Field Proximal Soil Sensor Fusion for Improving High-Resolution Soil Property Maps
Abstract
:1. Introduction
- Predict six laboratory-measured soil properties from in situ proximal soil sensor covariate data;
- Compare the quality of predictions obtained from individual versus combined proximal soil sensor data;
- Map the six laboratory-measured soil properties using different interpolation approaches;
- Compare the quality of maps derived directly from the observations (raw data) versus those derived from a denser grid of sensor-based predictions.
2. Material and Methods
2.1. Study Area and Soil Sampling
2.2. Predictive Modeling and Mapping
3. Results and Discussion
3.1. Descriptive Statistics and Correlations
3.2. Individual-Versus Combined-Sensor Models
3.3. Baseline Versus Sensor-Aided Maps
3.4. Recommendations and Final Considerations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Viscarra Rossel, R.A.; Adamchuk, V.I.; Sudduth, K.A.; McKenzie, N.J.; Lobsey, C. Proximal soil sensing: An effective approach for soil measurements in space and time. Adv. Agron. 2011, 113, 237–282. [Google Scholar]
- Grunwald, S.; Vasques, G.M.; Rivero, R.G. Fusion of soil and remote sensing data to model soil properties. Adv. Agron. 2015, 131, 1–109. [Google Scholar]
- Naderi-Boldaji, M.; Sharifi, A.; Alimardani, R.; Hemmat, A.; Keyhani, A.; Loonstra, E.H.; Weisskopf, P.; Stettler, M.; Keller, T. Use of a triple-sensor fusion system for on-the-go measurement of soil compaction. Soil Till. Res. 2013, 128, 44–53. [Google Scholar] [CrossRef]
- Piikki, K.; Söderström, M.; Stenberg, B. Sensor data fusion for topsoil clay mapping. Geoderma 2013, 199, 106–116. [Google Scholar] [CrossRef]
- Sharma, A.; Weindorf, D.C.; Man, T.; Aldabaa, A.A.A.; Chakraborty, S. Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH). Geoderma 2014, 232–234, 141–147. [Google Scholar] [CrossRef]
- Sharma, A.; Weindorf, D.C.; Wang, D.; Chakraborty, S. Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC). Geoderma 2015, 239–240, 130–134. [Google Scholar] [CrossRef]
- Li, H.Y.; Shi, Z.; Webster, R.; Triantafilis, J. Mapping the three-dimensional variation of soil salinity in a rice-paddy soil. Geoderma 2013, 195–196, 31–41. [Google Scholar] [CrossRef]
- Akramkhanov, A.; Brus, D.J.; Walvoort, D.J.J. Geostatistical monitoring of soil salinity in Uzbekistan by repeated EMI surveys. Geoderma 2014, 213, 600–607. [Google Scholar] [CrossRef]
- Huang, J.; Barrett-Lennard, E.G.; Kilminster, T.; Sinnott, A.; Triantafilis, J. An error budget for mapping field-scale soil salinity at various depths using different sources of ancillary data. Soil Sci. Soc. Am. J. 2015, 79, 1717–1728. [Google Scholar] [CrossRef]
- Triantafilis, J.; Lesch, S.M. Mapping clay content variation using electromagnetic induction techniques. Comput. Electron. Agric. 2005, 46, 203–237. [Google Scholar] [CrossRef]
- Piikki, K.; Söderström, M.; Eriksson, J.; John, J.M.; Muthee, P.I.; Wetterlind, J.; Lund, E. Performance evaluation of proximal sensors for soil assessment in smallholder farms in Embu county, Kenya. Sensors 2016, 16, 1950. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Lark, R.M.; Robinson, D.A.; Lebron, I.; Keith, A.M.; Rawlins, B.; Tye, A.; Kuras, O.; Raines, M.; Triantafilis, J. Scope to predict soil properties at within-field scale from small samples using proximally sensed γ-ray spectrometer and EM induction data. Geoderma 2014, 232–234, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Söderström, M.; Eriksson, J.; Isendahl, C.; Schaan, D.P.; Stenborg, P.; Rebellato, L.; Piikki, K. Sensor mapping of Amazonian Dark Earths in deforested croplands. Geoderma 2016, 281, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Wan, M.; Hu, W.; Qu, M.; Li, W.; Zhang, C.; Kang, J.; Hong, Y.; Chen, Y.; Huang, B. Rapid estimation of soil cation exchange capacity through sensor data fusion of portable XRF spectrometry and Vis-NIR spectroscopy. Geoderma 2020, 363, 114163. [Google Scholar] [CrossRef]
- Silva, S.H.G.; Poggere, G.C.; Menezes, M.D.; Carvalho, G.S.; Guilherme, L.R.G.; Curi, N. Proximal sensing and digital terrain models applied to digital soil mapping and modeling of Brazilian Latosols (Oxisols). Remote Sens. 2016, 8, 614. [Google Scholar] [CrossRef] [Green Version]
- Söderström, M.; Isendahl, C.; Eriksson, J.; Araújo, S.R.; Rebellato, L.; Schaan, D.P.; Stenborg, P. Using proximal soil sensors and fuzzy classification for mapping Amazonian Dark Earths. Agric. Food Sci. 2013, 22, 380–389. [Google Scholar] [CrossRef]
- Odeh, I.O.A.; McBratney, A.B.; Chittleborough, D.J. Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma 1994, 63, 197–214. [Google Scholar] [CrossRef]
- Odeh, I.O.A.; McBratney, A.B.; Chittleborough, D.J. Further results on prediction of soil properties from terrain attributes: Heterotopic cokriging and regression-kriging. Geoderma 1995, 67, 215–226. [Google Scholar] [CrossRef]
- Triantafilis, J.; Odeh, I.O.A.; McBratney, A.B. Five geostatistical models to predict soil salinity from electromagnetic induction data across irrigated cotton. Soil Sci. Soc. Am. J. 2001, 65, 869–878. [Google Scholar] [CrossRef]
- López-Granados, F.; Jurado-Expósito, M.; Peña-Barragán, J.M.; García-Torres, L. Using geostatistical and remote sensing approaches for mapping soil properties. Eur. J. Agron. 2005, 23, 279–289. [Google Scholar] [CrossRef]
- Wu, C.; Wu, J.; Luo, Y.; Zhang, L.; DeGloria, S.D. Spatial estimation of soil total nitrogen using cokriging with predicted soil organic matter content. Soil Sci. Soc. Am. J. 2009, 73, 1676–1681. [Google Scholar] [CrossRef]
- Delbari, M.; Afrasiab, P.; Loiskandl, W. Geostatistical analysis of soil texture fractions on the field scale. Soil Water Res. 2011, 6, 173–189. [Google Scholar] [CrossRef] [Green Version]
- Gozdowski, D.; Stępień, M.; Samborski, S.; Dobers, E.S.; Szatyłowicz, J.; Chormański, J. Prediction accuracy of selected spatial interpolation methods for soil texture at farm field scale. J. Soil Sci. Plant. Nutr. 2015, 15, 639–650. [Google Scholar] [CrossRef] [Green Version]
- García-Tomillo, A.; Mirás-Avalos, J.M.; Dafonte-Dafonte, J.; Paz-González, A. Mapping soil texture using geostatistical interpolation combined with electromagnetic induction measurements. Soil Sci. 2018, 182, 278–284. [Google Scholar] [CrossRef]
- Metwally, M.S.; Shaddad, S.M.; Liu, M.; Yao, R.-J.; Abdo, A.I.; Li, P.; Jiao, J.; Chen, X. Soil properties spatial variability and delineation of site-specific management zones based on soil fertility using fuzzy clustering in a hilly field in Jianyang, Sichuan, China. Sustainability 2019, 11, 7084. [Google Scholar] [CrossRef] [Green Version]
- Pouladi, N.; Møller, A.B.; Tabatabai, S.; Greve, M.H. Mapping soil organic matter contents at field level with cubist, random forest and kriging. Geoderma 2019, 342, 85–92. [Google Scholar] [CrossRef]
- Awal, R.; Safeeq, M.; Abbas, F.; Fares, S.; Deb, S.K.; Ahmad, A.; Fares, A. Soil physical properties spatial variability under long-term no-tillage corn. Agronomy 2019, 9, 750. [Google Scholar] [CrossRef] [Green Version]
- Ayele, G.T.; Demissie, S.S.; Jemberrie, M.A.; Jeong, J.; Hamilton, D.P. Terrain effects on the spatial variability of soil physical and chemical properties. Soil Syst. 2020, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, A.C.C.; Tupy, O.; Santos, K.E.L.; Mazzuco, G.G.; Bettiol, G.M.; Rabello, L.M.; Inamasu, R.Y. Mapping of yield, economic return, soil electrical conductivity, and management zones of irrigated corn for silage. Pesq. Agropec. Bras. 2018, 53, 1289–1298. [Google Scholar] [CrossRef]
- Martins, R.N.; Santos, F.F.L.; Araújo, G.M.; Viana, L.A.; Rosas, J.T.F. Accuracy assessments of stochastic and deterministic interpolation methods in estimating soil attributes spatial variability. Commun. Soil Sci. Plant. Anal. 2019, 50, 2570–2578. [Google Scholar] [CrossRef]
- Grego, C.R.; Vieira, S.R.; Antonio, A.M.; Rosa, S.C.D. Geostatistical analysis for soil moisture content under the no tillage cropping system. Sci. Agric. 2006, 63, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Molin, J.P.; Tavares, T.R. Sensor systems for mapping soil fertility attributes: Challenges, advances, and perspectives in Brazilian tropical soils. Eng. Agric. 2019, 39, 126–147. [Google Scholar] [CrossRef] [Green Version]
- Instituto Nacional de Meteorologia. Normais Climatológicas do Brasil 1961–1990. Available online: http://www.inmet.gov.br/portal/index.php?r=clima/normaisclimatologicas (accessed on 8 February 2020).
- Góes, M.H.B. Diagnóstico Ambiental por Geoprocessamento do Município de Itaguaí. Ph.D. Thesis, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, Brazil, 1994. [Google Scholar]
- Mello, L.C. Eletrorresistividade e possibilidades de água subterrânea no assentamento rural Casas Altas-Eldorado, Seropédica, RJ. In Proceedings of the Congresso Brasileiro de Águas Subterrâneas, São Paulo, Brazil, 9–11 September 1998; Associação Brasileira de Águas Subterrâneas: São Paulo, Brazil, 1998. [Google Scholar]
- Smedt, P.; Saey, T.; Meerschman, E.; Reu, J.; Clercq, W.; Meirvenne, M. Comparing apparent magnetic susceptibility measurements of a multi-receiver EMI sensor with topsoil and profile magnetic susceptibility data over weak magnetic anomalies. Archaeol. Prospect. 2014, 21, 103–112. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- Rabello, L.M.; Bernardi, A.C.C.; Inamasu, R.Y. Condutividade elétrica aparente do solo. In Agricultura de Precisão: Resultados de um Novo Olhar; Bernardi, A.C.C., Naime, J.M., Resende, A.V., Bassoi, L.H., Inamasu, R.Y., Eds.; Embrapa: Brasília, Brazil, 2014; pp. 48–57. [Google Scholar]
- Holland, J.E.; Biswas, A.; Huang, J.; Triantafilis, J. Scoping for scale-dependent relationships between proximal gamma radiometrics and soil properties. Catena 2017, 154, 40–49. [Google Scholar] [CrossRef]
- Vaz, C.M.P.; Jones, S.; Meding, M.; Tuller, M. Evaluation of standard calibration functions for eight electromagnetic soil moisture sensors. Vadose Zone J. 2013, 12, 1–16. [Google Scholar] [CrossRef]
- Weindorf, D.C.; Bakr, N.; Zhu, Y. Advances in portable X-ray fluorescence (pXRF) for environmental, pedological, and agronomic applications. Adv. Agron. 2014, 128, 1–45. [Google Scholar]
- Teixeira, W.G.; Vasques, G.M.; Nogueira, J. Uso de espectrômetro de fluorescência de raios X portátil (pXRF) para avaliação de teores de ferro e manganês em amostras de solo. In Proceedings of the Congresso Brasileiro de Geoquímica, Armação dos Búzios, Brazil, 22–25 August 2017; Sociedade Brasileira de Geoquímica: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Nogueira, J.N.P.; Teixeira, W.G.; Vasques, G.M. Uso de espectrômetro de fluorescência de raios X portátil (pXRF) para avaliação de teores de titânio (Ti) em amostras de solo. In Proceedings of the Seminário PIBIC Embrapa Solos, Rio de Janeiro, Brazil, 12 July 2017; Inácio, C.T., Capeche, C.L., Martins, A.L.S., Mattos, J.S.R., Carvalho, L., Eds.; Embrapa Solos: Rio de Janeiro, Brazil, 2017; pp. 32–34. [Google Scholar]
- Minansy, B.; McBratney, A.B. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Comput. Geosci. 2006, 32, 1378–1388. [Google Scholar]
- Donagema, G.K.; Campos, D.V.B.; Calderano, S.B.; Teixeira, W.G.; Viana, J.H.M. Manual de Métodos de Análise de Solo, 2nd ed.; Embrapa Solos: Rio de Janeiro, Brazil, 2011. [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2007. [Google Scholar]
- Giácomo, R.G.; Pereira, M.G.; Balieiro, F.C. Estoques de carbono e nitrogênio e distribuição das frações húmicas no solo sob diferentes coberturas florestais. Rev. Bras. Ciênc. Agrár. 2008, 3, 42–48. [Google Scholar] [CrossRef]
- Loss, A.; Pereira, M.G.; Schultz, N.; Anjos, L.H.C.; Silva, E.M.R. Atributos químicos e físicos de um Argissolo Vermelho-Amarelo em sistema integrado de produção agroecológica. Pesq. Agrop. Bras. 2009, 44, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Quraishi, M.Z.; Mouazen, A.M. Calibration of an on-line sensor for measurement of topsoil bulk density in all soil textures. Soil Till. Res. 2013, 126, 219–228. [Google Scholar] [CrossRef]
- Milnes, A.R.; Fitzpatrick, R.W. Titanium and zirconium minerals. In Minerals in Soil Environments, 2nd ed.; Dixon, J.B., Weed, S.B., Eds.; Soil Science Society of America: Madison, WI, USA, 1989; pp. 1131–1205. [Google Scholar]
- Zhu, Y.; Weindorf, D.C.; Zhang, W. Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture. Geoderma 2011, 167–168, 167–177. [Google Scholar] [CrossRef]
- Vasques, G.M.; Teixeira, W.G.; Tavares, S.R.L.; Rodrigues, H.M. Medição in situ e predição de elementos químicos do solo usando espectrômetro de fluorescência de raio X. In Proceedings of the Congresso Brasileiro de Geoquímica, Armação dos Búzios, Brazil, 22–25 August 2017; Sociedade Brasileira de Geoquímica: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Castrignanò, A.; Wong, M.T.F.; Stelluti, M.; Benedetto, D.; Sollitto, D. Use of EMI, gamma-ray emission and GPS height as multi-sensor data for soil characterisation. Geoderma 2012, 175–176, 78–89. [Google Scholar] [CrossRef]
- Naderi-Boldaji, M.; Sharifi, A.; Jamshidi, B.; Younesi-Alamouti, M.; Minaee, S. A dielectric-based combined horizontal sensor for on-the-go measurement of soil water content and mechanical resistance. Sensors Actuat. A Phys. 2011, 171, 131–137. [Google Scholar] [CrossRef]
- Rodrigues, H.M.; Vasques, G.M. Integração de sensores geofísicos e geoestatística para mapear atributos do solo. In Proceedings of the Simpósio Brasileiro de Geografia Física Aplicada, Campinas, Brazil, 28 June–2 July 2017; Perez Filho, A., Amorim, R.R., Eds.; Universidade Estadual de Campinas: Campinas, Brazil, 2017; pp. 4526–4537. [Google Scholar]
- Knotters, M.; Brus, D.J.; Oude Voshaar, J.H. A comparison of kriging combined with regression for spatial interpolation of horizon depth with censored observations. Geoderma 1995, 67, 227–246. [Google Scholar] [CrossRef]
- Houlong, J.; Daibin, W.; Chen, X.; Shuduan, L.; Hongfeng, W.; Chao, Y.; Najia, L.; Yiyin, C.; Lina, G. Comparison of kriging interpolation precision between grid sampling scheme and simple random sampling scheme for precision agriculture. Eurasian J. Soil Sci. 2016, 5, 62–73. [Google Scholar] [CrossRef] [Green Version]
Property 1 | N 1 | Min 1 | Max 1 | Mean | Median | SD 1 | Skew 1 |
---|---|---|---|---|---|---|---|
OC (g kg−1) | 130 | 3.7 | 28.0 | 11.3 | 11.4 | 3.9 | 0.64 |
SB (cmolc kg−1) | 130 | 1.4 | 8.4 | 3.9 | 3.8 | 1.5 | 0.46 |
CEC (cmolc kg−1) | 130 | 2.6 | 12.9 | 6.8 | 6.8 | 1.9 | 0.29 |
Clay (g kg−1) | 130 | 20 | 380 | 176 | 160 | 93 | 0.24 |
θ (%) | 130 | 4.2 | 31.7 | 15.4 | 15.6 | 5.6 | 0.25 |
BD (g cm−3) | 130 | 1.12 | 1.72 | 1.52 | 1.54 | 0.09 | −1.18 |
WCR θ (%) | 310 | 2.3 | 35.7 | 14.2 | 14.1 | 6.7 | 0.42 |
KT MSa (10−3 SI) | 376 | 0.0 | 3.8 | 0.3 | 0.2 | 0.3 | 4.44 |
KT log(MSa) | 376 | −3.9 | 1.3 | −1.4 | −1.5 | 0.8 | −0.06 |
KT ECa (S m−1) | 376 | 0.0 | 6.2 | 1.5 | 1.4 | 1.0 | 0.94 |
Rab ECa 0–10 (S m−1) | 374 | 0.0 | 52.7 | 1.9 | 0.3 | 4.5 | 5.99 |
Rab log(ECa 0–10) | 374 | −5.1 | 4.0 | −0.8 | −1.3 | 1.6 | 0.55 |
Rab ECa 0–20 (S m−1) | 374 | 0.1 | 99.9 | 6.7 | 3.8 | 11.5 | 4.50 |
Rab log(ECa 0–20) | 374 | −2.9 | 4.6 | 1.2 | 1.3 | 1.2 | −0.36 |
Rab ECa 0–40 (S m−1) | 374 | 0.0 | 10.7 | 1.4 | 1.1 | 1.4 | 3.26 |
Rab log(ECa 0–40) | 374 | −3.0 | 2.4 | 0.0 | 0.1 | 0.9 | −0.30 |
RS DR (μR h−1) | 376 | 0.2 | 5.2 | 2.7 | 2.7 | 0.9 | 0.33 |
RS eU (mg kg−1) | 376 | 0.3 | 3.4 | 1.3 | 1.2 | 0.4 | 0.59 |
RS eTh (mg kg−1) | 376 | 0.0 | 13.9 | 6.2 | 5.9 | 2.6 | 0.36 |
PR (kPa) | 376 | 53 | 2697 | 810 | 678 | 493 | 1.28 |
pXRF K (mg kg−1) | 376 | 0 | 5302 | 1997 | 1866 | 883 | 0.81 |
pXRF Ti (mg kg−1) | 376 | 2254 | 9638 | 5141 | 4947 | 1465 | 0.66 |
pXRF Mn (mg kg−1) | 376 | 83 | 3421 | 506 | 401 | 375 | 3.17 |
pXRF Fe (mg kg−1) | 376 | 2794 | 53,946 | 14,014 | 12,251 | 8193 | 1.48 |
pXRF Zn (mg kg−1) | 376 | 5 | 153 | 40 | 35 | 24 | 1.73 |
pXRF Rb (mg kg−1) | 376 | 3 | 65 | 22 | 21 | 12 | 0.89 |
pXRF Sr (mg kg−1) | 376 | 5 | 66 | 25 | 23 | 11 | 0.73 |
pXRF Zr (mg kg−1) | 376 | 319 | 2251 | 917 | 857 | 338 | 1.17 |
pXRF Ba (mg kg−1) | 376 | 69 | 503 | 216 | 203 | 78 | 0.86 |
pXRF Cr (mg kg−1) | 375 | 0 | 40 | 10 | 9 | 8 | 0.94 |
pXRF Pb (mg kg−1) | 374 | 3 | 34 | 14 | 14 | 5 | 0.56 |
Property 1 | OC | SB | CEC | Clay | θ | BD |
---|---|---|---|---|---|---|
OC | 1 | |||||
SB | 0.67 * | 1 | ||||
CEC | 0.76 * | 0.87 * | 1 | |||
Clay | 0.65 * | 0.68 * | 0.62 * | 1 | ||
θ | 0.63 * | 0.63 * | 0.62 * | 0.85 * | 1 | |
BD | −0.45 * | −0.22 * | −0.31 * | −0.20 * | −0.13ns | 1 |
WCR θ | 0.63 * | 0.56 * | 0.54 * | 0.68 * | 0.76 * | −0.12ns |
KT log(MSa) | 0.34 * | 0.50 * | 0.42 * | 0.53 * | 0.50 * | −0.09ns |
KT ECa | 0.38 * | 0.41 * | 0.43 * | 0.45 * | 0.49 * | −0.16ns |
Rab log(ECa 0–10) | 0.45 * | 0.47 * | 0.49 * | 0.35 * | 0.47 * | −0.01ns |
Rab log(ECa 0–20) | 0.49 * | 0.51 * | 0.54 * | 0.38 * | 0.49 * | −0.05ns |
Rab log(ECa 0–40) | 0.49 * | 0.54 * | 0.54 * | 0.43 * | 0.59 * | −0.02ns |
RS DR | 0.51 * | 0.51 * | 0.52 * | 0.70 * | 0.60 * | −0.13ns |
RS eU | −0.01ns | −0.10ns | 0.02ns | −0.09ns | −0.09ns | −0.02ns |
RS eTh | 0.54 * | 0.57 * | 0.54 * | 0.78 * | 0.67 * | −0.12ns |
PR | 0.32 * | 0.36 * | 0.28 * | 0.50 * | 0.44 * | 0.08ns |
pXRF K | 0.28 * | 0.33 * | 0.33 * | 0.34 * | 0.22 * | −0.15ns |
pXRF Ti | −0.11ns | −0.16ns | −0.08ns | −0.13ns | −0.16ns | 0.06ns |
pXRF Mn | 0.13ns | 0.21 * | 0.27 * | 0.00ns | 0.00ns | −0.05ns |
pXRF Fe | 0.43 * | 0.49 * | 0.38 * | 0.80 * | 0.67 * | −0.08ns |
pXRF Zn | 0.24 * | 0.38 * | 0.29 * | 0.33 * | 0.23 * | −0.07ns |
pXRF Rb | 0.44 * | 0.56 * | 0.49 * | 0.69 * | 0.54 * | −0.17 * |
pXRF Sr | 0.47 * | 0.46 * | 0.49 * | 0.29 * | 0.26 * | −0.24 * |
pXRF Zr | −0.33 * | −0.49 * | −0.36 * | −0.53 * | −0.50 * | 0.03ns |
pXRF Ba | 0.46 * | 0.46 * | 0.43 * | 0.72 * | 0.57 * | −0.14ns |
pXRF Cr | 0.20 * | 0.29 * | 0.27 * | 0.37* | 0.22 * | −0.19 * |
pXRF Pb | 0.62 * | 0.43 * | 0.50 * | 0.60 * | 0.46 * | −0.30 * |
Property 1 | Model 1 | Selected Covariates 1 | Training 1 | Validation 1 | |||
---|---|---|---|---|---|---|---|
Nt | R2adj | RMSEt | Nv | RMSEv 2 | |||
Individual sensors (excluding WCR) | |||||||
OC (g kg−1) | pXRF | K, Ti, Mn, Zn, Rb, Sr, Zr, Ba, Cr, Pb | 102 | 0.58 | 2.2 | 25 | 2.5 |
KT | log(MSa), ECa | 104 | 0.11 | 3.3 | 25 | 3.1 | |
RS | DR, eTh | 103 | 0.33 | 2.8 | 25 | 3.2 | |
Rab | log(ECa 0–10), log(ECa 0–40) | 103 | 0.30 | 2.8 | 24 | 3.3 | |
SB (cmolc kg−1) | pXRF | Ti, Fe, Rb, Sr, Zr | 99 | 0.64 | 0.8 | 25 | 0.9 |
RS | DR, eTh | 105 | 0.27 | 1.2 | 25 | 0.9 | |
Rab | log(ECa 0–10), log(ECa 0–40) | 105 | 0.25 | 1.3 | 24 | 1.1 | |
KT | log(MSa), ECa | 103 | 0.24 | 1.6 | 25 | 2.9 | |
CEC (cmolc kg−1) | RS | DR, eTh | 105 | 0.27 | 1.7 | 25 | 1.4 |
KT | log(MSa), ECa | 103 | 0.24 | 1.6 | 25 | 1.5 | |
Rab | log(ECa 0–10), log(ECa 0–40) | 105 | 0.27 | 1.7 | 24 | 1.5 | |
pXRF | Ti, Sr, Zr, Pb | 102 | 0.52 | 1.3 | 25 | 1.7 | |
Clay (g kg−1) | pXRF | Ti, Fe, Zn, Rb, Zr, Cr, Pb | 103 | 0.81 | 37 | 25 | 40 |
RS | eU, eTh | 100 | 0.79 | 38 | 25 | 60 | |
KT | log(MSa), ECa | 105 | 0.21 | 78 | 25 | 80 | |
Rab | log(ECa 0–10), log(ECa 0–40) | 105 | 0.16 | 81 | 24 | 97 | |
θ (% m/v) | pXRF | Ti, Zn, Zr, Ba, Cr, Pb | 103 | 0.57 | 3.2 | 25 | 5.2 |
RS | DR, eTh | 105 | 0.44 | 3.8 | 25 | 5.4 | |
Rab | log(ECa 0–10), log(ECa 0–40) | 105 | 0.34 | 4.1 | 24 | 6.0 | |
KT | log(MSa), ECa | 105 | 0.22 | 4.4 | 25 | 6.1 | |
BD (g cm−3) | pXRF | K, Ti, Mn, Fe, Zn, Rb, Sr, Zr, Cr, Pb | 102 | 0.01 | 0.078 | 25 | 0.085 |
RS | DR, eTh | 104 | 0.00 | 0.081 | 25 | 0.090 | |
Rab | log(ECa 0–10), log(ECa 0–40) | 103 | −0.02 | 0.077 | 24 | 0.091 | |
KT | log(MSa), ECa | 104 | 0.02 | 0.081 | 25 | 0.093 | |
Combined sensors (excluding pXRF) | |||||||
OC (g kg−1) | Combined | log(Rab ECa 0–20), eTh | 103 | 0.46 | 2.5 | 24 | 3.0 |
Combined + WCR | WCR θ, DR, PR | 46 | 0.58 | 2.2 | 24 | 3.3 | |
SB (cmolc kg−1) | Combined | log(MSa), log(Rab ECa 0–40), DR | 105 | 0.39 | 1.1 | 24 | 0.7 |
Combined + WCR | WCR θ, log(MSa) | 47 | 0.28 | 1.2 | 24 | 0.7 | |
CEC (cmolc kg−1) | Combined | ECa, log(Rab ECa 0–20), DR | 104 | 0.47 | 1.4 | 24 | 1.2 |
Combined + WCR | WCR θ, DR | 46 | 0.42 | 1.4 | 24 | 1.6 | |
Clay (g kg−1) | Combined + WCR | WCR θ, log(MSa), log(Rab ECa 0–20), DR, eU, PR | 44 | 0.94 | 21 | 23 | 47 |
Combined | KT ECa, eU, eTh, PR | 101 | 0.79 | 38 | 25 | 54 | |
θ (% m/v) | Combined + WCR | WCR θ, log(ECa 0–20), log(ECa 0–40), DR | 47 | 0.81 | 2.2 | 23 | 3.8 |
Combined | log(Rab ECa 0–20), log(Rab ECa 0–40), eTh | 104 | 0.64 | 3.0 | 24 | 4.7 | |
BD (g cm−3) | Combined | eTh, PR | 103 | 0.07 | 0.074 | 25 | 0.090 |
Combined + WCR | WCR θ, eTh | 46 | 0.10 | 0.066 | 24 | 0.095 |
Property 1 | Method 1 | Grid | Model/Covariate 1 | Nugget | Sill | Range (m) | Nugget/Sill (%) | RMSEv 1,2 |
---|---|---|---|---|---|---|---|---|
OC (g kg−1) | OK | Thin | 5.00 | 28.00 | 348 | 17.9 | 2.8 | |
OK | Dense | pXRF | 3.16 | 12.07 | 291 | 26.2 | 2.9 | |
OK | Dense | Combined | 2.50 | 7.50 | 269 | 33.3 | 3.0 | |
COK | Mixed | RS eTh | 8.33 | 17.57 | 220 | 47.4 | 3.2 | |
SB (cmolc kg−1) | OK | Dense | Combined | 0.30 | 1.20 | 225 | 25.0 | 0.9 |
OK | Thin | 1.05 | 3.15 | 254 | 33.3 | 1.0 | ||
OK | Dense | pXRF | 0.31 | 1.73 | 147 | 18.0 | 1.0 | |
COK | Mixed | RS eTh | 1.70 | 2.79 | 230 | 61.0 | 1.3 | |
CEC (cmolc kg−1) | OK | Dense | Combined | 0.80 | 2.30 | 138 | 34.8 | 1.5 |
OK | Dense | RS | 0.32 | 1.58 | 281 | 20.3 | 1.5 | |
OK | Thin | 2.00 | 6.50 | 339 | 30.8 | 1.6 | ||
COK | Mixed | RS eTh | 2.67 | 4.50 | 220 | 59.2 | 1.9 | |
Clay (g kg−1) | OK | Dense | pXRF | 925 | 11573 | 228 | 8.0 | 57 |
OK | Thin | 450 | 13915 | 278 | 3.2 | 60 | ||
COK | Mixed | RS eTh | 2408 | 12412 | 220 | 19.4 | 61 | |
OK | Dense | Combined | 1118 | 9267 | 294 | 12.1 | 63 | |
θ (% m/v) | OK | Dense | Combined | 7.00 | 32.00 | 285 | 21.9 | 5.6 |
OK | Thin | 9.33 | 38.39 | 275 | 24.3 | 5.8 | ||
COK | Mixed | RS eTh | 10.58 | 31.97 | 205 | 33.1 | 6.1 | |
OK | Dense | pXRF | 4.72 | 19.22 | 190 | 24.6 | 6.3 | |
BD (g cm−3) | OK | Dense | pXRF | 0.0002 | 0.0007 | 78 | 31.7 | 0.086 |
OK | Dense | Combined | 0.0004 | 0.0005 | 112 | 74.9 | 0.087 | |
OK | Thin | 0.0065 | 0.0100 | 316 | 65.0 | 0.089 | ||
COK | Mixed | KT ECa | 0.1971 | 0.1988 | 245 | 99.1 | 0.210 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasques, G.M.; Rodrigues, H.M.; Coelho, M.R.; Baca, J.F.M.; Dart, R.O.; Oliveira, R.P.; Teixeira, W.G.; Ceddia, M.B. Field Proximal Soil Sensor Fusion for Improving High-Resolution Soil Property Maps. Soil Syst. 2020, 4, 52. https://doi.org/10.3390/soilsystems4030052
Vasques GM, Rodrigues HM, Coelho MR, Baca JFM, Dart RO, Oliveira RP, Teixeira WG, Ceddia MB. Field Proximal Soil Sensor Fusion for Improving High-Resolution Soil Property Maps. Soil Systems. 2020; 4(3):52. https://doi.org/10.3390/soilsystems4030052
Chicago/Turabian StyleVasques, Gustavo M., Hugo M. Rodrigues, Maurício R. Coelho, Jesus F. M. Baca, Ricardo O. Dart, Ronaldo P. Oliveira, Wenceslau G. Teixeira, and Marcos B. Ceddia. 2020. "Field Proximal Soil Sensor Fusion for Improving High-Resolution Soil Property Maps" Soil Systems 4, no. 3: 52. https://doi.org/10.3390/soilsystems4030052
APA StyleVasques, G. M., Rodrigues, H. M., Coelho, M. R., Baca, J. F. M., Dart, R. O., Oliveira, R. P., Teixeira, W. G., & Ceddia, M. B. (2020). Field Proximal Soil Sensor Fusion for Improving High-Resolution Soil Property Maps. Soil Systems, 4(3), 52. https://doi.org/10.3390/soilsystems4030052