.cdfa.ca.gov/statistics/PDFs/2016Report.pdf (accessed on 23 November 2019).
- Mulvaney, R.L.; Khan, S.A.; Mulvaney, C.S. Nitrogen fertilizers promote denitrification. Boil. Fertil. Soils 1997, 24, 211–220. [Google Scholar] [CrossRef]
- Rolston, D.E.; Venterea, R.T. Nitric and nitrous oxide emissions following fertilizer application to agricultural soil: Biotic and abiotic mechanisms and kinetics. J. Geophys. Res. Space Phys. 2000, 105, 15117–15129. [Google Scholar]
- Zhu, X.; Burger, M.; Waterhouse, H.; Horwath, W.R. The Effect of Ammonical N Fertilizer Concentration Soil O2 Consumption and N2O Production Pathways. In Proceedings of the ASA, CSSA and SSSA International Annual Meetings, Minneapolis, MN, USA, 15–19 November 2014. [Google Scholar]
- Stark, J.M.; Firestone, M.K. Mechanisms for Soil Moisture Effects on Activity of Nitrifying Bacteria. Appl. Environ. Microbiol. 1995, 61, 218–221. [Google Scholar]
- Avrahami, S.; Liesack, W.; Conrad, R. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ. Microbiol. 2003, 5, 691–705. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Working Group I: The physical science basis. In IPCC Fourth Assessment Report: Climate Change 2007; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miler, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- USDA. Quantifying Greenhouse Gas Fluxes in Agriculture and Forestry: Methods for Entity-Scale Inventory; USDA: Washington, DC, USA, 2014.
- Hoben, J.P.; Gehl, R.J.; Millar, N.; Grace, P.R.; Robertson, G.P. Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Glob. Chang. Biol. 2011, 17, 1140–1152. [Google Scholar] [CrossRef]
- Zhu-Barker, X.; Horwath, W.R.; Burger, M. Knife-injected anhydrous ammonia increases yield-scaled N2O emissions compared to broadcast or band-applied ammonium sulfate in wheat. Agric. Ecosyst. Environ. 2015, 212, 148–157. [Google Scholar] [CrossRef]
- Shcherbak, J. Global Meta-analysis of the Nonlinear Response of Soil Nitrous Oxide Emissions to Fertilizer Nitrogen. Proc. Natl. Acad. Sci. USA 2014, 111, 9199–9204. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, B.; Ziadi, N. Grain Corn and Soil Nitrogen Responses to Sidedress Nitrogen Sources and Applications. Agron. J. 2010, 102, 1014–1022. [Google Scholar] [CrossRef]
- Gagnon, B.; Ziadi, N.; Rochette, P.; Chantigny, M.H.; Angers, D.A. Fertilizer Source Influenced Nitrous Oxide Emissions from a Clay Soil under Corn. Soil Sci. Soc. Am. J. 2011, 75, 595–604. [Google Scholar] [CrossRef]
- CDFA. Fertilizer Tonnage Reports; CDFA: Sacramento, CA, USA, 2012.
- ERS. U.S. Fertilizer Use and Price USDA Economic Research Service. 2016. Available online: http://www.ers.usda.gov/Data/FertilizerUse/ (accessed on 22 June 2016).
- Bouman, O.T.; Curtin, D.; Campbell, C.A.; Biederbeck, V.O.; Ukrainetz, H. Soil Acidification from Long-Term Use of Anhydrous Ammonia and Urea. Soil Sci. Soc. Am. J. 1995, 59, 1488–1494. [Google Scholar] [CrossRef]
- Halvorson, A.D.; Del Grosso, S.J. Nitrogen Placement and Source Effects on Nitrous Oxide Emissions and Yields of Irrigated Corn. J. Environ. Qual. 2013, 42, 312–322. [Google Scholar] [CrossRef]
- Eagle, J.; Henry, L.R.; Olander, L.P.; Haugen-Kozyra, K.; Millar, N.; Robertson, G.P. Greenhouse Gas Mitigation Potential of Agricultural Land Management in the United States: A Synthesis of the Literature; Technical Working Group on Agricultural Greenhouse Gases (T-AGG) Report; Nicholas Institute Report for Environmental PolicySolutions, Duke University: Durham, NC, USA, 2011. [Google Scholar]
- Shaviv, A. Advances in controlled-release fertilizers. Adv. Agron. 2001, 71, 1–49. [Google Scholar]
- Mitchell, J.P.; Klonsky, K.M.; Miyao, E.M.; Aegerter, B.J.; Shrestha, A.; Munk, D.S.; Hembree, K.; Madden, N.M.; Turini, T.A. Evolution of Conservation Tillage Systems for Processing Tomato in California’s Central Valley. HortTechnology 2012, 22, 617–626. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, H.; Yan, X.Y.; Yagi, K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: Meta-analysis. Glob. Chang. Biol. 2010, 16, 1837–1846. [Google Scholar] [CrossRef]
- Hartz, T.K.; Bottoms, T.G. Nitrogen Requirements of Drip-irrigated Processing Tomatoes. HortScience 2009, 44, 1988–1993. [Google Scholar] [CrossRef]
- Hartz, T.; Miyao, G.; Mickler, J.; LeStrange, M.; Stoddard, S.; Nunez, J.; Aegerter, B. Processing Tomato Production in California. Available online: http://anrcatalog.ucdavis.edu/pdf/7228.pdf (accessed on 23 November 2019).
- Krusekopf, H.; Mitchell, J.; Hartz, T.; May, D.; Miyao, E.; Cahn, M. Pre-sidedress Soil Nitrate Testing Identifies Processing Tomato Fields Not Requiring Sidedress N Fertilizer. HortScience 2002, 37, 520–524. [Google Scholar] [CrossRef] [Green Version]
- Miyao, G.; Aegerter, B.; Klonsky, K. Don Stewart, Sample Costs to Produce Processing Tomatoes Furrow Irrigated in the Sacramento Valley & Northern Delta University of California-Cooperative Extension. 2014. Available online: http://coststudies.ucdavis.edu/current/ (accessed on 23 November 2019).
- Miyao, G.; Aegerter, B.; Klonsky, K. Don Stewart, Sample Costs to Produce Processing Tomatoes Sub-Surface, Drip Irrigated in the Sacramento Valley & northern Delta University of California-Cooperative Extension. 2014. Available online: http://coststudies.ucdavis.edu/current/ (accessed on 23 November 2019).
- Liptzin, D.; Rosenstock, T.S.; Six, J.; Tomich, T.P. Nitrogen fertilizer use in California: Assessing the data, trends and a way forward. Calif. Agric. 2013, 67, 68–79. [Google Scholar]
- Kennedy, T.L. Nitrous Oxide Emissions from California Tomato Cropping Systems under Conventional and Alternative Management; University of California: Davis, CA, USA, 2011. [Google Scholar]
- Cayuela, M.L.; Aguilera, E.; Sanz-Cobena, A.; Adams, D.C.; Abalos, D.; Barton, L.; Ryals, R.; Silver, W.L.; Alfaro, M.A.; Pappa, V.A.; et al. Direct nitrous oxide emissions in Mediterranean climate cropping systems: Emission factors based on a meta-analysis of available measurement data. Agric. Ecosyst. Environ. 2017, 238, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Hartz, T.K.; Johnstone, P.R.; Williams, E.; Smith, R. Establishing Lettuce Leaf Nutrient Optimum Ranges Through DRIS Analysis. HortScience 2007, 42, 143–146. [Google Scholar] [CrossRef]
- Peacock, W.L.; Christensen, L.; Hirschfelt, D. Best Management Practices for Nitrogen Fertilization of Grapevines. Available online: http://cetulare.ucdavis.edu/files/82028.pdf (accessed on 23 November 2019).
- Williams, L. Growth of Thompson seedless grapevines. II: Nitrogen distribution. J. Am. Soc. Hortic. Sci. 1987, 112, 330–333. [Google Scholar]
- Wunderlich, L.; Klonsky, K.; Stewart, D. Sample Costs to Establish a Vineyard and Produce Wine Grapes; University of California-Cooperative Extension: Davis, CA, USA, 2015. [Google Scholar]
- Steenwerth, K.L.; Strong, E.B.; Greenhut, R.F.; Williams, L.; Kendall, A. Life cycle greenhouse gas, energy, and water assessment of wine grape production in California. Int. J. Life Cycle Assess. 2015, 20, 1243–1253. [Google Scholar] [CrossRef]
- Wolff, M.W. Net Global Warming Potential and Nitrogen Fertigation in Orchards and Vineyards: Opportunities for Mitigation; University of California: Davis, CA, USA, 2015. [Google Scholar]
- Kieft, T.L.; Soroker, E.; Firestone, M.K. Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Boil. Biochem. 1987, 19, 119–126. [Google Scholar] [CrossRef]
- Fierer, N.; Schimel, J.P. Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil Boil. Biochem. 2002, 34, 777–787. [Google Scholar] [CrossRef]
- Firestone, M.K.; Smith, M.S.; Firestone, R.B.; Tiedje, J.M. The Influence of Nitrate, Nitrite, and Oxygen on the Composition of the Gaseous Products of Denitrification in Soil1. Soil Sci. Soc. Am. J. 1979, 43, 1140–1144. [Google Scholar] [CrossRef]
- Dunfield, P.F.; Topp, E.; Archambault, C.; Knowles, R. Effect of nitrogen fertilizers and moisture content on CH4 and N2O fluxes in a humisol: Measurements in the field and intact soil cores. Biogeochemistry 1995, 29, 199–222. [Google Scholar] [CrossRef]
- Katayanagi, N.; Furukawa, Y.; Fumoto, T.; Hosen, Y. Validation of the DNDC-Rice model by using CH 4 and N 2 O flux data from rice cultivated in pots under alternate wetting and drying irrigation management. Soil Sci. Plant Nutr. 2012, 58, 360–372. [Google Scholar] [CrossRef]
- Burger, M.; Horwath, W.R. Assessment of NOx Emissions from Soil in California Cropping Systems; Contract No. 093–29; California Air Resources Board: Sacramento, CA, USA, 2013.
- Aguilera, E.; Lassaletta, L.; Sanz-Cobena, A.; Garnier, J.; Vallejo, A. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agric. Ecosyst. Environ. 2013, 164, 32–52. [Google Scholar] [CrossRef] [Green Version]
- Hanson, B.; Bendixen, W.; May, D. In Patterns of soil moisture, soil salinity, and soil nitrate under drip irrigation of row crops. In Proceedings of the 2000 National Conference and Exhibition: Water–Essential for Life; Irrigation Association of Australia: Melbourne, Australia, 2000. [Google Scholar]
- Hanson, B.; May, D. The effect of drip line placement on yield and quality of drip-irrigated processing tomatoes. Irrig. Drain. Syst. 2007, 21, 109–118. [Google Scholar] [CrossRef]
- Elmi, A.A.; Madramootoo, C.; Hamel, C.; Liu, A. Denitrification and nitrous oxide to nitrous oxide plus dinitrogen ratios in the soil profile under three tillage systems. Boil. Fertil. Soils 2003, 38, 340–348. [Google Scholar] [CrossRef]
- Muñoz, F.; Mylavarapu, R.S.; Hutchinson, C.M. Environmentally Responsible Potato Production Systems: A Review. J. Plant Nutr. 2005, 28, 1287–1309. [Google Scholar] [CrossRef]
- Cabrera, M.; Cavanaugh, M.; Wil, N. California Drought Forces Farmers to Adapt. KPBS Radio, 8 September 2014. [Google Scholar]
- Howitt, R.; Medellín-Azuara, J.; MacEwan, D.; Lund, J.; Sumner, D. Economic Analysis of the 2014 Drought for California Agriculture; UC–Davis Center for Watershed Sciences: Davis, CA, USA, 2014; Available online: https://watershed.ucdavis.edu/files/biblio/DroughtReport_23July2014_0.pdf (accessed on 23 November 2019).
- Smith, R.; Cahn, M.; Daugovish, O.; Koike, S.; Natwick, E.; Smith, H.; Subbarao, K.; Takele, E.; Turini, T. Leaf Lettuce Production in California; University of California, Agricultural Natural Resources, Publication 7216: Davis, CA, USA, 2011. [Google Scholar]
- Peacock, B.; Williams, L.E.; Christensen, L.P. Water management and irrigation scheduling. Raisin Production in California; University of California Division of Agricultural and Natural Resources: Davis, CA, USA, 2000; pp. 127–133. [Google Scholar]
- Lopus, S.; Santibáñez, M.; Beede, R.; Duncan, R.; Edstrom, J.; Niederholzer, F.; Trexler, C.; Brown, P. Survey examines the adoption of perceived best management practices for almond nutrition. Calif. Agric. 2010, 64, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Six, J.; Ogle, S.M.; Breidt, F.J.; Conant, R.T.; Mosier, A.R.; Paustian, K. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob. Chang. Boil. 2004, 10, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Munkholm, L.J.; Heck, R.J.; Deen, B.; Zidar, T. Relationship between soil aggregate strength, shape and porosity for soils under different long-term management. Geoderma 2016, 268, 52–59. [Google Scholar] [CrossRef]
- Broder, M.W.; Doran, J.W.; Peterson, G.A.; Fenster, C.R. Fallow Tillage Influence on Spring Populations of Soil Nitrifiers, Denitrifiers, and Available Nitrogen1. Soil Sci. Soc. Am. J. 1984, 48, 1060. [Google Scholar] [CrossRef]
- Smith, J.; Wagner-Riddle, C.; Dunfield, K. Season and management related changes in the diversity of nitrifying and denitrifying bacteria over winter and spring. Appl. Soil Ecol. 2010, 44, 138–146. [Google Scholar] [CrossRef]
- Grandy, A.S.; Loecke, T.D.; Parr, S.; Robertson, G.P. Long-Term Trends in Nitrous Oxide Emissions, Soil Nitrogen, and Crop Yields of Till and No-Till Cropping Systems. J. Environ. Qual. 2006, 35, 1487–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosier, A.R.; Halvorson, A.D.; Reule, C.A.; Liu, X.J. Net Global Warming Potential and Greenhouse Gas Intensity in Irrigated Cropping Systems in Northeastern Colorado. J. Environ. Qual. 2006, 35, 1584–1598. [Google Scholar] [CrossRef] [Green Version]
- Rochette, P. No-till only increases N2O emissions in poorly-aerated soils. Soil Tillage Res. 2008, 101, 97–100. [Google Scholar] [CrossRef]
- Almaraz, J.J.; Mabood, F.; Zhou, X.; Madramootoo, C.; Rochette, P.; Ma, B.-L.; Smith, D.L. Carbon Dioxide and Nitrous Oxide Fluxes in Corn Grown under Two Tillage Systems in Southwestern Quebec. Soil Sci. Soc. Am. J. 2009, 73, 113–119. [Google Scholar] [CrossRef]
- Kong, A.Y.; Fonte, S.J.; Van Kessel, C.; Six, J. Transitioning from standard to minimum tillage: Trade-offs between soil organic matter stabilization, nitrous oxide emissions, and N availability in irrigated cropping systems. Soil Tillage Res. 2009, 104, 256–262. [Google Scholar] [CrossRef]
- Bijesh, M.; Dolan, M.S.; Venterea, R.T. Fertilizer Source and Tillage Effects on Yield-Scaled Nitrous Oxide Emissions in a Corn Cropping System. J. Environ. Qual. 2011, 40, 1521–1531. [Google Scholar]
- Abdalla, M.; Osborne, B.; Lanigan, G.; Forristal, D.; Williams, M.; Smith, P.; Jones, M.B. Conservation tillage systems: a review of its consequences for greenhouse gas emissions. Soil Use Manag. 2013, 29, 199–209. [Google Scholar] [CrossRef]
- Kessel, C.; Venterea, R.; Six, J.; Adviento-Borbe, M.A.; Linquist, B.; Groenigen, K.J. Climate, duration, and N placement determine N2O emissions in reduced tillage systems: A meta-analysis. Glob. Chang. Biol. 2013, 19, 33–44. [Google Scholar] [CrossRef]
- Mitchell, J.P.; Klonsky, K.; Shrestha, A.; Fry, R.; DuSault, A.; Beyer, J.; Harben, R. Adoption of conservation tillage in California: current status and future perspectives. Aust. J. Exp. Agric. 2007, 47, 1383–1388. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, J.P.; Pettygrove, G.S.; Upadhyaya, S.; Shrestha, A.; Fry, R.; Roy, R.; Hogan, P.; Vargas, R.; Hembree, K. Classification of Conservation Tillage Practices in California Irrigated Row Crop Systems; University of California Agriculture and Natural Resources (UC ANR): Davis, CA, USA, 2009. [Google Scholar]
- Mitchell, J.P.; Shrestha, A.; Irmak, S. Trade-offs between winter cover crop production and soil water depletion in the San Joaquin Valley, California. J. Soil Water Conserv. 2015, 70, 430–440. [Google Scholar] [CrossRef] [Green Version]
- Miyao, G.; Klonsky, K.; Livingston, P. Sample Costs to Produce Processing Tomatoes Transplanted in the Sacramento Valley. University of California Cooperative Extension. Available online: https://ucanr.edu/sites/colusa/files/277960.pdf (accessed on 23 November 2019).
- Mitchell, J.P.; Klonsky, K.M.; Miyao, E.M.; Hembree, K.J. Conservation Tillage Tomato Production in California’s San Joaquin Valley; University of California Agriculture and Natural Resources (UC ANR): Davis, CA, USA, 2009. [Google Scholar]
- Scow, K. Russell Ranch Sustainable Agriculture Facility; Agricultural Sustainability Institute, College of Agricultural and Environmental Sciences, University of California: Davis, CA, USA, 2012. [Google Scholar]
- Sutton, K.F.; Thomas Lanini, W.; Mitchell, J.P.; Miyao, E.M.; Shrestha, A. Weed Control, Yield, and Quality of Processing Tomato Production under Different Irrigation, Tillage, and Herbicide Systems. Weed Technol. 2006, 20, 831–838. [Google Scholar] [CrossRef]
- Mitchell, J.P.; Miyao, G.; Klonsky, K.M.; Demoura, R. Cover Cropping and Conservation Tillage in California Processing Tomatoes; University of California, Agricultural Natural Resources, Publication 8404: Davis, CA, USA, 2012. [Google Scholar]
- Tourte, L.; Smith, R. Sample Production Costs for Wrapped Iceberg Lettuce Sprinkler Irrigated—40-inch Beds. University of California Cooperative Extension. Available online: https://coststudyfiles.ucdavis.edu/uploads/cs_public/a4/bb/a4bb20f0-4bfe-404e-b47e-b7a634ca80b5/2010lettuce_wrap_cc.pdf (accessed on 23 November 2019).
- Steenwerth, K.L.; Orellana-Calderón, A.; Hanifin, R.C.; Storm, C.; McElrone, A.J. Effects of Various Vineyard Floor Management Techniques on Weed Community Shifts and Grapevine Water Relations. Am. J. Enol. Vitic. 2016, 67, 153–162. [Google Scholar] [CrossRef]
- Smukler, S.M.; O’Geen, A.T.; Jackson, L.E. Assessment of best management practices for nutrient cycling: A case study on an organic farm in a Mediterranean-type climate. J. Soil Water Conserv. 2012, 67, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Basche, A.D.; Miguez, F.E.; Kaspar, T.C.; Castellano, M. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. J. Soil Water Conserv. 2014, 69, 471–482. [Google Scholar] [CrossRef] [Green Version]
- Follett, R. Soil management concepts and carbon sequestration in cropland soils. Soil Tillage Res. 2001, 61, 77–92. [Google Scholar] [CrossRef]
- Sainju, U.M.; Schomberg, H.H.; Singh, B.P.; Whitehead, W.F.; Tillman, P.G.; Lachnicht-Weyers, S.L. Cover crop effect on soil carbon fractions under conservation tillage cotton. Soil Tillage Res. 2007, 96, 205–218. [Google Scholar] [CrossRef]
- Zhu-Barker, X.; Burger, M.; Horwath, W.R.; Green, P.G. Direct green waste land application: How to reduce its impacts on greenhouse gas and volatile organic compound emissions? Waste Manag. 2016, 52, 318–325. [Google Scholar] [CrossRef]
- Zhu-Barker, X.; Doane, T.A.; Horwath, W.R. Role of green waste compost in the production of N2O from agricultural soils. Soil Boil. Biochem. 2015, 83, 57–65. [Google Scholar] [CrossRef]
- Belmonte, S.A.; Luisella, C.; Stahel, R.J.; Bonifacio, E.; Novello, V.; Zanini, E.; Steenwerth, K.L. Effect of Long-Term Soil Management on the Mutual Interaction among Soil Organic Matter, Microbial Activity and Aggregate Stability in a Vineyard. Pedosphere 2018, 28, 288–298. [Google Scholar] [CrossRef]
- Hirschfelt, D.J. Vineyard Floor Management. Raisin Production Manual; Univ. California, Div. Agr. Natural Resources, Publ: Davis, CA, USA, 2000; Volume 3393, pp. 134–138. [Google Scholar]
- Guerra, B.; Steenwerth, K. Influence of Floor Management Technique on Grapevine Growth, Disease Pressure, and Juice and Wine Composition: A Review. Am. J. Enol. Vitic. 2011, 63, 149–164. [Google Scholar] [CrossRef]
- Celette, F.; Findeling, A.; Gary, C. Competition for nitrogen in an unfertilized intercropping system: The case of an association of grapevine and grass cover in a Mediterranean climate. Eur. J. Agron. 2009, 30, 41–51. [Google Scholar] [CrossRef]
- Steenwerth, K.L.; McElrone, A.J.; Hanifin, R.C.; Storm, C.; Collatz, W.; Manuck, C.; Calderón-Orellana, A. Cover Crops and Tillage in a Mature Merlot Vineyard Show Few Effects on Grapevines. Am. J. Enol. Vitic. 2013, 64, 515–521. [Google Scholar] [CrossRef]
- Veenstra, J.J.; Horwath, W.R.; Mitchell, J.P. Tillage and Cover Cropping Effects on Aggregate-Protected Carbon in Cotton and Tomato. Soil Sci. Soc. Am. J. 2007, 71, 362–371. [Google Scholar] [CrossRef]
- Mitchell, J.P.; Shrestha, A.; Horwath, W.R.; Southard, R.J.; Madden, N.; Veenstra, J.; Munk, D.S. Tillage and Cover Cropping Affect Crop Yields and Soil Carbon in the San Joaquin Valley, California. Agron. J. 2015, 107, 588–596. [Google Scholar] [CrossRef]
- Shipley, P.; Messinger, J.; Decker, A. Conserving Residual Corn Fertilizer Nitrogen with Winter Cover Crops. Agron. J. 1992, 84, 869–876. [Google Scholar] [CrossRef]
- Wolfe, D. Soil Compaction: Crop Response and Remediation, Department of Fruit & Vegetable Sciences Report No. 63; Cornell University: Ithaca, NY, USA, 1997. [Google Scholar]
- Matthiessen, J.N.; Kirkegaard, J.A. Biofumigation and Enhanced Biodegradation: Opportunity and Challenge in Soilborne Pest and Disease Management. Crit. Rev. Plant Sci. 2006, 25, 235–265. [Google Scholar] [CrossRef]
- Crews, T.; Peoples, M. Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric. Ecosyst. Environ. 2004, 102, 279–297. [Google Scholar] [CrossRef]
- Seiter, S.; Horwath, W. Strategies for Managing Soil Organic Matter to Supply Plant Nutrients. In Soil organic matter in sustainable agriculture; CRC Press: Boca Raton, FL, USA, 2004; Volume 20042043, pp. 269–294. [Google Scholar]
- Drinkwater, L.; Snapp, S. Nutrients in Agroecosystems: Rethinking the Management Paradigm. Adv. Agron. 2007, 92, 163–186. [Google Scholar]
Location (Lat.; Long.) | Soil Texture | Irrigation Type | Tillage | Cover Crop | N Source | N Input (kg N ha−1) | Crop Residual N (kg N ha−1) | N2O Emissions | Emission Factors (% of Applied N Emitted as N2O, Uncorrected for Background Flux) | Emission Factors (% of Applied N Emitted as N2O, Corrected for Background Flux) * | Study Scale | References | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Growing Season (kg N ha−1) | Annual (kg N ha−1 yr−1) | Scaling Factor (Annual/Season) | Seasonal | Annual | Seasonal | Annual | ||||||||||
38°34’N; 121°56’W | Clay loam | Furrow | Standard | N | 8-24-6; 28-0-5; CAN-17 | 402 a | 73 | 2.01 ± 0.19 | 3.06 ± 0.19 | 1.52 | 0.85 ± 0.08 | 0.76 ± 0.05 | 0.65± 0.06 | 0.64 ± 0.04 | Field | Kennedy et al., 2013 |
SDI | Reduced | N | 8-24-6; UAN-32 | 205 | 111 | 0.58 ± 0.06 | 0.95 ± 0.05 | 1.64 | 0.28 ± 0.03 | 0.46 ± 0.02 | 0.28 ± 0.03 | 0.31 ± 0.02 | Field | Kennedy et al., 2013 | ||
38°32’30’’N; 121°52’30’’W | Yolo silt loam: 22% sand, 47% silt, 31% clay | Furrow | Standard | N | 15-15-15; Ammonium sulfate; UAN-32 | 0 | 1.00 ± 0.16 b | na | na | na | na | Field | Burger and Horwath, 2012 | |||
75 | na | 1.23 ± 0.01 b | na | 1.63 ± 0.01 | na | 0.31 ± 0.01 | Field | Burger and Horwath, 2012 | ||||||||
162 | na | 1.81 ± 0.18 b | na | 1.11 ± 0.11 | na | 0.50 ± 0.07 | Field | Burger and Horwath, 2012 | ||||||||
225 | na | 4.06 ± 0.49 b | na | 1.80 ± 0.22 | na | 1.36 ± 0.20 | Field | Burger and Horwath, 2012 | ||||||||
300 | na | 4.34 ± 0.87 b | na | 1.45 ± 0.29 | na | 1.12 ± 0.24 | Field | Burger and Horwath, 2012 | ||||||||
32°N; 121°50’W | Reiff loam and Yolo silt loam | Furrow | Standard | N | Ammonium nitrate | 120 | 74 | na | 4.04 d | na | 3.37d | na | 2.08 d | Field | Kallenbach et al., 2010 | |
Furrow | Standard | Y | Ammonium nitrate | 227c | 74 | na | 7.99 d | na | 3.52d | na | 2.65 d | Field | Kallenbach et al., 2010 | |||
SDI | Standard | N | Ammonium nitrate | 120 | 74 | na | 2.09 d | na | 1.74d | na | 1.07 d | Field | Kallenbach et al., 2010 | |||
SDI | Standard | Y | Ammonium nitrate | 227c | 74 | na | 5.68 d | na | 2.50d | na | 1.89 d | Field | Kallenbach et al., 2010 |
Location (Lat.; Long.) | Soil Texture | Irrigation Type | Tillage | Cover Crop | N Source | N Input (kg N ha−1) | Crop Residual N (kg N ha−1) | N2O Emissions | Emission Factors (% of Applied N Emitted as N2O, Uncorrected for Background Flux) | Emission Factors (% of Applied N Emitted as N2O, Corrected for Background Flux) | Study Scale | References | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Growing Season (kg N ha−1) | Annual (kg N ha−1 yr−1) | Scaling Factor (Annual/Season) | Seasonal | Annual | Seasonal | Annual | ||||||||||
Yolo silt loam: 46% sand, 32 silt, 22% clay | SDI a | Standard a | N | Commer-cial organic fertilizer | 190 | 0.02 | 0.55 ± 0.09 | 0.92 c | 1.67 b | 0.30 ± 0.05 | 0.48 | 0.30 ± 0.05 | 0.48 | Greenhouse | Pereira, 2014 | |
0 | 0.16 ± 0.12 | 0.27 c | 1.67 | na | na | na | na | Greenhouse | Pereira, 2014 | |||||||
Yolo silt clay loam: 19% sand; 48% silt; 34% clay | SDI a | Standard a | N | Commer-cial organic fertilizer | 56 | 0.35 ± 0.05 | 0.58 c | 1.67 | 0.63 ± 0.08 | 1.04 | 0.34 ± 0.12 | 0.55 | Greenhouse | Pereira, 2014 | ||
SDI a | Standard a | 112 | 0.79 ± 0.06 | 1.32 c | 1.67 | 0.71 ± 0.05 | 1.18 | 0.56 ± 0.07 | 0.94 | Greenhouse | Pereira, 2014 | |||||
SDI a | Standard a | 168 | 1.00 ± 0.21 | 1.67 c | 1.67 | 0.60 ± 0.13 | 0.99 | 0.50 ± 0.15 | 0.83 | Greenhouse | Pereira, 2014 | |||||
SDI a | Standard a | 225 | 1.15 ± 0.13 | 1.92 c | 1.67 | 0.51 ± 0.06 | 0.85 | 0.44 ± 0.08 | 0.73 | Greenhouse | Pereira, 2014 | |||||
38.55N; 121.74W | Silt loam: 49% sand, 29 silt, 22% clay | SDI | Standard | Y | organic fish pellet fertilizer | 260 | na | 1.09 | 0.42 | 0.32 d | Field | Suddick and Six, 2013 | ||||
36°40’14.4’N’; 121°36’22.5’’W | Loam: 54% sand; 29% silt; 17% clay | SDI | Standard | N | UAN-32 | 84 | 15 | 0.34 ± 0.02 | 0.64 ± 0.05 | 1.89 | 0.4 | 0.76 ± 0.06 | 0.34 | 0.65 ± 0.03 | Field | Burger and Horwath, 2012 |
168 | 19.5 | 0.50 ± 0.04 | 0.91 ± 0.14 | 1.82 | 0.3 | 0.54 ± 0.08 | 0.27 | 0.49 ± 0.04 | Field | Burger and Horwath, 2012 | ||||||
252 | 21.5 | 0.74 ± 0.04 | 1.12 ± 0.11 | 1.52 | 0.29 | 0.44 ± 0.04 | 0.27 | 0.41 ± 0.04 | Field | Burger and Horwath, 2012 | ||||||
336 | 21.5 | 1.00 ± 0.08 | 1.47 ± 0.25 | 1.47 | 0.3 | 0.44 ± 0.07 | 0.28 | 0.41 ± 0.06 | Field | Burger and Horwath, 2012 |
Location (Lat.; Long.) | Soil Texture | Irrigation Type | Tillage | Cover Crop | N Source | N Input (kg N ha−1) | N2O Emissions | Emission Factors (% of Applied N Emitted as N2O)* | Study Scale | References | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Growing Season (kg N ha−1) | Annual (kg N ha−1 yr−1) | Scaling Factor (Annual/Season) | Seasonal | Annual | |||||||||
39°3.13’N; 121°58.753’W | Loam: 48% sand, 33% silt, 19% clay | Drip | No till | Y | UAN-32 | 52 a | 0.20 ± 0.02 b | 5.04 c | 28 | 0.38 ± 0.04 | 9.69 | Field | Garland et al., 2011 |
Standard | 0.14 ± 0.04 b | 3.92c | 28 | 0.27 ± 0.08 | 7.54 | ||||||||
39°3.13’N; 121°58.753’W | Loam: 48% sand, 33% silt, 19% clay | Drip | Standard | Y | UAN-32 | 52 a | 0.14 | 3.92 | 28 | 0.27 | 7.54 | Field | Garland et al., 2014 |
N | 5.4 | 0.3 | 0.56 | 1.87 | 5.56 | 10.4 | |||||||
38°17’58.68’’N; 121°28’46.69’’W | Sandy clay loam: 50% sand, 27% silt, 23% clay | Drip | Standard | Y | UAN-32 | 129 d | 0.76 | 2 | 2.63 | 0.59 | 1.55 | Field | Verhoeven and Six, 2014 |
275 e | 0.37 | 1.6 | 4.32 | 0.13 | 0.58 | ||||||||
36°19’14.88’’N; 121°14’37.7’’W | Loam | Drip | Standard | N | na | na | na | 0.47 | na | Field | Steenwerth et al., 2008 | ||
Y | na | 0.57 | na | ||||||||||
Y | na | 0.69 | na | ||||||||||
38°25’55’’N; 122°24’48’’W | Loam: 33% sand, 42% silt, 25% clay | Drip | Reduced | Y | Potassium nitrate | 43.4 f | na | 0.14 ± 0.03 | 0.32 ± 0.07 | Field | Wolff, 2015 | ||
Standard | Y | 42 f | na | 0.17 ± 0.01 | 0.40 ± 0.02 | ||||||||
Standard | N | 27.6 f | na | 0.13 ± 0.03 | 0.47 ± 0.11 | ||||||||
38°25’55’’N; 122°24’48’’W | Loam: 33% sand, 42% silt, 25% clay | Drip | Reduced | Y | Potassium nitrate | 38.8 g | na | 0.15 ± 0.04 | 0.39 ± 0.10 | Field | Wolff, 2015 | ||
Standard | Y | 44 g | na | 0.20 ± 0.04 | 0.45 ± 0.09 | ||||||||
Standard | N | 38.6 g | na | 0.19 ± 0.04 | 0.49 ± 0.10 | ||||||||
38°17’49.7’’N; 122°17’7.91’’W | unknown | Drip | Standard | unknown | unknown | 0 | na | 0.03 h | na | Field | Smart et al., 2006 | ||
6 | na | 0.05 h | 0.96 | ||||||||||
45 | na | 0.09 h | 0.2 |
Location (Lat.; Long.) | Soil Texture | Irrigation Type | Tillage | Cover Crop | N Source | N Input (kg N ha−1) | Returned N (kg N ha−1)* | N2O Emissions | Emission Factors (% of Applied N Emitted as N2O, Uncorrected for Background Flux) | Emission Factors (% of Applied N Emitted as N2O, Corrected for Background Flux) † | Study Scale | References | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Growing Season (kg N ha−1) | Annual (kg N ha−1 yr−1) | Scaling Factor (Annual/Season) | Seasonal | Annual | Seasonal | Annual | ||||||||||
35°30’37’’N; 119°40’3’’W | Sandy loam: 64% sand, 17% silt, 19% clay | Microspri-nkler | No till | N | UAN: 4 times application | 224 | 105 | 0.80 ± 0.19 | 0.35 ± 0.08 | 0.24 ± 0.06 | Field | Schellenberg et al., 2012 | ||||
Microspri-nkler | No till | CAN: 4 times application | 224 | 102 | 0.53 ± 0.11 | 0.23 ± 0.05 | 0.16 ± 0.03 | |||||||||
35°30’37’’N; 119°40’3’’W | Sandy loam: 64% sand, 17% silt, 19% clay | Drip | No till | N | UAN: 4 times application | 336 | 105a | 0.781 | 1.17 | 1.5 | 0.23 | 0.35 | 0.18 | 0.27 | Field | Wolff, 2015 |
Drip | No till | UAN: 8 times application | 336 | 105 a | 1.036 | 1.55 | 1.5 | 0.31 | 0.46 | 0.23 | 0.35 | |||||
Drip | No till | CAN: 8 times application | 336 | 102 a | 0.511 | 0.77 | 1.5 | 0.15 | 0.23 | 0.12 | 0.17 | |||||
39°01’N; 122°03’W | Sandy loam | Drip | No till | N | unknown | 236 | 80b | 1.61 ± 0.68 | 0.68 | 0.47 | Field | Alsina et al., 2013 | ||||
Microspri-nkler | No till | unknown | 236 | 80b | 0.6 ± 0.25 | 0.25 | 0.18 | |||||||||
39°12’51’’N; 122°00’33’’W | Sandy loam: 67% sand, 19% silt, 14% clay | Drip | No till | N | UAN32 | 225 | 80 b | 1.3 ± 0.6 | 0.58 | 0.43 | Field | Calrecycle, 2015 | ||||
252 | 80 b | 0.70 ± 0.02 | 0.3 | 0.21 | ||||||||||||
38°57.451’N; 122°4.527’W | Sandy loam: 60% sand, 27% silt, 13% clay | Microspri-nkler | No till | N | UAN32 | 258 | 78 | 0.65 ± 0.07 | 0.25 ± 0.03 | 0.19 | Field | Decock et al, 2017 | ||||
280 | 82 | 0.53 ± 0.19 | 0.19 ± 0.07 | 0.18 |
Crop | Planted Area (1000 ha) | N Input (kg N ha−1) | Irrigation Type | Tillage | Cover Crop | Uncorrected for Background flux | Corrected for Background flux | Number of Observations | IPCC Tier 1 Method Derived Statewide N2O-N Emissions, Gg CO2eq | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annual Emission Factors (% of Applied N Emitted as N2O-N) | Statewide Annual N2O-N Emissions, Mg | Statewide Annual N2O-N Emissions, Gg CO2eq | Annual Emission Factors (% of Applied N Emitted as N2O-N) | Statewide Annual N2O-N Emissions, Mg | Statewide Annual N2O-N Emissions, Gg CO2eq | ||||||||
Tomato | Fresh-market tomato: 12.14; Processing tomato: 121.4 | Fresh-market tomato: 108; Processing tomato: 178 | Furrow | Standard | N | 1.35 ± 0.24 a | 309 ± 55 | 149 ± 25.8 | 0.79 ± 0.11 | 181 ± 25.2 | 84.8 ± 11.8 | 5 | 107 |
Tomato | Fresh-market tomato: 12.14; Processing tomato: 121.4 | Fresh-market tomato: 108; Processing tomato: 178 | SDI | Reduced | N | 0.46 ± 0.02 | 105 ± 4.34 | 49 ± 2.03 | 0.31 ± 0.02 | 71.1 ± 4.58 | 33.3 ± 2.15 | 1 | 107 |
Tomato | Fresh-market tomato: 12.14; Processing tomato: 121.4 | Fresh-market tomato: 108; Processing tomato: 178 | SDI | Standard | N | 0.70 b | 160 | 75.1 | 0.41b | 94 | 44 | 1 | 107 |
Tomato | Fresh-market tomato: 12.14; Processing tomato: 121.4 | Fresh-market tomato: 108; Processing tomato: 178 | Furrow | Standard | Y | 1.41 c | 323 | 151 | 1.01c | 231 | 108 | 1 | 107 |
Tomato | Fresh-market tomato: 12.14; Processing tomato: 121.4 | Fresh-market tomato: 108; Processing tomato: 178 | SDI | Standard | Y | 1.01 c | 231 | 108 | 0.72c | 165 | 77.3 | 1 | 107 |
Lettuce | 131 | 166 | SDI | Standard | N | 0.75 ± 0.27 | 163 ± 59 | 76.3 ± 27.5 | 0.61 ± 0.04 | 133 ± 8.70 | 62.1 ± 4.07 | 9 | 102 |
Lettuce | 131 | 166 | SDI | Standard | Y | 0.42 | 91.3 | 42.8 | 0.32 | 69.6 | 32.6 | 1 | 102 |
Grape | Wine grapes: 249; raisin grapes: 77.7; table grapes: 49.3 | Wine grapes: 25; raisin grapes: 47; table grapes: 42 | Drip | Standard | N | 3.79 ± 2.67 | 437 ± 308 | 205 ± 144 | na | na | na | 3 | 55.9 |
Grape | Wine grapes: 249; raisin grapes: 77.7; table grapes: 49.3 | Wine grapes: 25; raisin grapes: 47; table grapes: 42 | Drip | Standard | Y | 3.01 ± 1.32 | 347 ± 152 | 162 ± 71.3 | na | na | na | 6 | 55.9 |
Grape | Wine grapes: 249; raisin grapes: 77.7; table grapes: 49.3 | Wine grapes: 25; raisin grapes: 47; table grapes: 42 | Drip | Reduced/No till | Y | 3.47 ± 2.54 | 400 ± 293 | 187 ± 137 | na | na | na | 3 | 55.9 |
Almond | 450 | 150 | Drip | No till | N | 0.43 ± 0.15 | 290 ± 22.8 | 136 ± 10.7 | 0.31 ± 0.04 | 209 ± 27.0 | 98.0 ± 12.6 | 6 | 316 |
Almond | 450 | 150 | Mircrosprinkler | No till | N | 0.25 ± 0.05 | 169 ± 33.8 | 79 ± 15.8 | 0.19 ± 0.01 | 128 ± 6.75 | 60.1 ± 3.16 | 5 | 316 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu-Barker, X.; Easter, M.; Swan, A.; Carlson, M.; Thompson, L.; Horwath, W.R.; Paustian, K.; Steenwerth, K.L. Soil Management Practices to Mitigate Nitrous Oxide Emissions and Inform Emission Factors in Arid Irrigated Specialty Crop Systems. Soil Syst. 2019, 3, 76. https://doi.org/10.3390/soilsystems3040076
Zhu-Barker X, Easter M, Swan A, Carlson M, Thompson L, Horwath WR, Paustian K, Steenwerth KL. Soil Management Practices to Mitigate Nitrous Oxide Emissions and Inform Emission Factors in Arid Irrigated Specialty Crop Systems. Soil Systems. 2019; 3(4):76. https://doi.org/10.3390/soilsystems3040076
Chicago/Turabian StyleZhu-Barker, Xia, Mark Easter, Amy Swan, Mary Carlson, Lucas Thompson, William R. Horwath, Keith Paustian, and Kerri L. Steenwerth. 2019. "Soil Management Practices to Mitigate Nitrous Oxide Emissions and Inform Emission Factors in Arid Irrigated Specialty Crop Systems" Soil Systems 3, no. 4: 76. https://doi.org/10.3390/soilsystems3040076
APA StyleZhu-Barker, X., Easter, M., Swan, A., Carlson, M., Thompson, L., Horwath, W. R., Paustian, K., & Steenwerth, K. L. (2019). Soil Management Practices to Mitigate Nitrous Oxide Emissions and Inform Emission Factors in Arid Irrigated Specialty Crop Systems. Soil Systems, 3(4), 76. https://doi.org/10.3390/soilsystems3040076