Temporal Changes in the Efficiency of Biochar- and Compost-Based Amendments on Copper Immobilization in Vineyard Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Extractable Cu, Dissolved Organic Carbon (DOC), and pH
2.3. Data Evaluation and Statistical Analyses
3. Results
3.1. Historically Contaminated Soils
3.1.1. Effects of Amendments and Incubation Time on CaCl2-Extractable Cu
3.1.2. Effects of Amendments and Incubation Time on pH and Extractable Organic Carbon (DOC)
3.2. Freshly Contaminated Soils
3.2.1. Effects of Amendments and Incubation Time on CaCl2-Extractable Cu
3.2.2. Effects of Amendments and Incubation Time on pH and Extractable Organic Carbon (DOC)
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wightwick, A.; Walters, R.; Allinson, G.; Reichman, S.; Menzies, N. Environmental risks of fungicides used in horticultural production systems. In Fungicides; Carisse, O., Ed.; InTech: Rijeka, Croatia, 2010; ISBN 978-953-307-266-1. [Google Scholar]
- Dagostin, S.; Schärer, H.J.; Pertot, I.; Tamm, L. Are there alternatives to copper for controlling grapevine downy mildew in organic viticulture? Crop Prot. 2011, 30, 776–788. [Google Scholar] [CrossRef]
- Rusjan, D. Copper in Horticulture, Fungicides for Plant and Animal Diseases. In Fungicides for Plant and Animal Diseases; Dhanasekaran, D., Ed.; InTech: Rijeka, Croatia, 2012; ISBN 978-953-307-804-5. [Google Scholar]
- Komárek, M.; Čadková, E.; Chrastný, V.; Bordas, F.; Bollinger, J.-C. Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environ. Int. 2010, 36, 138–151. [Google Scholar] [CrossRef]
- Ruyters, S.; Salaets, P.; Oorts, K.; Smolders, E. Copper toxicity in soils under established vineyards in Europe: A survey. Sci. Total Environ. 2013, 443, 470–477. [Google Scholar] [CrossRef]
- Wightwick, A.M.; Mollah, M.R.; Partington, D.L.; Allinson, G. Copper Fungicide Residues in Australian Vineyard Soils. J. Agric. Food Chem. 2008, 56, 2457–2464. [Google Scholar] [CrossRef]
- Fernández-Calviño, D.; Soler-Rovira, P.; Polo, A.; Díaz-Raviña, M.; Arias-Estévez, M.; Plaza, C. Enzyme activities in vineyard soils long-term treated with copper-based fungicides. Soil Biol. Biochem. 2010, 42, 2119–2127. [Google Scholar] [CrossRef]
- Miotto, A.; Ceretta, C.A.; Brunetto, G.; Nicoloso, F.T.; Girotto, E.; Farias, J.G.; Tiecher, T.L.; De Conti, L.; Trentin, G. Copper uptake, accumulation and physiological changes in adult grapevines in response to excess copper in soil. Plant Soil. 2014, 374, 593–610. [Google Scholar] [CrossRef]
- Keiblinger, K.M.; Schneider, M.; Gorfer, M.; Paumann, M.; Deltedesco, E.; Berger, H.; Jochlinger, L.; Mentler, A.; Zechmeister-Boltenstern, S.; Soja, G.; et al. Assessment of Cu applications in two contrasting soils-effects on soil microbial activity and the fungal community structure. Ecotoxicology 2018, 27, 217–233. [Google Scholar] [CrossRef]
- Wang, P.; Menzies, N.W.; Wang, Y.-M.; Zhou, D.-M.; Zhao, F.-J.; Kopittke, P.M. Identifying the species of copper that are toxic to plant roots in alkaline nutrient solutions. Plant Soil 2012, 361, 317–327. [Google Scholar] [CrossRef]
- Sauvé, S.; Dumestre, A.; McBride, M.; Hendershot, W. Derivation of soil quality criteria using predicted chemical speciation of Pb2+ and Cu2+. Environ. Toxicol. Chem. 1998, 17, 1481–1489. [Google Scholar] [CrossRef]
- Smolders, E.; Oorts, K.; Van Sprang, P.; Schoeters, I.; Janssen, C.R.; McGrath, S.P.; McLaughlin, M.J. Toxicity of trace metals in soil as affected by soil type and aging after contamination: Using calibrated bioavailability models to set ecological soil standards. Environ. Toxicol. Chem. 2009, 28, 1633–1642. [Google Scholar] [CrossRef]
- Ashworth, D.J.; Alloway, B.J. Soil mobility of sewage sludge derived dissolved organic matter, copper, nickel and zinc. Environ. Pollut. 2004, 127, 137–144. [Google Scholar] [CrossRef]
- Temminghoff, E.J.M.; Van Der Zee, S.E.A.T.M.; De Haan, F.A.M. Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter. Environ. Sci. Technol. 1997, 31, 1109–1115. [Google Scholar] [CrossRef]
- Römkens, P.F.A.M.; Salomons, W. Cd, Cu and Zn solubility in arable and forest soils: Consequences of land use changes for metal mobility and risk assessment. Soil Sci. 1998, 163, 859–871. [Google Scholar] [CrossRef]
- Li, H.; Ye, X.; Geng, Z.; Zhou, H.; Guo, X.; Zhang, Y.; Zhao, H.; Wang, G. The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils. J. Hazard. Mater. 2016, 304, 40–48. [Google Scholar] [CrossRef]
- Uchimiya, M.; Chang, S.; Klasson, K.T. Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. J. Hazard. Mater. 2011, 190, 432–441. [Google Scholar] [CrossRef]
- Chaignon, V.; Sanchez-Neira, I.; Herrmann, P.; Jaillard, B.; Hinsinger, P. Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area. Environ. Pollut. 2003, 123, 229–238. [Google Scholar] [CrossRef]
- Mackie, K.; Marhan, S.; Ditterich, F.; Schmidt, H.; Kandeler, E. The effects of biochar and compost amendments on copper immobilization and soil microorganisms in a temperate vineyard. Agric. Ecosyst. Environ. 2015, 201, 58–69. [Google Scholar] [CrossRef]
- Uchimiya, M.; Lima, I.M.; Klasson, K.T.; Wartelle, L.H. Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter. Chemosphere 2010, 80, 935–940. [Google Scholar] [CrossRef]
- Karami, N.; Clemente, R.; Moreno-Jiménez, E.; Lepp, N.W.; Beesley, L. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater. 2011, 191, 41–48. [Google Scholar] [CrossRef]
- Houben, D.; Evrard, L.; Sonnet, P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 2013, 92, 1450–1457. [Google Scholar] [CrossRef]
- Yin, Y.; Impellitteri, C.A.; You, S.-J.; Allen, H.E. The importance of organic matter distribution and extract soil: Solution ratio on the desorption of heavy metals from soils. Sci. Total Environ. 2002, 287, 107–119. [Google Scholar] [CrossRef]
- Borchard, N.; Prost, K.; Kautz, T.; Moeller, A.; Siemens, J. Sorption of copper (II) and sulphate to different biochars before and after composting with farmyard manure. Eur. J. Soil Sci. 2012, 63, 399–409. [Google Scholar] [CrossRef]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ. Pollut. 2010, 158, 2282–2287. [Google Scholar] [CrossRef]
- Park, J.H.; Choppala, G.K.; Bolan, N.S.; Chung, J.W.; Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 2011, 348, 439. [Google Scholar] [CrossRef]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal (loid) s contaminated soils–to mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Cha, J.S.; Park, S.H.; Jung, S.-C.; Ryu, C.; Jeon, J.-K.; Shin, M.-C.; Park, Y.-K. Production and utilization of biochar: A review. J. Ind. Eng. Chem. 2016, 40, 1–15. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Y.; Liu, S.; Tan, X.; Zeng, G.; Zeng, W.; Ding, Y.; Cao, W.; Zheng, B. Enhanced adsorption of methylene blue by citric acid modification of biochar derived from water hyacinth (Eichornia crassipes). Environ. Sci. Pollut. Res. 2016, 23, 23606–23618. [Google Scholar] [CrossRef]
- Rajapaksha, A.U.; Chen, S.S.; Tsang, D.C.; Zhang, M.; Vithanage, M.; Mandal, S.; Gao, B.; Bolan, N.S.; Ok, Y.S. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 2016, 148, 276–291. [Google Scholar] [CrossRef]
- Dieguez-Alonso, A.; Anca-Couce, A.; Frišták, V.; Moreno-Jiménez, E.; Bacher, M.; Bucheli, T.D.; Cimò, G.; Conte, P.; Hagemann, N.; Haller, A.; et al. Designing biochar properties through the blending of biomass feedstock with metals: Impact on oxyanions adsorption behavior. Chemosphere 2019, 214, 743–753. [Google Scholar] [CrossRef]
- Yuan, P.; Wang, J.; Pan, Y.; Shen, B.; Wu, C. Review of biochar for the management of contaminated soil: Preparation, application and prospect. Sci. Total Environ. 2019, 659, 473–490. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, C.; Dou, X.; Ma, W.; Wang, C. Optimizing the modification of wood waste biochar via metal oxides to remove and recover phosphate from human urine. Environ. Geochem. Health 2019, 41, 1767–1776. [Google Scholar] [CrossRef] [PubMed]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A Review of Biochar and Its Use and Function in Soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Laird, D.A.; Busscher, W.J. Environmental Benefits of Biochar. J. Environ. Qual. 2012, 41, 967–972. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.P.; Cowie, A.L. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci. Rep. 2014, 4, 3687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, A.; Kaupenjohann, M. Biochar addition enhanced growth of Dactylis glomerata L. and immobilized Zn and Cd but mobilized Cu and Pb on a former sewage field soil. Eur. J. Soil Sci. 2015, 66, 505–515. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.-Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef] [Green Version]
- Ameur, D.; Zehetner, F.; Johnen, S.; Jöchlinger, L.; Pardeller, G.; Wimmer, B.; Rosner, F.; Faber, F.; Dersch, G.; Zechmeister-Boltenstern, S.; et al. Activated biochar alters activities of carbon and nitrogen acquiring soil enzymes. Pedobiologia 2018, 69, 1–10. [Google Scholar] [CrossRef]
- Zimmerman, A.R. Abiotic and Microbial Oxidation of Laboratory-Produced Black Carbon (Biochar). Environ. Sci. Technol. 2010, 44, 1295–1301. [Google Scholar] [CrossRef]
- Verheijen, F.G.A.; Jeffery, S.; Bastos, A.C.; van der Velde, M.; Diafas, I. Biochar Application to Soils—A Critical Scientific Review of Effects on Soil Properties, Processes and Functions; EUR 24099 EN; Office for the Official Publications of the European Communities: Luxembourg, 2010; p. 149. [Google Scholar]
- Joseph, S.D.; Camps-Arbestain, M.; Lin, Y.; Munroe, P.; Chia, C.H.; Hook, J.; van Zwieten, L.; Kimber, S.; Cowie, A.; Singh, B.P.; et al. An investigation into the reactions of biochar in soil. Soil Res. 2010, 48, 501–515. [Google Scholar] [CrossRef]
- Rechberger, M.V.; Kloss, S.; Rennhofer, H.; Tintner, J.; Watzinger, A.; Soja, G.; Lichtenegger, H.; Zehetner, F. Changes in biochar physical and chemical properties: Accelerated biochar aging in an acidic soil. Carbon 2017, 115, 209–219. [Google Scholar] [CrossRef]
- Rechberger, M.V.; Kloss, S.; Wang, S.-L.; Lehmann, J.; Rennhofer, H.; Ottner, F.; Wriessnig, K.; Daudin, G.; Lichtenegger, H.; Soja, G.; et al. Enhanced Cu and Cd sorption after soil aging of woodchip-derived biochar: What were the driving factors? Chemosphere 2019, 2016, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Lock, K.; Janssen, C.R. Influence of aging on copper bioavailability in soils. Environ. Toxicol. Chem. 2003, 22, 1162–1166. [Google Scholar] [CrossRef] [PubMed]
- Smolders, E.; Oorts, K.; Lombi, E.; Schoeters, I.; Ma, Y.; Zrna, S.; McLaughlin, M.J. The Availability of Copper in Soils Historically Amended with Sewage Sludge, Manure, and Compost. J. Environ. Qual. 2012, 41, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Oorts, K.; Bronckaers, H.; Smolders, E. Discrepancy of the microbial response to elevated copper between freshly spiked and long-term contaminated soils. Environ. Toxicol. Chem. 2006, 25, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Lombi, E.; Nolan, A.L.; McLaughlin, M.J. Short-term natural attenuation of copper in soils: Effects of time, temperature, and soil characteristics. Environ. Toxicol. Chem. 2006, 25, 652–658. [Google Scholar] [CrossRef]
- Soja, G.; Wimmer, B.; Rosner, F.; Faber, F.; Dersch, G.; von Chamier, J.; Pardeller, G.; Ameur, D.; Keiblinger, K.; Zehetner, F. Compost and biochar interactions with copper immobilisation in copper-enriched vineyard soils. Appl. Geochem. 2018, 88, 40–48. [Google Scholar] [CrossRef]
- Cross, A.; Sohi, S.P. A method for screening the relative long-term stability of biochar. GCB Bioenergy 2013, 5, 215–220. [Google Scholar] [CrossRef]
- Zhu, B.; Fan, T.; Zhang, D. Adsorption of copper ions from aqueous solution by citric acid modified soybean straw. J. Hazard. Mater. 2008, 153, 300–308. [Google Scholar] [CrossRef]
- Houba, V.; Temminghoff, E.; Gaikhorst, G.; Van Vark, W. Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun. Soil Sci. Plant Anal. 2000, 31, 1299–1396. [Google Scholar] [CrossRef]
- Brandstetter, A.; Sletten, R.S.; Mentler, A.; Wenzel, W.W. Estimating dissolved organic carbon in waters by UV absorbance (254 nm). J. Plant Nutr. Soil Sci. 1996, 6, 605–607. [Google Scholar] [CrossRef]
- Rieuwerts, J.; Thornton, I.; Farago, M.; Ashmore, M. Factors influencing metal bioavailability in soils: Preliminary investigations for the development of a critical loads approach for metals. Chem. Spec. Bioavailab. 1998, 10, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Brunetto, G.; de Melo, G.W.B.; Terzano, R.; Del Buono, D.; Astolfi, S.; Tomasi, N.; Pii, Y.; Mimmo, T.; Cesco, S. Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere 2016, 162, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Beesley, L.; Dickinson, N. Carbon and trace element fluxes in the pore water of an urban soil following greenwaste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris. Soil Biol. Biochem. 2011, 43, 188–196. [Google Scholar] [CrossRef]
- Uchimiya, M.; Klasson, K.T.; Wartelle, L.H.; Lima, I.M. Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere 2011, 82, 1431–1437. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Lu, A.; Zhang, S.; Qin, X.; Wu, W.; Liu, H. Aging effect on the mobility and bioavailability of copper in soil. J. Environ. Sci-China 2009, 21, 173–178. [Google Scholar] [CrossRef]
- Ma, Y.; Lombi, E.; Oliver, I.W.; Nolan, A.L.; McLaughlin, M.J. Long-term aging of copper added to soils. Environ. Sci. Technol. 2006, 40, 6310–6317. [Google Scholar] [CrossRef]
- Jänsch, S.; Römbke, J.; Frische, T. Einsatz von Kupfer als Pflanzenschutzmittel-Wirkstoff: Ökologische Auswirkungen der Akkumulation von Kupfer im Boden; Forschungsbericht 36003040; Umweltbundesamt: Dessau, Germany, 2009; p. 72. [Google Scholar]
- Mackie, K.A.; Müller, T.; Kandeler, E. Remediation of copper in vineyards—A mini review. Environ. Pollut. 2012, 167, 16–26. [Google Scholar] [CrossRef]
- Pietrzak, U.; Uren, N. Remedial options for copper-contaminated vineyard soils. Soil Res. 2011, 49, 44–55. [Google Scholar] [CrossRef]
- Schneider, M.; Keiblinger, K.M.; Paumann, M.; Soja, G.; Mentler, A.; Golestani-Fard, A.; Retzmann, A.; Probaska, T.; Zechmeister-Bolternstern, S.; Wenzel, W.; et al. Fungicide application increased copper-bioavailaibility and impaired nitrogen fixation through reduced root nodule formation on alfafa. Ecotoxicology 2019, 28, 599–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
pH in CaCl2 (1:10) | Organic C | Sand | Silt | Clay | Total Cu (mg kg−1) | eCEC 1 (mmolc kg−1) | WHC 2 (%) | |
---|---|---|---|---|---|---|---|---|
% | ||||||||
Calcareous soil | 7.21 | 0.9 | 63 | 26 | 11 | 337 | 131 | 24.7 |
Acidic soil | 6.15 | 2.7 | 45 | 34 | 21 | 201 | 185 | 50.1 |
Parameter | Compost | Wood-BC | Citric-Acid Activated Wood-BC |
---|---|---|---|
pH (CaCl2) | 7.4 | 8.5 | 2.7 |
EC [µS cm−1] 1 | 2160 | 392 | 1504 |
CaCO3 [%(w/w)] | 7.99 | 4.02 | 0.19 |
CEC [mmolc kg−1] | 708.8 | 55.7 | 135.1 |
Cu [mg kg−1] | 40.4 | 0.2 | 0.1 |
C [%(w/w)] | 22.1 3 | 79.2 | 79.6 |
N [%(w/w)] | 1.33 3 | 0.44 | 0.42 |
C/N 2 | 10.6 3 | 180 | 190 |
contact angle | - | 44.6 | 0 |
ash content | - | 23.2 | 8.8 |
Amendment | Abbreviation | Application Rate (wt%) | Corresponding Field Application Rate (t DM ha−1) |
---|---|---|---|
Control | - | ||
CaCO3 (only for the acidic soil) | Lime | 0.19 | 5 |
Compost | - | 1.5 | 40 |
Wood-BC | BC | 1.5 | 40 |
Compost + Wood-BC (1:3) | Compost + BC | 1.5 | 40 |
Compost + H2O2-oxidized Wood-BC (1:3) | Compost + H2O2-ox. BC | 1.5 | 40 |
Compost + Citric-acid activated Wood-BC (1:3) | Compost + CA-act. BC | 1.5 | 40 |
pH (in CaCl2) | DOC (mg kg−1) | |||||||
---|---|---|---|---|---|---|---|---|
Calcareous | Acidic | Calcareous | Acidic | |||||
6 Weeks | 3 Years | 6 Weeks | 3 Years | 6 Weeks | 3 Years | 6 Weeks | 3 Years | |
Control | 6.65 (±0.03) a | 6.06 (±0.36) A | 6.06 (±0.16) a | 5.95 (±0.17) AB | 27.3 (±3.1) ab | 58.7 (±0.2) B * | 37.1 (±1.9) a | 54.0 (±2.9) A * |
Compost | 6.66 (±0.07) a | 6.37 (±0.12) A * | 6.39 (±0.12) b | 6.23 (±0.07) AB | 59.7 (±1.95) d | 73.6 (±3.7) C * | 66.0 (±3.4) d | 70.1 (±1.7) B |
BC | 6.61 (±0.22) a | 6.22 (±0.12) B | 5.99 (±0.06) a | 5.99 (±0.24) AB | 25.5 (±0.4) a | 50.4 (±5.5) A * | 34.8 (±0.2) a | 47.9 (±5.2) A * |
Compost + BC | 6.64 (±0.28) a | 6.42 (±0.05) A | 6.14 (±0.06) ab | 5.99 (±0.23) AB | 32.4 (±3.0) ab | 57.6 (±1.3) AB * | 43.4 (±1.7) b | 54.7 (±1.5) A * |
Compost + H2O2-ox. BC | 6.63 (±0.14) a | 6.53 (±0.16) A | 6.18 (±0.18) ab | 6.17 (±0.08) AB | 34.2 (±2.1) b | 55.6 (±0.7) AB * | 44.7 (±2.0) b | 54.1 (±1.1) A * |
Compost + CA-act. BC | 7.00 (±0.06) a | 6.26 (±0.12) A * | 6.26 (±0.01) ab | 5.84 (±0.10) A * | 49.2 (±5.6) c | 61.8 (±2.0) B * | 52.4 (±1.1) c | 51.4 (±1.7) A |
Lime | 6.84(±0.11) c | 6.40 (±0.19) B * | 47.3 (±1.7) bc | 70.5 (±1.3) B * | ||||
Amendment: n.s. Incubation: p < 0.001 Amendment x Incubation: p = 0.034 | Amendment: p < 0.001 Incubation: p < 0.001 Amendment x Incubation: n.s. | Amendment: p < 0.001 Incubation: p < 0.001 Amendment x Incubation: p < 0.001 | Amendment: p < 0.001 Incubation: p < 0.001 Amendment x Incubation: p < 0.001 |
pH (in CaCl2) | DOC (mg kg−1) | |||||||
---|---|---|---|---|---|---|---|---|
Calcareous | Acidic | Calcareous | Acidic | |||||
6 Weeks | 3 Years | 6 Weeks | 3 Years | 6 Weeks | 3 Years | 6 Weeks | 3 Years | |
Control | 6.46 (±0.02) a | 6.53 (±0.36) A | 6.00 (±0.13) a | 5.65 (±0.11) A * | 23.9 (±2.8) a | 22.3 (±0.7) A | 51.4 (±3.9) a | 57.1 (±1.7) AB |
Compost | 6.63 (±0.14) ab | 6.48 (±0.06) A | 6.29 (±0.13) a | 6.25 (±0.21) BC | 61.6 (±7.1) c | 43.9 (±1.5) C* | 72.0 (±3.4) a | 62.3 (±3.0) AB * |
BC | 6.53 (±0.06) a | 6.15 (±0.19) A | 6.26 (±0.20) a | 6.05 (±0.12) ABC | 24.3 (±1.9) a | 23.6 (±0.9) A | 51.2 (±12.0) a | 67.5 (±1.1) B |
Compost + BC | 6.53 (±0.05) a | 6.43 (±0.15) A | 6.33 (±0.30) a | 6.00 (±0.11) ABC | 30.2 (±3.2) a | 25.6 (±0.4) A | 53.4 (±3.4) a | 47.9 (±2.2) A |
Compost + H2O2-ox. BC | 6.53 (±0.05) a | 6.49 (±0.03) A | 6.08 (±0.06) a | 6.00 (±0.06) ABC | 31.4 (±0.9) a | 24.3 (±2.0) A * | 53.0 (±3.4) a | 68.9 (±15.3) B |
Compost + CA-act. BC | 6.79 (±0.09) b | 6.26 (±0.22) A * | 6.19 (±0.09) a | 5.89 (±0.23) AB | 45.3 (±7.3) b | 31.2 (±2.6) B | 62.0 (±2.7) a | 74.4 (±0.9) BC * |
Lime | 6.85 (±0.12) b | 6.44 (±0.33) C | 66.6 (±14.4) a | 91.1 (±6.6) C | ||||
Amendment: n.s. Incubation: p < 0.001 Amendment x Incubation: p = 0.023 | Amendment: p < 0.001 Incubation: p < 0.001 Amendment x Incubation: n.s. | Amendment: p < 0.001 Incubation: p < 0.001 Amendment x Incubation: p < 0.001 | Amendment: p < 0.001 Incubation: p < 0.001 Amendment x Incubation: p < 0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pump, C.; Keiblinger, K.M.; Scheiblauer, E.; Johnen, S.; Lehto, N.J.; Soja, G.; Zehetner, F. Temporal Changes in the Efficiency of Biochar- and Compost-Based Amendments on Copper Immobilization in Vineyard Soils. Soil Syst. 2019, 3, 78. https://doi.org/10.3390/soilsystems3040078
Pump C, Keiblinger KM, Scheiblauer E, Johnen S, Lehto NJ, Soja G, Zehetner F. Temporal Changes in the Efficiency of Biochar- and Compost-Based Amendments on Copper Immobilization in Vineyard Soils. Soil Systems. 2019; 3(4):78. https://doi.org/10.3390/soilsystems3040078
Chicago/Turabian StylePump, Christina, Katharina M. Keiblinger, Elisabeth Scheiblauer, Simone Johnen, Niklas J. Lehto, Gerhard Soja, and Franz Zehetner. 2019. "Temporal Changes in the Efficiency of Biochar- and Compost-Based Amendments on Copper Immobilization in Vineyard Soils" Soil Systems 3, no. 4: 78. https://doi.org/10.3390/soilsystems3040078
APA StylePump, C., Keiblinger, K. M., Scheiblauer, E., Johnen, S., Lehto, N. J., Soja, G., & Zehetner, F. (2019). Temporal Changes in the Efficiency of Biochar- and Compost-Based Amendments on Copper Immobilization in Vineyard Soils. Soil Systems, 3(4), 78. https://doi.org/10.3390/soilsystems3040078